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GALERKIN APPROXIMATION OF LINEAR PROBLEMS

IN BANACH AND HILBERT SPACES

W. ARENDT, I. CHALENDAR, AND R. EYMARD

Abstract. In this paper we study the conforming Galerkin approximation of the prob-
lem: find u ∈ U such that a(u, v) = 〈L, v〉 for all v ∈ V , where U and V are Hilbert
or Banach spaces, a is a continuous bilinear or sesquilinear form and L ∈ V ′ a given
data. The approximate solution is sought in a finite dimensional subspace of U , and test
functions are taken in a finite dimensional subspace of V . We provide a necessary and
sufficient condition on the form a for convergence of the Galerkin approximation, which
is also equivalent to convergence of the Galerkin approximation for the adjoint problem.
We also characterize the fact that U has a finite dimensional Schauder decomposition
in terms of properties related to the Galerkin approximation. In the case of Hilbert
spaces, we prove that the only bilinear or sesquilinear forms for which any Galerkin ap-
proximation converges (this property is called the universal Galerkin property) are the
essentially coercive forms. In this case, a generalization of the Aubin-Nitsche Theorem
leads to optimal a priori estimates in terms of regularity properties of the right-hand side
L, as shown by several applications. Finally, a section entitled ”Supplement” provides
some consequences of our results for the approximation of saddle point problems.

1. Introduction

Due to its practical importance, the approximation of elliptic problems in Banach or
Hilbert spaces has been the object of numerous works. In Hilbert spaces, a crucial result
is the simultaneous use of the Lax-Milgram theorem and of Céa’s Lemma to conclude
the convergence of conforming Galerkin methods in the case that the elliptic problem is
resulting from a coercive bilinear or sesquilinear form.

But the coercivity property is lost in many practical situations: for example, consider
the Laplace operator perturbed by a convection term or a reaction term (see the example
in Section 7.2), and the approximation of non-coercive forms must be studied as well.
For particular bilinear or sesquilinear forms, the Fredholm alternative provides an exis-
tence result in the case where the problem is well-posed in the Hadamard sense. Such
results have been extended by Banach, Nečas, Babuška and Brezzi in the case of bilinear
forms on Banach spaces. The conforming approximation of such problems enters into
the framework of the so-called Petrov–Galerkin methods, for which sufficient conditions
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for the convergence are classical (see for example the references [2, 8, 12, 31] which also
include the case of non-conforming approximations).
Nevertheless, these sufficient conditions do not guarantee that for a given problem, there
exists a converging Galerkin approximation. Moreover, they do not answer the follow-
ing question, which is important in practice: under which conditions does the Galerkin
approximation exist and converge to the solution of the continuous problem for any suffi-
ciently fine approximation (for example, letting the degree of an approximating polynomial
or the number of modes in a Fourier approximation be high enough, or letting the size of
the mesh for a finite element method be small enough, and, in the case of Hilbert spaces,
using the Galerkin method and not the Petrov–Galerkin method)?
The aim of this paper is precisely to address such questions for not necessarily coercive
bilinear or sesquilinear forms defined on some Banach or Hilbert spaces (we treat the real
and complex cases simultaneously). We shall restrict this study to conforming approxi-
mations, in the sense that the approximation will be sought in subspaces of the underlying
space, using the continuous bilinear or sesquilinear form.
In the first part we consider the Banach space framework. Given a continuous bilinear
form a : U×V → R where U and V are reflexive, separable Banach spaces, one is interested
in the existence and the convergence of the Galerkin approximation to u, where u is the
solution of the following problem:

(1.1) Find u ∈ U such that a(u, v) = 〈L, v〉, for all v ∈ V,

where L ∈ V ′ is given (the existence and uniqueness of u are obtained under the Banach-
Nečas-Babuška conditions, see for example [12, Theorem 2.6]). For approximating se-
quences (Un)n∈N∗ , (Vn)n∈N∗ (see Section 2 for the definition), the Galerkin approximation
of (1.1) is given by the sequence (un)n∈N∗ such that, for any n ∈ N∗, un is the solution of
the following finite dimensional linear problem:

(1.2) Find un ∈ Un such that a(un, χ) = 〈L, χ〉, for all χ ∈ Vn.

It is known that, if dimUn = dimVn, the uniform Banach-Nečas-Babuška condition (BNB)
given in Section 2 is sufficient for these existence and convergence properties (see for
example [12, Theorem 2.24]). We show here that this condition is also necessary and,
surprisingly, that the convergence of the Galerkin approximation of (1.1) is equivalent to
that of the Galerkin approximation of the dual problem.
These two results seem to be new and are presented in Section 2.
In Section 3, we ask the following: given a form a such that (1.1) is well-posed, do there
always exist approximating sequences in U and V such that the Galerkin approximation
converges? Surprisingly, the answer is negative (even though the spaces U and V are
supposed to be reflexive and separable). In fact, such approximating sequences exist
if and only if the Banach space U has a finite dimensional Schauder decomposition, a
property which is strictly more general than having a Schauder basis.
In the remainder of the paper, merely Hilbert spaces are considered and moreover we
assume that U = V and Un = Vn for all n ∈ N∗. Given is a continuous bilinear form
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a : V × V → R, where V is a separable Hilbert space. Assuming that (1.1) is well-
posed, we show that the convergence of the Galerkin approximation for all approximating
sequences in V (which we call here the universal Galerkin property) is equivalent to a being
essentially coercive, which means that a compact perturbation of a is coercive. This notion
of essential coercivity can also be characterized by a certain weak-strong inverse continuity
of a, which, in fact, we take as definition of essential coercivity (Definition 4.2).
We then derive improved a priori error estimates by generalizing the Aubin–Nitsche ar-
gument to non-symmetric forms and also allowing the given right hand side L of (1.1) to
belong to arbitrary interpolation spaces in between V and V ′. These generalizations are
applied to two cases: the approximation of selfadjoint positive operators with compact
resolvent (in this case, it is seen that our a priori error estimate is optimal, with the
fastest speed of convergence for L in V, the slowest for L ∈ V ′) and the finite element
approximation of a non-selfadjoint elliptic differential operator, including convection and
reaction terms which is indeed essentially coercive.
We finally give some further historical remarks in Section 8, where we consider saddle point
problems. As a consequence of our results, we show that Brezzi’s conditions, implying the
convergence of mixed approximations (which are the Galerkin ones in the case of saddle
point problems), are also necessary for this convergence.
To avoid any ambiguity, in the sequel, we let N = {0, 1, 2, · · · } and N∗ = N \ {0}.

The paper is organized as follows:

Contents

1. Introduction 1
2. Petrov–Galerkin approximation 3
3. Existence of a converging Galerkin approximation 9
4. Essentially coercive forms 12
5. Characterization of the universal Galerkin property 16
6. The Aubin-Nitsche trick revisited 19
7. Applications 21
7.1. Selfadjoint positive operators with compact resolvent 21
7.2. Finite elements for the Poisson problem 24
8. Supplement: saddle point problems 28
References 31

2. Petrov–Galerkin approximation

In this section we give a characterization of the convergence of Petrov–Galerkin methods,
that, for short, we call Galerkin convergence. A basic definition is the following.

Definition 2.1 (Approximating sequences of Banach spaces). Let V be a separable Banach
space. An approximating sequence of V is a sequence (Vn)n∈N∗ of finite dimensional
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subspaces of V such that
dist(v,Vn) → 0 as n→ ∞

for all v ∈ V, where dist(u,Vn) := inf{‖u− χ‖ : χ ∈ Vn}.
Now let U and V be two separable, reflexive Banach spaces over K = R or C and a :
U × V → K be a continuous sesquilinear form such that

|a(u, v)| ≤M‖u‖U‖v‖V for all u ∈ U , v ∈ V
where M > 0 is a constant. We assume that U and V are infinite dimensional and that
(Un)n∈N∗ and (Vn)n∈N∗ are approximating sequences of U and V respectively. We also
assume throughout that

0 6= dimUn = dimVn for all n ∈ N
∗.

Given L ∈ V ′ we search a solution u of the problem:

(2.1) find u ∈ U such that a(u, v) = 〈L, v〉, for all v ∈ V.
Moreover we want to approximate such a solution by un, the solution of the problem:

(2.2) find un ∈ Un such that a(un, χ) = 〈L, χ〉, for all χ ∈ Vn.

Note that, given n ∈ N∗, there exists a unique un ∈ Un satisfying (2.2) if and only if

(2.3) for all u ∈ Un,
(
a(u, χ) = 0 for all χ ∈ Vn

)
⇒ u = 0,

since, by assumption, Un and Vn have the same finite dimension.
Let us briefly recall the origin of the Banach-Nečas-Babuška conditions for the well-
posedness of (2.1) as stated for example in [12, 31, 2] (equivalent conditions are proposed
in [8] in the case of Hilbert spaces). Let us consider the associated operator A : U → V ′

defined by
〈Au, v〉 = a(u, v) (u ∈ U , v ∈ V).

Then A is linear, bounded with ‖A‖ ≤ M . By the Inverse Mapping Theorem, A has
closed range and is injective if and only if there exists β > 0 such that

(2.4) ‖Au‖V ′ ≥ β‖u‖U for all u ∈ U .
By the definition of the norm of V ′, this can be reformulated by

(2.5) sup
‖v‖V≤1

|a(u, v)| ≥ β‖u‖U for all u ∈ U .

Recall that A is invertible if and only if A is injective and has a closed and dense range.
By the Hahn-Banach theorem, A has dense range if and only if no non-zero continuous
functional on V ′ annihilates the range of A. By reflexivity, this is equivalent to the
following uniqueness property:

(2.6) for all v ∈ V,
(
a(u, v) = 0 for all u ∈ U

)
⇒ v = 0.

Thus (2.1) is well-posed (i.e. for all L ∈ V ′ there exists a unique u ∈ U satisfying (2.1)) if
and only if (2.5) and (2.6) are satisfied. In fact, Hadamard’s definition of well-posedness
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also requires continuity of the inverse operator, which here automatically follows from
bijectivity by the Inverse Mapping Theorem.
In order to obtain a result of convergence of the approximate solutions we consider the
following uniform Banach-Nečas-Babuška condition (called Ladyzenskaia-Babuška-Brezzi
condition in the framework of the mixed formulations, i.e. approximation of saddle point
problems, see also Section 8), which is the estimate (2.5) for a|Un×Vn

uniformly in n ∈ N∗,
namely

(BNB) ∃β > 0; ∀n ∈ N
∗, ∀u ∈ Un, sup

v∈Vn,‖v‖V=1

|a(u, v)| ≥ β‖u‖U .

Remark 2.2. Condition (BNB) is also called the inf–sup condition since by the Hahn-
Banach Theorem it can be reformulated as

∃β > 0; ∀n ∈ N
∗, inf

u∈Un,‖u|V =1
sup

v∈Vn,‖v‖V=1

|a(u, v)| ≥ β.

More precisely, this is the uniform or discrete BNB-condition which is used for approx-
imation whereas (2.5) is the continuous BNB-condition which expresses well-posedness
of the problem and can also be expressed by an inf-sup-condition (see for example [15,
Lemma 6.95 and Lemma 6.110]). The use of (LBB) relates this inequality to the work of
Ladyzhenkaya [18] who, after a previous contribution due to Babuska [3], used it to prove
well-posedness. Brezzi [4] introduced the analogue of the uniform BNB-condition for the
treatment of saddle point problems (see Section 8 for more details).
Usually, in the numerical analysis community, one uses the name “inf-sup” condition (or
LBB condition) only in the context of saddle point problems (see condition (8.1).(iii) in
Section 8). We keep the name “(BNB) condition”, following the monograph [12].

We recall that (BNB) implies that the approximate solutions converge to the solution if
the problem is well-posed (see for example [12, 31, 2]). Here we will show that (BNB) is
actually equivalent to Galerkin-convergence, and surprisingly also to Galerkin-convergence
for the dual problem.

Definition 2.3 (Convergence of Galerkin approximation). We say that the Galerkin-
approximation converges if (2.1) as well as (2.2) are well-posed for all n ∈ N∗ and L ∈ V ′

and if, in addition, there exists a constant γ > 0 independent of n and L such that,

(2.7) ‖u− un‖U ≤ γ dist(u,Un),

where u is the solution of (2.1) and un the solution of (2.2) for n ∈ N∗ and L ∈ V ′. In
particular, limn→∞ un = u in U .

We may also consider the dual problem of (2.1) where a is replaced by the adjoint form
a∗ : V × U → K given by

a∗(v, u) = a(u, v) (u ∈ U , v ∈ V).
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If in Definition 2.3 the form a is replaced by a∗, then we say that the dual Galerkin
approximation converges. Similarly we note the following dual uniform Banach-Nečas-
Babuška condition

(BNB∗) ∃β∗ > 0; ∀n ∈ N
∗, sup

u∈Un,‖u‖U=1

|a∗(u, v)| ≥ β∗‖v‖V (v ∈ Vn).

Then the following theorem holds.

Theorem 2.4. The following assertions are equivalent:

(i) the Galerkin approximation converges;
(ii) (BNB) holds;
(iii) (BNB∗) holds;
(iv) the dual Galerkin approximation converges.

It is surprising that (BNB) and (BNB∗) are equivalent even though the corresponding
condition (2.5) is obviously not equivalent to its dual form. In fact, it can well happen
that A is injective and has closed range (so that there exists β > 0 satisfying (2.5)) but
the range of A is a proper subspace of V ′ so that there exists v ∈ V such that v 6= 0 and
a(u, v) = 0 for all u ∈ U ; in particular the dual form of (2.5) does not hold for any β∗ > 0.
We will give the proof of Theorem 2.4 in several steps which give partly even stronger
results. At first we show that (ii) implies (i), where γ can even be expressed in terms
of β and M . Although the proof of this result is classical (see for example [31, 12]), we
provide it for the convenience of the reader, but also to establish the well-posedness of
(2.1) which we did not assume. This will be important for the proof of Theorem 2.4 and
for the main result in Section 5.

Proposition 2.5. Let β > 0. Assume that for all n ∈ N∗,

(2.8) sup
v∈Vn,‖v‖V=1

|a(u, v)| ≥ β‖u‖U (u ∈ Un).

Then the Galerkin-approximation converges and (2.7) holds with

γ = 1 +
M

β
.

Proof. Let L ∈ V ′. Note that (2.8) implies (2.3). Thus, for each n ∈ N
∗ there exists a

unique solution un of (2.2). By (2.8),

(2.9) ‖un‖U ≤ 1

β
sup

v∈Vn,‖v‖V≤1

|〈L, v〉| ≤ 1

β
‖L‖V ′.

Since U is reflexive, we find u ∈ U such that a subsequence of (un)n, say, (unk
)k, converges

weakly to u. Let v ∈ V. By assumption we find vk ∈ Vnk
such that limk→∞ ‖v−vnk

‖V = 0.
It follows that

a(u, v) = lim
k→∞

a(unk
, vk) = lim

k→∞
〈L, vk〉 = 〈L, v〉.
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Thus we find a solution u of (2.1). But so far we do not know its uniqueness. This will
be a consequence of (2.7) which we prove now. Indeed, observe that

(2.10) a(u, χ) = 〈L, χ〉 = a(un, χ) for all χ ∈ Vn.

It follows that a(u, χ) = a(un, χ) for all χ ∈ Vn (Galerkin orthogonality). Using this, for
all w ∈ Un,

‖u− un‖U ≤ ‖u− w‖U + ‖w − un‖U
≤ ‖u− w‖U +

1

β
sup

v∈Vn,‖v‖V=1

|a(w − un, v)|

= ‖u− w‖U +
1

β
sup

v∈Vn,‖v‖V=1

|a(w − u, v)|

≤
(
1 +

M

β

)
‖w − u‖U .

Taking the infimum over all w ∈ Un we obtain (2.7). In particular limn→∞ ‖u− un‖U = 0
which shows uniqueness. �

The following result is due to Xu and Zikatanov [31, Theorem 2] (see also [2, Satz 9.41]).
We nevertheless provide its proof for the sake of completeness.

Proposition 2.6. Assume that U is a Hilbert space and that β > 0 is such that (2.8)
holds. Then the Galerkin-approximation converges and (2.7) holds with γ = M

β
.

Proof. Note that (2.8) implies (2.3). Consequently for each w ∈ U there exists a unique
Qnw ∈ Un such that

a(Qnw, χ) = a(w, χ) (χ ∈ Vn).

Then Qn is a projection from U onto Un, which is calle the Ritz projection. Moreover,

β‖Qnw‖U ≤ sup
χ∈Vn,‖χ‖V=1

|a(Qnw, χ)|

= sup
χ∈Vn,‖χ‖V=1

|a(w, χ)|

≤ M‖w‖U .
Thus ‖Qn‖ ≤ M

β
.

Since Un 6= 0 and U 6= 0, one has Qn 6= 0, Id. It follows from a result due to Kato [17,
Lemma 4] that ‖Qn‖ = ‖Id−Qn‖.
Now let L ∈ V ′ and u the solution of (2.3), un the solution of (2.2). Then for any χ ∈ Un,

u− un = (Id−Qn)u = (Id−Qn)(u− χ).

Hence

‖u− un‖U ≤ ‖ Id−Qn‖‖u− χ‖U = ‖Qn‖‖u− χ‖U ≤ M

β
‖u− χ‖U .
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This implies that

‖u− un‖U ≤ M

β
dist(u,Un).

�

Remark 2.7. Also in certain Banach spaces an improvement of the constant 1 + M
β

is

possible, see Stern [29].

Next we show that even a weaker assumption than the convergence of the Galerkin-
approximation implies (BNB∗).

Proposition 2.8. Assume (2.3) for all n ∈ N∗ and that

sup
n∈N∗

‖un‖U <∞

whenever L ∈ V ′ and un is the solution of (2.2). Then (BNB∗) holds.

Proof. Since the spaces Vn and Un have the same finite dimension, our assumption (2.3)
implies also dual uniqueness, i.e. a(χ, v) = 0 for all χ ∈ Un implies v = 0 whenever
v ∈ Vn, and this for all n ∈ N∗. Thus

‖v‖Vn
:= sup

u∈Un,‖u‖U=1

|a(u, v)|

defines a norm on Vn. Moreover,

|a(u, v)| ≤ ‖u‖U‖v‖Vn
for all u ∈ Un, v ∈ Vn.

We show that the set

B :=

{
v

‖v‖Vn

: n ∈ N
∗, v ∈ Vn, v 6= 0

}

is bounded. For that purpose, let L ∈ V ′. By assumption there exist c > 0 and un ∈ Un

such that
a(un, v) = 〈L, v〉 for all v ∈ Vn

and ‖un‖U ≤ c for all n ∈ N∗. Now, for v
‖v‖Vn

∈ B,
∣∣∣∣〈L,

v

‖v‖Vn

〉
∣∣∣∣ = |a(un, v)|

1

‖v‖Vn

≤ ‖un‖U ≤ c.

This shows that B is weakly bounded and thus, owing to the Banach–Steinhaus theorem,
norm-bounded. Therefore there exists β∗ > 0 such that ‖v‖V ≤ 1

β∗‖v‖Vn
, i.e.

β∗‖v‖V ≤ sup
u∈Un,‖u‖U=1

|a(u, v)| for all v ∈ Vn, n ∈ N
∗.

This is (BNB∗). �

Proof of Theorem 2.4. (ii) ⇒ (i) and (iii) ⇒ (iv) via Proposition 2.5, whereas (i) ⇒ (iii)
and (iv) ⇒ (ii) follows from Proposition 2.8.

�
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Remark: The hypothesis on U and V to be reflexive is not needed in Proposition 2.5.

Finally we mention that the best lower bounds β for (BNB) and β∗ for (BNB∗) are the
same if U and V are Hilbert spaces.

Proposition 2.9. Assuming that U and V are Hilbert spaces, let β > 0. Then the two
conditions (2.11) and (2.12) are equivalent:

(2.11) sup
‖v‖V≤1,v∈Vn

|a(u, v)| ≥ β‖u‖U for all u ∈ Un and for all n ∈ N
∗;

(2.12) sup
‖u‖U≤1,u∈Un

|a(u, v)| ≥ β‖u‖U for all v ∈ Vn and for all n ∈ N
∗;

Proof. Let n ∈ N
∗ and An : Un → Vn be given by

〈Anu, v〉V = a(u, v).

Then
〈A∗

nv, u〉U = a∗(v, u) = a(u, v),

where A∗
n is the adjoint of A. Moreover, since An is invertible,

sup
‖v‖V=1,v∈Vn

|a(u, v)| ≥ β‖u‖U

for all u ∈ Un if and only if ‖A−1
n ‖ ≤ 1

β
. Since (A∗

n)
−1 = (A−1

n )∗, it follows that ‖(A∗
n)

−1‖ =

‖(A−1
n )∗‖ = ‖A−1

n ‖ ≤ 1
β
and hence

sup
‖u‖U≤1,u∈Un

|a∗(v, u)| ≥ β‖v‖V for all v ∈ Vn.

�

W. V. Petryshyn, namely in Theorem 2 and 3 of [22], considers approximation of an
operator equation by finite dimensional problems and characterizes strong convergence.
However, besides in very special situations, it sems not possible to deduce from this con-
vergence of a Galerkin approximation, formulated in terms of sesquilinear forms. Further
results for operator equations and their approximation can be found in the monograph
[25, p. 26 ff].

3. Existence of a converging Galerkin approximation

In this section, we again let U and V be separable reflexive real Banach spaces and let
a : U × V → R be a continuous sesquilinear form such that the problem (2.1) is well-
posed; i.e. for all L ∈ V ′ there exists a unique u ∈ U satisfying (2.1). Since U and V
are separable, there always exist approximating sequences (Un)n∈N∗ of U and (Vn)n∈N∗ of
V. Our question is whether there is a choice of these sequences which is adapted to the
problem (2.1); i.e. such that the associated Galerkin approximation converges. We will
show that the answer is related to the approximation property. In fact, different versions
of this property play a role; we recall them in the next definition.
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Definition 3.1 (Approximation property and Schauder decomposition). Let X be a sep-
arable Banach space.

a) The space X has the approximation property (AP) if, for every compact subset K
of X and every ε > 0, there exists a finite rank operator R ∈ L(X ) such that

‖Rx− x‖ < ε for all x ∈ K.

b) The space X has the bounded approximation property (BAP) if there exists a
sequence (Pn)n∈N∗ of finite rank operators in X such that

for all x ∈ X , lim
n→∞

Pnx = x.

c) The space X has the bounded projection approximation property (BPAP) if each
Pn in b) can be chosen as a projection (i.e. such that P 2

n = Pn).
d) The space X possesses a finite dimensional decomposition if one finds (Pn)n∈N∗ as

in c) with the additional property

(3.1) PmPn = PnPm = Pm for all n ≥ m.

e) The space X has a Schauder basis if d) holds with

dim(Pn − Pn−1)X = 1 for all n ∈ N
∗.

It is known that (BAP) is equivalent to (AP) if X is reflexive. The first counterexample
of a Banach space without (AP) has been given by Enflo [11]. He constructed a space
which is even separable and reflexive.
Obviously the properties a)–e) have decreasing generality. It was Read [26] who showed
that (BAP) does not imply (BPAP), even if reflexive and separable spaces are considered.
Szarek [30] constructed a reflexive, separable Banach space having a finite dimensional
Schauder decompositon but not a Schauder basis. Finally, it seems to be unknown whether
(BPAP) implies the existence of a finite dimensional Schauder decomposition (see [24, Sec.
5.7.4.6] and [7, Problem 6.2]). However, if X is reflexive and separable, then these two
properties are equivalent by [7, Theorem 6.4 (3)]).
Concerning the notion of finite dimensional Schauder decomposition, there is an equivalent
formulation, namely the existence of finite dimensional subspaces Xn of X such that for
each x ∈ X there exist unique xn ∈ Xn such that x =

∑
n∈N∗ xn This explains the name.

We refer to [20, Chapter I] , [7] for more information and to [24, Sec. 5.7.4] for the
history of the approximation property. In the following theorem, by the hypothesis of
well-posedness, the two Banach spaces U and V are isomorphic. For this reason they have
the same Banach space properties.

Theorem 3.2. Let U and V be separable reflexive Banach spaces and let a : U×V → K be
a continuous sesquilinear form such that (2.1) is well-posed. Then the following assertions
are equivalent.

(i) There exist approximating sequences (Un)n∈N∗ of U and (Vn)n∈N∗ of V such that
the associated Galerkin approximation converges.

(ii) The space U has the (BPAP).
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(iii) The space U has a finite dimensional Schauder decomposition.

Here convergence of the associated Galerkin approximation is understood in the sense of
Definition 2.3.

Proof of Theorem 3.2. (i) ⇒ (ii) Let u ∈ V. Then 〈L, v〉 := a(u, v) defines an element
L ∈ V ′. By Definition 2.3, for each n ∈ N∗, there exists a unique Pnu ∈ Vn such that

a(Pnu, χ) = a(u, χ) for all χ ∈ Vn.

Moreover, ‖Pnu − u‖ ≤ γ dist(Un, u) for all n ∈ N∗ and some γ > 0. In particular,
limn→∞ Pnu = u. It follows from the definition that P 2

n = Pn. Since PnU ⊂ Un, each Pn

has finite rank. We have shown that the space U has the (BPAP).
(ii) ⇒ (iii) See [7, Theorem 6.4 (3)].
(iii) ⇒ (i) Let A : U → V ′ be the operator defined by 〈Au, v〉 = a(u, v). Then A is invert-
ible. By hypothesis there exist finite rank projections (Pn)n∈N∗ such that limn→∞ Pnu = u

for all u ∈ U . Let L ∈ V ′, u := A−1L be the solution of (2.1). Then

(3.2) un := PnA−1L→ u in U as n→ ∞.

We show that un is obtained as a Galerkin approximation. In fact, fix n ∈ N
∗. There

exist b1, · · · , bm ∈ U , ϕ1, · · · , ϕm ∈ U ′ such that 〈ϕi, bj〉 = δi,j and

(3.3) Pnx =
m∑

k=1

〈ϕk, x〉bk

for all x ∈ U . Since V is reflexive there exist vk ∈ V such that

(3.4) 〈ϕk,A−1g〉 = 〈g, vk〉
for all g ∈ V ′ and k = 1, · · · , m. Define Vn = Span{v1, · · · , vm} and Un = Span{b1, · · · , bm}.
Now consider the given L ∈ V ′. Let w =

∑m
k=1 λkbk ∈ Un. Then

(3.5) a(w, χ) = 〈L, χ〉 for all χ ∈ Vn

if and only if

(3.6) a(w, vj) = 〈L, vj〉 for j = 1, · · · , m.
By (3.4),

a(w, vj) =

m∑

k=1

λka(bk, vj) =

m∑

k=1

λk〈Abk, vj〉 =
m∑

k=1

λk〈ϕj, bk〉 = λj .

Therefore w =
∑m

k=1〈L, vk〉bk is the unique solution of (3.5). Again, by (3.4),

un = PnA−1L =

m∑

k=1

〈ϕk,A−1L〉bk =
m∑

k=1

〈L, vk〉bk = w,

and it follows from (3.2) that limn→∞ un = u. This also implies that dist(Un, u) → 0 as
n→ ∞. Thus the sequence (Un)n∈N∗ is approximating.
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It remains to show that the sequence (Vn)n∈N∗ is approximating in V. For this we need
the the additional property (3.1). Consider the adjoint P ′

n ∈ L(U ′) of Pn. Then P ′
nϕ

weakly converges to ϕ as n→ ∞ for all ϕ ∈ U ′. Thus

W := ∪n∈N∗P ′
nU ′

is weakly dense in U ′. But, because of (3.1), W is a subspace of U ′. Thus, by Mazur’s
Theorem, W is dense in U ′. If ψ ∈ W, then there exist m ∈ N∗, ϕ ∈ U ′ such that
ψ = P ′

mϕ. Thus

P ′
nψ = P ′

nP
′
mϕ = P ′

mϕ = ψ,

for all n ∈ N∗ by (3.1), and then limn→∞ P ′
nψ = ψ for all ψ ∈ W. Since supn∈N∗ ‖P ′

n‖ <∞,
it follows that limn→∞ P ′

nϕ = ϕ for all ϕ ∈ U ′. This implies that the sequence (P ′
nU ′)n∈N∗

is approximating in U ′. It follows from (3.4) that Vn ⊃ (A−1)′P ′
nU ′. In fact, fix n and

consider Pn as in (3.3). Then (3.4) says that vk = (A−1)′ϕk. Since (P ′
nU ′)n∈N∗ is an

approximating sequence in U ′ and (A−1)′ is an isomorphism from U ′ to V, it follows that
(Vn)n∈N∗ is an approximating sequence in V. �

4. Essentially coercive forms

Let V be a separable Hilbert space over K = C or R and a : V ×V → K be a sesquilinear
form satisfying

|a(u, v)| ≤ M‖u‖V‖v‖V for all u, v ∈ V
for some M > 0. Then we may associate with a the operator A ∈ L(V,V ′) defined by

〈Au, v〉 = a(u, v).

If a is coercive, i.e. if

|a(u, u)| ≥ α‖u‖2V (u ∈ V)
for some α > 0, then A is invertible. This consequence is the well-known Lax-Milgram
lemma.

Remark 4.1. The notion of coercivity is not uniform in the literature. Ours is the
natural hypothesis of the Lax-Milgram Lemma and is conform with the Wikipedia entry
”Babuska-Lax-MilgramTheorem”. In non-linear analysis there is a wide agreement on this
notion: In the real case, a possibly non-linear operator A ∈ L(V,V ′) is called coercive
if there exists a function η : R → R such that η(t) → ∞ as t → ∞ and 〈Av, v〉 ≥
η(‖u‖V)‖v‖V for all v ∈ V. If A is linear this is equivalent to the existence of α > 0 such
that

〈Au, u〉 ≥ α‖u‖2V (u ∈ V),
i.e. our condition without the absolute value. This is a ”forcing condition” which justifies
the name coercive. Other authors prefer the word V−ellipticity, see e.g. [15], [21]. We
use elliptic for shifted coercivity in [1], see also the remark at the end of this section.
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Our aim is to find weaker assumptions than coercivity which help to decide whether the
operator A is invertible.
Note that a is coercive if and only if

lim
n→∞

a(un, un) = 0 implies that lim
n→∞

‖un‖V = 0.

We weaken this property in the following way.

Definition 4.2 (Essential coercivity). The continuous sesquilinear form a (or the operator
A) is called essentially coercive if for each sequence (un)n∈N∗ in V weakly converging to 0
and such that limn→∞ a(un, un) = 0, one has limn→∞ ‖un‖V = 0.

The following is a characterization of this new property.

Theorem 4.3. The following assertions are equivalent:

(i) the form a is essentially coercive;
(ii) there exist an orthogonal projection P ∈ L(V) of finite rank and α > 0 such that

|a(u, u)|+ ‖Pu‖2V ≥ α‖u‖2V for all u ∈ V;
(iii) there exist a Hilbert space H, a compact operator J : V → H and α > 0 such that

|a(u, u)|+ ‖Ju‖2H ≥ α‖u‖2V (u ∈ V);
(iv) there exist a compact operator K ∈ L(V,V ′) and α > 0 such that

|a(u, u)|+ |〈Ku, u〉| ≥ α‖u‖2V (u ∈ V).
Proof. (i) ⇒ (ii): Let (en)n∈N∗ be an orthonormal basis of V and consider the orthogonal
projections Pn given by

Pnv :=
n∑

k=1

〈v, ek〉V ek.

Assume that (ii) is false for every Pn. Then there exists a sequence (un)n∈N∗ ⊂ V such
that ‖un‖V = 1 and

|a(un, un)|+ ‖Pnun‖2V <
1

n
.

Note that, since Id−Pn is a self-adjoint operator,

|〈(Id−Pn)un, v〉V | = |〈un, (Id−Pn)v〉V | ≤ ‖(Id−Pn)v‖V ,
with limn→∞ ‖(Id−Pn)v‖V = 0 for all v ∈ V. This implies that (Id−Pn)un converges
weakly to 0. Since limn→∞ ‖Pnun‖V = 0, it follows that un converges weakly to 0. More-
over limn→∞ |a(un, un)| ≤ limn→∞

1
n
= 0. Therefore a is not essentially coercive.

(ii) ⇒ (iii): Choose H = V and J = P .
(iii) ⇒ (iv): There exists a unique operator J∗ : H → V ′ such that

〈J∗u, v〉 = 〈u, Jv〉H
for all v ∈ V. Choose K = J∗J .
(iv) ⇒ (i): Let (un)n∈N∗ ⊂ V that tends weakly to 0 and such that a(un, un) = 〈Aun, un〉
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tends to 0 as n→ ∞. Since K is compact, ‖Kun‖V → 0 as n→ ∞. Hence |〈Kun, un〉V | →
0 as n→ ∞. By assumption there exists β > 0 such that

|〈Aun, un〉|+ |〈Kun, un〉| ≥ β‖un‖2V .
It follows that ‖un‖V → 0 as n→ ∞. �

Next we want to justify the notion ”essentially coercive”. We recall that by the Toeplitz–
Hausdorff theorem [14], the numerical range of a,

W (a) := {a(u, u) : u ∈ V, ‖u‖V = 1},
is a convex set. Hence also W (a) is convex. For α > 0,

|a(u, u)| ≥ α‖u‖2V (u ∈ V)
if and only if

W (A) ∩Dα = ∅,
where Dα = (−α, α) in the real case and Dα = {w ∈ C : |w| < α} if K = C. This
observation leads to the following more precise description of coercivity.

Lemma 4.4. The form a is coercive if and only if there exist α > 0 and λ ∈ K with
|λ| = 1 such that

Re(λz) ≥ α for all z ∈ W (a).

Proof. We give the proof for K = C. Assume that a is coercive. There exists a maximal
α > 0 such thatW (a)∩Da = ∅. Then there exists z0 ∈ W (a) of modulus α; i.e. z0 = eiθα

for some θ ∈ R. The set C := e−iθW (a) is convex and closed. Moreover α ∈ C and
Dα ∩ C = ∅. This implies that Re(z) ≥ α for all z ∈ C. Indeed, let z ∈ C such that
Re(z) < α. Then the segment [α, z] has a non-empty intersection with Dα. Since C is
convex it follows that z 6∈ C.
Conversely, clearly, if there exists α > 0 such that Re(λz) ≥ α for all z ∈ W (a), then a is
coercive. �

Theorem 4.5. Let A ∈ L(V,V ′). The following assertions are equivalent:

(i) the operator A is essentially coercive;
(ii) there exists a finite rank operator K : V → V ′ such that A+K is coercive;
(iii) there exists a compact operator K : V → V ′ such that A+K is coercive.

Proof. (i) ⇒ (ii): Choose the orthogonal finite rank projection P on V and α > 0
as in Theorem 4.3 (ii). Let V1 = ker V and V2 = rangeP . Then dimV2 < ∞ and
|a(u, u)| ≥ α‖u‖2V for all u ∈ V1. Let j : V → V ′ be the Riesz isomorphism given by

〈j(u), v〉 = 〈u, v〉V.
Let A = j−1 ◦ A ∈ L(V). Then a(u, v) = 〈Au, v〉V for all u, v ∈ V. Moreover A has a
matrix decomposition

A =

(
A11 A12

A21 A22

)
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according to the decomposition V = V1 ⊕V2 of V. Since P is orthogonal, A11 is coercive.
Thus, by Lemma 4.4, there exists z0 ∈ C such that |z0| = 1 and

Re z0〈A11u, u〉 ≥ α‖u‖2V
for all u ∈ V1. Since dimV2 <∞, there exists a finite rank operator K1 ∈ L(V) such that

A+K1 =

(
A11 0
0 0

)
.

Choose a further finite rank perturbation K2 such that

B := A+K1 +K2 =

(
A11 0
0 αz0 IdV2

)
.

Since P is orthogonal, for Q = Id−P , we get

〈Bu, u〉V = 〈A11Qu,Qu〉V + αz0〈Pu, Pu〉V.
Hence

Re〈z0Bu, u〉V ≥ α‖Qu‖2V + α‖Pu‖2V = α‖u‖2V .
Now let K = j ◦ (K1 +K2). Then A+K is coercive.
(ii) ⇒ (iii) is obvious.
(iii) ⇒ (i): Condition (iii) implies clearly Condition (iv) of Theorem 4.3; thus the claim
(i) follows from that theorem. �

Corollary 4.6. Let a be a continuous essentially coercive sesquilinear form. The following
assertions are equivalent:

(i) for all L ∈ V ′ there exists a unique u ∈ V such that

a(u, v) = 〈L, v〉 for all v ∈ V;
(ii) a(u, v) = 0 for all v ∈ V implies that u = 0 (uniqueness);
(iii) for all L ∈ V ′ there exists u ∈ V such that a(u, v) = 〈L, v〉 for all v ∈ V ( existence).

Proof. The assertion (i) means that A is invertible, the assertion (ii) means that A is
injective and the assertion (iii) means that A is surjective. By Theorem 4.5, there exists
a compact operator K ∈ L(V,V ′) such that A+K =: B is invertible.
(ii) ⇒ (i): Assume that A is injective. Write

A = B − K = B(Id−B−1K).

Then also (Id−B−1K) is injective. Since B−1K is compact, it follows from the classical
Fredholm alternative that (Id−B−1K) is invertible. Consequently also A is invertible.
(iii) ⇒ (i): If A is surjective, write A = (Id−KB−1)B to conclude that (Id−KB−1) is
surjective. Again we deduce that (Id−KB−1) is invertible and so is A. �

Remark 4.7. In the previous corollary we deduced from Theorem 4.5 the Fredholm alter-
native. This conclusion is well-known, if a compact perturbation is given, see for example
[32, Theorem 22.D], or [15, Lemma 6.108]. Our point is that a priori it is not at all
clear that the topological condition defining essential coercivity implies that the form is
a compact perturbation of a coercive form. This is what Theorem 4.5 shows. Note that,
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in [23, p229], our notion of essential coercivity is attributed, under the name “condition
(S)”, to Felix Browder [6] if we identify the operator with a form.

Moreover, we deduce from Theorem 4.5 the following properties of essential coercivity.

Corollary 4.8. (a) The set of all essentially coercive operators on V is open in L(V,V ′).
(b) If A ∈ L(V,V ′) is essentially coercive and K ∈ L(V,V ′) is compact, then A + K

is essentially coercive.
(c) If A ∈ L(V,V ′) is essentially coercive, then A is a Fredholm operator of index 0.

The following example shows that the invertibility of A does not imply the essential
coercivity of a.

Example 4.9. Let V = ℓ2(N∗), K = R and

a(u, v) =

∞∑

n=0

(−1)nunvn.

Let j be the Riesz isomorphism introduced in the proof of Theorem 4.5. Then A := j−1◦A
is a diagonal operator with merely 1 and −1 in the diagonal. Thus A and obviously A
are clearly invertible. Let fn = (0, · · · , 1, 1, 0, · · · ) where the 1 is a coordinate for k = 2n
and k = 2n + 1. Then ‖fn‖ =

√
2 and (fn)n tends weakly to 0 as n → ∞. Moreover

a(fn, fn) = 0 for all n, which shows that a is not essentially coercive.

Remark 4.10. Let K = C. In [1] a continuous sesquilinear form a is called compactly
elliptic if there exists a compact operator J : V → H, where H is some Hilbert space and
there exists α > 0 such that

Re a(u, u) + ‖Ju‖2H ≥ α‖u‖2V .
In view of Theorem 4.3, each compactly elliptic form is essentially coercive. In fact the
following holds: the form a is essentially coercive if and only if there exists λ ∈ C \ {0}
such that λa is compactly elliptic.

Proof. If λa is compactly elliptic, then λa is essentially coercive and hence also a is
essentially coercive. Conversely, let a be essentially coercive. By Theorem 4.5, there
exists a compact operator K : V → V ′ such that the form b defined by

b(u, v) = a(u, v) + 〈Ku, v〉
is coercive. By Lemma 4.4 there exist λ ∈ C of modulus one and α > 0 such that
Re(λb(u, u)) ≥ α‖u‖2V for all u ∈ V. Now let j : V → V ′ be the Riesz isomorphism. Then
J := j−1 ◦ K : V → V is compact. Choosing H = V we see that λb is compactly elliptic.
It follows from [1, Proposition 4.4 (b)] that λa is compactly elliptic. �

5. Characterization of the universal Galerkin property

In this section we want to characterize those forms on a Hilbert space for which every
Galerkin approximation converges, whatever be the choice of the approximating sequence.



GALERKIN APPROXIMATION 17

Let V be a separable, infinite dimensional separable Hilbert space over K = R or C, and
let a : V × V → K be a continuous sesquilinear form. Given L ∈ V ′ we again consider
solutions of the problem:

(5.1) Find u ∈ V, a(u, v) = 〈L, v〉 for all v ∈ V.
We say that the form a satisfies uniqueness if for u ∈ V,

a(u, v) = 0 for all v ∈ V implies u = 0.

We say that (5.1) is well-posed if for all L ∈ V ′ there exists a unique solution u ∈ V.
Definition 5.1 (Universal Galerkin property). The sesquilinear and continuous form a

has the universal Galerkin property if (5.1) is well-posed and the following holds. Let
(Vn)n∈N∗ be an arbitrary approximating sequence of V . Then there exist n0 ∈ N∗ and
γ > 0 such that for each L ∈ V ′ and each n ≥ n0, there exists a unique un ∈ Vn solving

a(un, χ) = 〈L, χ〉 for all χ ∈ Vn,

and
‖u− un‖V ≤ γ dist(u,Vn) for all n ≥ n0,

where u is the solution of (5.1).

As recalled in the introduction and in the preceding section, the Lax-Milgram Theorem
and Céa’s Lemma imply the universal Galerkin property if a is coercive. We now show that
the weaker notion of essential coercivity also provides a sufficient condition for ensuring
the universal Galerkin property, and moreover that it is necessary.

Theorem 5.2. The following assertions are equivalent.

(i) The form a is essentially coercive and satisfies uniqueness.
(ii) The form a has the universal Galerkin property.

Proof. (i) ⇒ (ii): let (Vn)n∈N∗ be an approximating sequence in V. By Theorem 2.4 it
suffices to show that there exist β > 0 and n0 ∈ N∗ such that

(5.2) sup
v∈Vn,‖v‖V=1

|a(u, v)| ≥ β‖u‖V for all u ∈ Vn, n ≥ n0.

Assume that (5.2) is false. We then find a subsequence (nk)k∈N∗ and unk
∈ Vnk

such that
‖unk

‖V = 1 and

sup
v∈Vnk

,‖v‖V=1

|a(unk
, v)| < 1

k
for all k ∈ N

∗.

We may assume that (unk
)k converges weakly to u taking a further subsequence otherwise.

Let v ∈ V. Then there exist vk ∈ Vnk
such that limk→∞ ‖v − vk‖V = 0. Thus

a(u, v) = lim
k→∞

a(unk
, vk) = 0.

It follows from the uniqueness assumption that u = 0. Thus (unk
)k converges weakly to 0,

limk→∞ a(unk
, unk

) = 0, but ‖unk
‖V = 1 for all k. Therefore the form a is not essentially

coercive.
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(ii) ⇒ (i): the uniqueness condition is part of (ii). It remains to show that a is essentially
coercive. Let (en)n∈N∗ be an orthonormal basis of V and Vn := Span{e1, · · · , en}. By our
assumption, there exist 2 ≤ n0 ∈ N

∗ and for all n ≥ n0 an operator Qn : V → Vn such
that

a(Qnu, χ) = a(u, χ) for all χ ∈ Vn (n ≥ n0).

Denote by Pn : V → Vn the orthogonal projection. Define the operator

Jn : V → V × V
by

Jnu = (Pnu,Qnu), n ≥ n0.

Now assume that a is not essentially coercive. Then it follows from Theorem 4.3 that for
all n ≥ n0 we find un ∈ V such that ‖un‖V = 1 and

|a(un, un)|+ ‖Pnun‖2V + ‖Qnun‖2V <
1

(n + 2)2
.

In particular ‖Pnun‖V < 1
(n+2)2

. This implies that un 6∈ Vn. Let Ṽn = Span{Vn ∪ {un}}.
Then (Vn)n≥n0

and (Ṽn)n≥n0
are both approximating sequences. Let n ≥ n0 and let v ∈ Ṽn

be arbitrary with unit norm. There exist a unique w1 ∈ Vn and λ ∈ K such that

v = w1 + λun = w + λ(un − Pnun),

where w := w1 + λPnun ∈ Vn. Thus

1 = ‖v‖2V = ‖w‖2V + |λ|2‖un − Pnun‖2V .
Consequently ‖w‖2V ≤ 1 and, since ‖Pnun‖V < 1

2
, it follows that

‖un − Pnun‖V ≥ 1

2
,

which implies that |λ|2 ≤ 4, i.e. |λ| ≤ 2.
Observe that the definition of Qn implies that a(un −Qnun, w) = 0. Hence

|a(un, v)| = |a(un, w) + λa(un, un − Pnun)|
= |a(un −Qnun, w) + a(Qnun, w) + λa(un, un − Pnun)|
≤ |a(Qnun, w)|+ 2|a(un, un)|+ 2|a(un, Pnun)|

≤ M

n+ 2
+

2

(n+ 2)2
+

2M

(n + 2)2
.

Consequently

lim
n→∞

sup
v∈Ṽn,‖v‖V=1

|a(un, v)| = 0.

Thus (BNB) is violated for the approximating sequence (Ṽn)n≥n0
. But then (ii) does not

hold by Theorem 2.4, which shows that the assumption that a is not essentially coercive
is false.

�
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It is obvious that a form a is essentially coercive if and only if its adjoint a∗ is essentially
coercive. However, a surprising consequence of Theorem 5.2 is that, for an essentially
coercive form, uniqueness for the form and uniqueness for its adjoint are equivalent, as
the following corollary shows.

Corollary 5.3. Let V be a separable Hilbert space on K and a : V×V → K be a continuous
essentially coercive form. The following assertions are equivalent:

(i) for all u ∈ V, a(u, v) = 0 for all v ∈ V implies u = 0;
(ii) for all v ∈ V, a(u, v) = 0 for all u ∈ V implies v = 0;
(iii) for all L ∈ V ′ there exists u in V such that a(u, v) = 〈L, v〉, for all v ∈ V;
(iv) for all L ∈ V ′ there exists v in V such that a(u, v) = 〈L, u〉, for all u ∈ V.

Proof. (i) ⇐⇒ (ii): this follows from Theorem 5.2 and Theorem 2.4. The other equiva-
lences follow from Corollary 4.6. �

6. The Aubin-Nitsche trick revisited

In this section we want to prove that on suitable Hilbert spaces containing the space V
continuously the approximation speed in the Galerkin approximation can be improved.
We refer also to [28] for related, but different results in this direction.
Let V be a separable Hilbert space over K = R or C, and a : V × V → K a sesquilinear
form satisfying

|a(u, v)| ≤ M‖u‖V‖v‖V .
Let (Vn)n∈N∗ be an approximating sequence of V. We assume that (BNB) holds; i.e. there
exists β > 0 such that

(6.1) For all n ∈ N
∗, sup

v∈Vn,‖v‖V=1

|a(u, v)| ≥ β‖u‖V for all u ∈ Vn.

Given L ∈ V ′ and n ∈ N∗, let un ∈ Vn be the solution of

(6.2) a(un, χ) = 〈L, χ〉 for all χ ∈ Vn,

and u ∈ V the solution of

(6.3) a(u, v) = 〈L, v〉 for all v ∈ V.
Note that, by subtracting (6.3) and (6.2), we obtain the following Galerkin orthogonality :

(6.4) a(u− un, v) = 0 for all v ∈ Vn.

We know from Proposition 2.5 and Proposition 2.6 that

(6.5) ‖u− un‖V ≤ M

β
dist(u,Vn)

for all n ∈ N∗. We want to improve this estimate if the given data L ∈ V ′ is in a suitable
subspace of V ′.
Let X →֒ V ′; i.e. X is a Banach space such that X ⊂ V ′ and

‖f‖X ≤ cX‖f‖V ′
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for all f ∈ X and some cX > 0. We define for n ∈ N∗

(6.6) γn(X ) := sup
f∈X ,‖f‖X=1

dist(A−1f,Vn),

where the distance is taken in V. Thus
(6.7) dist(w,Vn) ≤ γn(X )‖Aw‖X for all w ∈ A−1X ,
where A : V → V ′ is the isomorphism given by

〈Au, v〉 = a(u, v).

Thus, if u is the solution of (6.3) and un the approximate solution of (6.2), then, if L ∈ X ,
we have the estimate

(6.8) ‖u− un‖V ≤ M

β
γn(X )‖L‖X ,

which has the advantage of being uniform for L in the unit ball of X .

Remark 6.1. Let Qn : X → V, L 7→ un be the solution operator for (6.2). Then (6.8)
says that

‖A−1 −Qn‖L(X ,V) ≤
M

β
γn(X ).

We can characterize when γn(X ) → 0 as n→ ∞.

Proposition 6.2. One has

lim
n→∞

γn(X ) = 0 if and only if X →֒ V ′ is compact.

Proof. Denote by Pn : V → Vn the orthogonal projection onto Vn. Then

γn(X ) = sup
f∈X ,‖f‖X=1

‖A−1f − PnA−1f‖V = ‖A−1 ◦ j − PnA−1 ◦ j‖L(X ,V),

where j : X → V ′ is the canonical injection. If j is compact, then K := A−1 ◦ j(BX ),
where BX is the unit ball of X , is relatively compact in V. Now, Pn converges strongly
to the identity of V. Since ‖Pn‖ ≤ 1, this convergence is uniform on compact subsets of
X . This shows that γn(X ) → 0 as n→ ∞.
Conversely, if γn(X ) → 0, then A−1 ◦ j is compact as limit of finite rank operators. Then
also j is compact. �

Similarly, we define
γ∗n(X ) := sup

f∈X ,‖f‖X=1

dist(A∗−1f,Vn),

where A∗ : V → V∗ is given by

〈A∗u, v〉 = a∗(u, v) := a(u, v).

As before we have γ∗n(X ) defined as γn(X ) but with a replaced by the adjoint form a∗ of
a. Thus we have for all w ∈ A∗−1X ,

(6.9) dist(w,Vn) ≤ γ∗n(X )‖A∗w‖.
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Now we apply the Aubin–Nitsche trick in the following proof. In contrast to the literature
[12] we allow non-selfadjoint forms and also let L ∈ X where X →֒ V ′ is arbitrary.
However, as usual, we fix a Hilbert space H such that V →֒ H with dense range. Thus
we have the Gelfand triple

V →֒ H →֒ V ′.

Now we let X →֒ V ′ be another Banach space in which we choose the given data L,
whereas our error estimate is done with respect to the norm of H.

Theorem 6.3. Let L ∈ X and let u be the solution of (6.3), un the solution of (6.2).
Then

(6.10) ‖u− un‖H ≤ M2

β
γn(X )γ∗n(H)‖L‖X ,

for all n ∈ N
∗.

Proof. Let n ∈ N∗. Then, on the footsteps of Aubin–Nitsche, we consider the solution
w ∈ V of

(6.11) a∗(w, v) = 〈u− un, v〉H (v ∈ V).
Then, by (6.11), for any χ ∈ Vn,

‖u− un‖2H = 〈u− un, u− un〉H = a∗(w, u− un) = a(u− un, w)

= a(u− un, w − χ) ≤M‖u− un‖V‖w − χ‖V
where in the last identity we used the Galerkin orthogonality (6.4).
Since χ ∈ Vn is arbitrary, this implies that

‖u− un‖2H ≤M‖u− un‖V dist(w,Vn).

Now we use (6.8) and (6.9) to deduce

‖u− un‖2H ≤M.
M

β
γn(X )‖L‖Xγ∗n(H)‖u− un‖H.

Consequently, we obtain

‖u− un‖H ≤ M2

β
γn(X )γ∗n(H)‖L‖X .

�

7. Applications

7.1. Selfadjoint positive operators with compact resolvent. As an illustration, we
apply Theorem 6.3 to selfadjoint positive operators with compact resolvent. Let V,H be
infinite dimensional, separable Hilbert spaces over K = R or C such that V is compactly
injected in H and dense in H. Thus we have the Gelfand triple

V →֒ H →֒ V ′.
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Let a : V×V → K be continuous, symmetric and coercive. Then the operator A : V → V ′

given by

〈Au, v〉 = a(u, v)

is invertible. Moreover, there exist an orthonormal basis (en)n≥0 of H and λn ∈ R such
that

0 < λ0 ≤ λ1 ≤ · · · , lim
n→∞

λn = ∞

and

V = {u ∈ H :

∞∑

n=0

λn|〈u, en〉H|2 <∞}

(see e.g. [2, Satz 4.49]) and

a(u, v) =

∞∑

n=0

λn〈u, en〉H〈en, v〉H.

Passing to an equivalent scalar product we may and will assume that

〈u, v〉V = a(u, v) (u, v ∈ V ).

Thus |a(u, v)| ≤ ‖u‖V‖v‖V and sup‖v‖V=1 |a(u, v)| = ‖u‖V ; i.e. we have M = β = 1 in the
above estimates.
Consider Vn = Span{e0, · · · , en−1}, n = 1, 2, · · · . Then (Vn)n∈N∗ is an approximating
sequence of V. We define for s ∈ [−1, 1]

Vs := {f ∈ V ′ :
∑

n≥0

λsn|〈f, en〉H|2 <∞},

which is a Hilbert space for the norm

‖f‖2Vs
=

∑

n≥0

λsn|〈f, en〉H|2.

Then it is easy to see that V−1 = V ′, V0 = H, V1 = V with identity of the norms. Morever,
for s ∈ (0, 1),

Vs = (V0,V1)s

(the complex interpolation space) and for s ∈ (−1, 0),

Vs = (V0,V−1)−s.

Lemma 7.1. One has for s ∈ [−1, 1],

γn(Vs) = |λn|−(1+s)/2 (n = 1, 2, · · · ).
In particular,

γn(H) = |λn|−1/2.
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Proof. Let ên = 1√
λn
en. Then (ên)n≥0 is an orthonormal basis of V. For u ∈ V,

〈u, êk〉V =
∑

n≥0

λn〈u, en〉H〈en, êk〉H =
√
λk〈u, ek〉H

Thus

Pnu =

n−1∑

k=0

〈u, êk〉V êk =

n−1∑

k=0

〈u, ek〉H ek

defines the orthogonal projection of V onto Vn. Moreover, in V one has

dist(u,Vn)
2 = ‖u− Pnu‖2V =

∑

k≥n

λk|〈u, ek〉H|2.

Let f ∈ Vs, u = A−1f . Then

〈f, ek〉H = 〈Au, ek〉H = λk〈u, ek〉H.
Thus

γn(Vs)
2 = sup

Au=f

‖u− Pnu‖2V
‖f‖2Vs

= sup
f∈Vs,Au=f

∑
k≥n λk|〈u, ek〉H|2∑
k≥0 λ

s
k|〈f, ek〉H|2

= sup
f∈Vs

∑
k≥n λ

−1
k |〈f, ek〉H|2∑

k≥0 λ
s
k|〈f, ek〉H|2

= sup
f∈Vs

∑
k≥n λ

−1−s
k λsk|〈f, ek〉H|2∑

k≥0 λ
s
k|〈f, ek〉H|2

≤ λ−1−s
n

since (λk)k≥0 is increasing.

Taking f = en, one sees that γn(Vs)
2 ≥ λ−1

n

λs
n

= λ−s−1
n . �

Now let f ∈ Vs, where −1 ≤ s ≤ 1 and let u = A−1f . Let un ∈ V such that

a(un, χ) = 〈f, χ〉 (χ ∈ Vn),

i.e. un is the approximate solution. Then by Theorem 6.3

‖u− un‖H ≤ γn(X )γn(H)‖f‖Vs
= |λn|−(1+s)/2|λn|−1/2‖f‖Vs

.

Thus we obtain the following error estimate

(7.1) ‖u− un‖H ≤ |λ|−1−s/2‖f‖Vs
.

Remark 7.2. In this special case one can compute the error directly. In fact u =∑∞
k=0

1
λk
〈f, ek〉Hek and un =

∑n−1
k=0〈f, ek〉Hek. Thus

‖u− un‖2H =

∞∑

k=n

1

λ2k
|〈f, ek〉H|2 =

∞∑

k=n

λ−2−s
k λsk|〈f, ek〉H|2 ≤ λ−2−s

n ‖f‖2Vs
,

which is exactly the estimate (7.1). This means that Theorem 6.3 gives the best possible
estimate of the error.
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Let us provide an example of application of (7.1). Let K = C, H = L2(0, 2π) with norm

‖u‖2H = 1
2π

∫ 2π

0
|u(t)|2dt. Let V = {u ∈ H1(0, 2π) : u(0) = u(2π)} with norm

‖u‖2V =
1

2π

∫ 2π

0

|u′(t)|2dt+ 1

2π

∫ 2π

0

|u(t)|2dt.

Then the injection V →֒ H is compact. Let a : V × V → C be given by

a(u, v) =
1

2π

∫ 2π

0

u′(t)v′(t)dt+
1

2π

∫ 2π

0

u(t)v(t)dt.

Let f ∈ L2(0, 2π). Then there exists a unique u ∈ H2(0, 2π) such that

u− u′′ = f, u(0) = u(2π), u′(0) = u′(2π).

In fact, u is the unique element of V such that a(u, v) = 〈f, v〉 for all v ∈ V.
For u ∈ H, let û(k) = 1

2π

∫ 2π

0
u(t)e−iktdt be the k-th Fourier coefficient. Then

a(u, v) =
∑

k∈Z
(1 + k2)û(k)v̂(k).

Let ek(t) = eikt, t ∈ (0, 2π). Then (ek)k∈Z is an orthonormal basis of H and û(k) =
〈u, ek〉H. Let Vn = Span{ek : |k| < n} and let un be the approximate solution i.e.

a(un, χ) = 〈f, χ〉H (χ ∈ Vn).

Then our estimate shows that

‖un − u‖L2 ≤ 1

(1 + n2)1/2
‖f‖L2.

Let 0 < s ≤ 1 and Vs := {u ∈ L2(0, 2π) :
∑

k∈Z(1 + k2)s|û(k)|2 < ∞}. If f ∈ Vs, then by
(7.1),

(7.2) ‖u− un‖L2 ≤ (1 + n2)−1−s/2‖f‖Vs
.

7.2. Finite elements for the Poisson problem. In this section we want to apply our
results to show the convergence of a numerical approximation via triangularization for
the solution of a Poisson problem where coercivity is violated but essential coercivity
holds. For simplicity we choose K = R throughout this section. Let Ω ⊂ Rd be an open,
bounded, convex set and let aij : Ω → R (1 ≤ i, j ≤ d) be Lipschitz continuous functions
such that

aij = aji and
d∑

i,j=1

aij(x)ξiξj ≥ α|ξ|2 (ξ ∈ R
d)

for all x ∈ Ω, where α > 0. Moreover, let bj , cj ∈ W 1,∞(Ω) for j = 1, · · · , d and
b0 ∈ L∞(Ω). We consider the operator A given by

Au := −
d∑

i,j=1

Di(aijDju) +

d∑

j=1

bjDju−
d∑

j=1

Dj(cju) + b0u (u ∈ H2(Ω)).

Note that A : H2(Ω) → L2(Ω) is linear and continuous.
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Our aim is to study the Poisson equation

(7.3) Au = f

where f ∈ L2(Ω) is given and a solution u ∈ H1
0 (Ω) ∩ H2(Ω) is to be determined and

calculated by approximation. We will impose the uniqueness condition

(7.4) For all u ∈ H1
0 (Ω) ∩H2(Ω), Au = 0 implies u = 0.

We use the continuous, coercive form

a0 : H
1
0 (Ω)×H1

0 (Ω) → R

given by

a0(u, v) =

d∑

i,j=1

∫

Ω

aijDjuDiv

and also the perturbed form a given by

a(u, v) = a0(u, v) +
d∑

j=1

∫

Ω

(bjDjuv + cjuDjv) +

∫

Ω

b0uv.

Note that the adjoint form a∗ defined by a∗(u, v) = a(v, u) has the same form as a. This
is the reason why we also consider the coefficients cj .
Then the following well posedness result holds.

Theorem 7.3.

i) The form a is essentially coercive.
ii) Assume (7.4). Then for each f ∈ L2(Ω) there exists a unique solution u ∈ H1

0 (Ω)∩
H2(Ω) of (7.3).

Proof. a) We first show H2-regularity. Let u ∈ H1
0 (Ω), f ∈ L2(Ω) such that a(u, v) =∫

Ω
fv for all v ∈ H1

0 (Ω). Then u ∈ H2(Ω) and Au = f . In fact, let

g := f − b0u−
d∑

j=1

(bjDju−Dj(cju)).

Then g ∈ L2(Ω) and a0(u, v) =
∫
Ω
gv for all v ∈ H1

0 (Ω). Now it follows from the classical
H2-result of Kadlec [16] (see [13, Theorem 3.2.1.2]) that u ∈ H2(Ω). It clearly follows
that Au = f .
b) We show that a is essentially coercive. Let un ⇀ 0 as n→ ∞ in H1

0 (Ω) and a(un, un) →
0 as n → ∞. Then Djun ⇀ 0 as n → ∞ in L2(Ω). Since the embedding of H1

0 (Ω) in
L2(Ω) is compact, it follows that un → 0 in L2(Ω). Consequently

∫

Ω

bjDjun.un → 0,

∫

Ω

cjDjun.un → 0 and

∫

Ω

b0un.un → 0 as n→ ∞.

Thus also a0(un, un) → 0 as n → ∞. Since a0 is coercive this implies ‖un‖H1 → 0 as
n→ ∞.
c) The form a satisfies uniqueness. In fact, let u ∈ H1

0 (Ω) such that a(u, v) = 0 for all
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v ∈ H1
0 (Ω). Then u ∈ H2(Ω) by part a) of the proof. Hence u = 0 by our assumption

(7.4).
d) Let f ∈ L2(Ω). It follows from Corollary 4.6 that there exists a unique u ∈ H1

0 (Ω) such
that a(u, v) = 〈f, v〉L2 for all v ∈ H1

0 (Ω). Now a) implies that u ∈ H2(Ω) and Au = f .
�

Concerning the uniqueness property, we make the following remark.

Remark 7.4 (Eigenvalues and uniqueness). Replace the operator A by Aλ := A − λ Id
(i.e. b0 by b0 − λ) where λ ∈ R. Then there exists a finite or countable infinite set such
that

{λ : (7.4) is violated for Aλ} = {λn : n ∈ N
∗, n < N}

where 1 < N ≤ ∞ and λn ∈ R, limn→∞ λn = ∞ if N = ∞.
If b1 = · · · = bd = c1 = · · · = cd = 0 and b0 ≥ 0, then λn > 0 for all n ∈ N∗ and then
we are in the coercive case. But in general there will be also negative eigenvalues. The
uniqueness condition (7.4) for A is equivalent to saying that λn 6= 0 for all n ∈ N∗.

Our final aim is to show that the finite element method yields an approximation of the
solution of (7.3).
For that purpose we assume that d = 2 and that Ω is a convex polygon. Let {τh}h>0 be
a quasi-uniform admissible triangularization of Ω (see [2, Definition 9.26]). In particular
each τh consists of finitely many triangles covering Ω of outer radius rT ≤ h.
For h > 0, we consider the corresponding finite element space Vh (see [2, Equation (9.35)]).
Thus Vh consists of those continuous functions on Ω which vanish at ∂Ω and are affine on
each triangle T ∈ τh.
The following fundamental estimates are classical (see e.g. [2, Korollar 9.28]) .

Proposition 7.5. There exists a constant c > 0 such that for all h ∈ (0, 1) and for each
v ∈ H2(Ω),

(7.5) inf
χ∈Vh

‖v − χ‖H1(Ω) ≤ ch|v|H2(Ω),

where |v|2H2(Ω) :=
∫
Ω
(|D2

1v|2 + 2|D1D2v|2 + |D2v|2).

Note that Proposition 7.5 shows how we can approximate functions in H2(Ω) by finite
elements and so far there is no relation with the solutions of the Poisson equation.
We assume the uniqueness condition (7.4). Then by Theorem 5.2, since the form a is
essentially coercive, there exists h0 ∈ (0, 1] such that for 0 < h ≤ h0 and u ∈ Vh

(7.6) a(u, χ) = 0 for all χ ∈ Vh implies u ∈ Vh.

Let f ∈ L2(Ω). Since Vh is finite dimensional, it follows from (7.6) that for all 0 < h ≤ h0,
there exists a unique uh ∈ Vh such that

(7.7) a(uh, χ) =

∫

Ω

fχ for all χ ∈ Vh.
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The finite elements (uh)0<h≤h0
are the approximation of the solution of (7.3) we are

interested in. They converge in H1(Ω) with convergence order 1 and in L2(Ω) with
convergence order 2. More precisely, the following is our main theorem of this section.

Theorem 7.6. Let f ∈ L2(Ω) and consider the approximate solutions uh, 0 < h ≤ h0.
Then there exist 0 < h1 ≤ h0 and constants c1, c2 independent of f such that

(7.8) ‖u− uh‖H1(Ω) ≤ c1h‖f‖L2(Ω)

and

(7.9) ‖u− uh‖L2(Ω) ≤ c2h
2‖f‖L2(Ω)

where u is the solution of (7.3).

Proof. Applying the closed graph theorem in the situation of Theorem 7.3, we find a
constant c3 > 0 such that

(7.10) ‖u‖H2(Ω) ≤ c3‖f‖L2(Ω)

whenever f ∈ L2(Ω) and u solves (7.3).
By Theorem 5.2, there exist γ > 0, 0 < h1 ≤ h0, both independent of f , such that

‖u− uh‖H1(Ω) ≤ γ inf
χ∈Vh

‖χ− u‖H1(Ω)

for all 0 < h ≤ h1. Thus (7.5) implies that for 0 < h ≤ h1,

‖uh − u‖H1(Ω) ≤ chγ|u|H2(Ω).

Now (7.8) follows from (7.10).
Next we establish the L2-estimate (7.9). For that we compute using (7.5),

γh(H) = sup
w∈H1

0
(Ω)∩H2(Ω)

dist(w,Vh)

‖Aw‖L2(Ω)

≤ sup
w∈H1

0
(Ω)∩H2(Ω)

ch|w|H2(Ω)

‖Aw‖L2(Ω)

.

Since |w|H2(Ω) ≤ ‖w‖H2(Ω), it follows from (7.10) that γh(H) ≤ cc3h for all h > 0.
The same estimate is true for γ∗h(H). Now assume that (7.9) is false. Then there exists a
sequence hn ↓ 0 as n→ ∞ such that (7.9) does not hold for all h = hn and any constant
c2. This contradicts Theorem 6.3. �

Remark 7.7. There are other methods to approximate the solution of a non-coercive
advection-diffusion equation as (7.3). In fact, Le Bris, Legoll and Madiot [19] use the
Banach-Nečas-Babuska lemma (instead of essential coercivity as we do) and a special
measure to construct an approximation.
The advantage is that no initial mesh h1 has to be considered; on the other hand there
seems to be no such precise error estimate as our quadratic convergence obtained in The-
orem 7.6 even though numerical examples are given in [19].
Still, another approach (based on Fredholm perturbation) is presented by Christensen [9],
which also involves the Babuska inf-sup condition.
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Finally, let us mention the works by Droniou, Gallouët and Herbin [10], based on finite
volume methods, which also present the advantage to provide an approximate solution for
this problem on any admissible mesh.
One of the first results on the Galerkin method in a special non-coercive case are due to
Schatz [27] and Schatz–Wang [28].

8. Supplement: saddle point problems

Brezzi’s contribution [4] is a version of (BNB) which implies the convergence of the
Galerkin approximation in the case of saddle point problems. Let us consider the case

where W and Y are real Hilbert spaces and â : W ×W → R and b̂ : W ×Y → R are
continuous bilinear forms in the sense that there exists M > 0 with

|â(w, v)| ≤M‖w‖W‖v‖W for all w ∈ W, v ∈ W
and

|̂b(w, q)| ≤M‖w‖W‖q‖Y for all w ∈ W, q ∈ Y .
Then, given (f, g) ∈ W ′ × Y ′, the continuous saddle point problem consists in finding
(w, p) ∈ W × Y such that

∀z ∈ W, â(w, z) + b̂(z, p) = f(z),

∀q ∈ Y , b̂(w, q) = g(q).

Example 8.1. An important example is the Stokes problem (motivating some investi-
gation by Ladyžhenskaya [18]), with W = (H1

0 (Ω))
d, where d is the space dimension,

Y = L2
0(Ω) (the space of L2-functions with null average),

â(w, z) =
d∑

i=1

∫

Ω

∇w(i)(x) · ∇z(i)(x)dx

and

b̂(z, p) =

∫

Ω

(∇ · z)(x)p(x)dx.

The approximation of the saddle point problem is then generally done by a mixed method
[4, 5], letting, for n = 1, 2, . . ., (W)n∈N⋆ and (Y)n∈N⋆ be approximating sequences in the
spaces W and Y , respectively, in the sense of Definition 2.1, and looking for (wn, pn) ∈
Wn × Yn such that

∀z ∈ Wn, â(wn, z) + b̂(z, pn) = f(z),

∀q ∈ Yn, b̂(wn, q) = g(q).

We call this the approximate saddle point problem.

The following result shows that conditions (8.1) (which are Brezzi’s conditions [4, Hy-
potheses H1 and H2]) are sufficient for the convergence of the solutions of the approxi-
mate saddle point problems. This is proved by Brezzi [4, Theorem 2.1], where a solution
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is assumed to exist. However, similar to the proof of our Proposition 2.5, one can show
that Brezzi’s conditions imply existence and uniqueness of the continuous saddle point
problem. Indeed, following the proof of (8.2) given in the proof of [4, Theorem 2.1], letting
w = 0 and p = 0, we get a bound on the approximate solution, and a solution of the
continuous problem can be obtained by passing to the limit of a weakly converging sub-
sequence. Uniqueness follows from the estimate (8.2) proved by Brezzi. For n = 1, 2, . . .,
define

W0,n = {u ∈ Wn; ∀q ∈ Yn, b̂(u, q) = 0}
and assume that W∗

0,n := W0,n \ {0} 6= ∅ and Y∗
n := Yn \ {0} 6= ∅ for all n ∈ N∗.

Theorem 8.2 (Brezzi). Assume that there exists β > 0 such that

(8.1)





(i) ∀n ∈ N⋆, infw∈W⋆
0,n

supz∈W⋆
0,n

â(w,z)
‖w‖W‖z‖W ≥ β

(ii) ∀n ∈ N⋆, infz∈W⋆
0,n

supw∈W⋆
0,n

â(w,z)
‖w‖W‖z‖W ≥ β

(iii) ∀n ∈ N⋆, infp∈Y⋆
n
supz∈W⋆

n

b̂(z,p)
‖z‖W‖p‖Y ≥ β.

Then, given (f, g) ∈ W ′×Y ′, there exists a unique solution (w, p) of the continuous saddle
point problem and for each n ∈ N∗ a unique solution (wn, pn) of the approximate saddle
point problem. Moreover,

(8.2) ∀n ∈ N
⋆, ‖wn − w‖W + ‖pn − p‖Y ≤ c

(
dist(w,Wn) + dist(p, Yn)

)

where the constant c depends only on β and M .

The saddle point problem can be cast in our framework by letting V = U = W × Y ,
u = (w, p), v = (z, q) and

a(u, v) = â(w, z) + b̂(z, p) + b̂(w, q).

Given (f, g) ∈ V ′ = W ′ × Y ′, define L ∈ V ′ by

〈L, (z, q)〉 = 〈f, z〉+ 〈g, q〉.
Then u = (w, p) is a solution of the continuous saddle point problem if and only if (1.1)
is satisfied. Moreover, letting Vn = Un = Wn × Yn, a vector un = (wn, pn) ∈ Vn satisfies
(1.2) if and only if (wn, pn) is a solution of the approximate saddle point problem. Thus
our Theorem 2.4 shows that the convergence property expressed in Brezzi’s Theorem is
equivalent to (BNB) for the form a and the approximating sequence (Vn). We can use
this to show the following converse result of Brezzi’s Theorem.

Theorem 8.3. Assume that, given (f, g) ∈ W ′ × Y ′, for each n ∈ N∗, there is a unique
solution (wn, pn) of the discrete saddle point problem and that supn∈N∗(‖wn‖W +‖pn‖Y ) <
∞. Then Brezzi’s conditions (8.1) hold.

Proof. We know from Theorem 2.4 and Proposition 2.5 that (BNB) is satisfied for some

β > 0. We endow the space V with the norm ‖u‖V =
(
‖w‖2W + ‖p‖2Y

)1/2
for u = (w, p) (it
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is then a Hilbert space as well). Let n ∈ N⋆ be given. We then have,

(8.3) ∀(w, p) ∈ Wn × Yn, sup
(z,q)∈Wn×Yn\{(0,0)}

|a((w, p), (z, q))|
‖(z, q)‖V

≥ β‖(w, p)‖V.

Let us first choose, for any p ∈ Y⋆
n, u = (0, p), which means that w = 0 ∈ Wn. Let

(z, q) ∈ Wn × Yn \ {(0, 0)} attaining the supremum value in (8.3). We then have, from
the definition of a in this framework of a saddle point problem,

|̂b(z, p)|
(
‖z‖2W + ‖q‖2Y

)1/2 ≥ β‖p‖Y ,

which implies that z 6= 0 and

|̂b(z, p)|
‖z‖W

≥ β‖p‖Y .

This proves (8.1).(iii) , and thus that the operator B̂n : Wn → Yn, defined for all z ∈ Wn

by

∀q ∈ Yn, b̂(z, q) = 〈B̂nz, q〉Y ,
is bijective from W⊥

0,n to Yn.

Let w ∈ W⋆
0,n and let p ∈ Yn be defined by

∀q ∈ Yn, 〈q, p〉Y = b̂(B̂(−1)
n q, p) = −â(w, B̂(−1)

n q).

Choose an element (z, q) ∈ Wn × Yn \ {(0, 0)} attaining the supremum value in (8.3) for
this choice of u = (w, p). We then write z = z0+ z1, with z0 ∈ W0,n and z1 ∈ W⊥

0,n, which

can be written as z1 = B̂(−1)
n q1 for some q1 ∈ Yn. We have

a((w, p), (z, q)) = â(w, z0) + â(w, z1) + b̂(z0, p) + b̂(z1, p) + b̂(w, q).

Moreover, b̂(z0, p) = b̂(w, q) = 0 since z0 ∈ W0,n and w ∈ W0,n, and

â(w, z1) + b̂(z1, p) = 0,

by definition of p and of z1. Hence

|â(w, z0)|(
‖z‖2W + ‖q‖2Y

)1/2 ≥ β
(
‖w‖2W + ‖p‖2Y

)1/2
.

This implies that z0 6= 0, and therefore z0 ∈ W⋆
0,n is such that

|â(w, z0)|
‖z0‖W

≥ β‖w‖W,

where we take into account that ‖z‖W ≥ ‖z0‖W by Pythagore’s theorem. This concludes
the proof of (8.1).(i).

The equivalence between (BNB) and (BNB⋆) allows to obtain the proof of (8.1).(ii)
(with the same β, see Proposition 2.9), following the same path.

�
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In conclusion, Brezzi’s conditions (8.1) are equivalent to the well posedness of the contin-
uous saddle point problem together with the convergence of the approximate solutions to
the solution, and they are also equivalent to (BNB) for the form a and the approximating
sequence (Vn) of V.
Note that [5, Chapter II, Remark 2.11] provides a comment on the fact that (8.1).(iii) is
a necessary condition.
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