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GALERKIN APPROXIMATION IN BANACH AND

HILBERT SPACES

W. ARENDT, I. CHALENDAR, AND R. EYMARD

Abstract. In this paper we study the conforming Galerkin ap-
proximation of the problem: find u ∈ U such that a(u, v) = 〈L, v〉
for all v ∈ V , where U and V are Hilbert or Banach spaces, a is a
continuous bilinear or sesquilinear form and L ∈ V ′ a given data.
The approximate solution is sought in a finite dimensional subspace
of U , and test functions are taken in a finite dimensional subspace
of V . We provide a necessary and sufficient condition on the form
a for convergence of the Galerkin approximation, which is also
equivalent to convergence of the Galerkin approximation for the
adjoint problem. We also characterize the fact that U has a finite
dimensional Schauder decomposition in terms of properties related
to the Galerkin approximation. In the case of Hilbert spaces, we
prove that the only bilinear or sesquilinear forms for which any
Galerkin approximation converges (this property is called the uni-

versal Galerkin property) are the essentially coercive forms. In
this case, a generalization of the Aubin-Nitsche Theorem leads to
optimal a priori estimates in terms of regularity properties of the
right-hand side L, as shown by several applications.

1. Introduction

Due to its practical importance, the approximation of elliptic prob-
lems in Banach or Hilbert spaces has been the object of numerous
works. In Hilbert spaces, a crucial result is the simultaneous use of
the Lax-Milgram theorem and of Céa’s Lemma to conclude the con-
vergence of conforming Galerkin methods in the case that the elliptic
problem is resulting from a coercive bilinear or sesquilinear form.

But the coercivity property is lost in many practical situations: for
example, consider the Laplace operator perturbed by a convection term
or a reaction term (see the example in Section 7.2), and the approxi-
mation of non-coercive forms must be studied as well. For particular
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bilinear or sesquilinear forms, the Fredholm alternative provides an
existence result in the case where the problem is well-posed in the
Hadamard sense. Such results have been extended by Banach, Nečas,
Babuška and Brezzi in the case of bilinear forms on Banach spaces. The
conforming approximation of such problems enters into the framework
of the so-called Petrov–Galerkin methods, for which sufficient condi-
tions for the convergence are classical (see for example the references
[2, 4, 8, 21] which also include the case of non-conforming approxima-
tions).
Nevertheless, these sufficient conditions do not guarantee that for

a given problem, there exists a converging Galerkin approximation.
Moreover, they do not answer the following question, which is impor-
tant in practice: under which conditions does the Galerkin approxima-
tion exist and converge to the solution of the continuous problem for
any sufficiently fine approximation (for example, letting the degree of
an approximating polynomial or the number of modes in a Fourier ap-
proximation be high enough, or letting the size of the mesh for a finite
element method be small enough, and, in the case of Hilbert spaces,
using the Galerkin method and not the Petrov–Galerkin method)?
The aim of this paper is precisely to address such questions for not

necessarily coercive bilinear or sesquilinear forms defined on some Ba-
nach or Hilbert spaces (we treat the real and complex cases simulta-
neously). We shall restrict this study to conforming approximations,
in the sense that the approximation will be sought in subspaces of the
underlying space, using the continuous bilinear or sesquilinear form.
In the first part we consider the Banach space framework. Given a

continuous bilinear form a : U × V → R where U and V are reflexive,
separable Banach spaces, one is interested in the existence and the
convergence of the Galerkin approximation to u, where u is the solution
of the following problem:

(1.1) Find u ∈ U such that a(u, v) = 〈L, v〉, for all v ∈ V,

where L ∈ V ′ is given (the existence and uniqueness of u are obtained
under the Banach-Nečas-Babuška conditions, see for example [8, The-
orem 2.6]). For approximating sequences (Un)n∈N∗ , (Vn)n∈N∗ (see Sec-
tion 2 for the definition), the Galerkin approximation of (1.1) is given
by the sequence (un)n∈N∗ such that, for any n ∈ N∗, un is the solution
of the following finite dimensional linear problem:

(1.2) Find un ∈ Un such that a(un, χ) = 〈L, χ〉, for all χ ∈ Vn.
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It is known that, if dimUn = dimVn, the uniform Banach-Nečas-
Babuška condition (BNB) given in Section 2 is sufficient for these exis-
tence and convergence properties (see for example [8, Theorem 2.24]).
We show here that this condition is also necessary and, surprisingly,
that the convergence of the Galerkin approximation of (1.1) is equiva-
lent to that of the Galerkin approximation of the dual problem. These
two results seem to be new and are presented in Section 2.
In Section 3, we ask the following: given a form a such that (1.1)

is well-posed, do there always exist approximating sequences in U and
V such that the Galerkin approximation converges? Surprisingly, the
answer is negative (even though the spaces U and V are supposed to be
reflexive and separable). In fact, such approximating sequences exist
if and only if the Banach space U has a finite dimensional Schauder
decomposition, a property which is strictly more general than having
a Schauder basis.
In the remainder of the paper, merely Hilbert spaces are considered

and moreover we assume that U = V and Un = Vn for all n ∈ N∗.
Given is a continuous bilinear form a : V × V → R, where V is a sep-
arable Hilbert space. Assuming that (1.1) is well-posed, we show that
the convergence of the Galerkin approximation for all approximating
sequences in V (which we call here the universal Galerkin property)
is equivalent to a being essentially coercive, which means that a com-
pact perturbation of a is coercive. This notion of essential coercivity
can also be characterized by a certain weak-strong inverse continuity
of a, which, in fact, we take as definition of essential coercivity (Defi-
nition 4.1).
We then derive improved a priori error estimates by generalizing the

Aubin–Nitsche argument to non-symmetric forms and also allowing
the given right hand side L of (1.1) to belong to arbitrary interpolation
spaces in between V and V ′. These generalizations are finally applied
to two cases: the approximation of selfadjoint positive operators with
compact resolvent (in this case, it is seen that our a priori error estimate
is optimal, with the fastest speed of convergence for L in V, the slowest
for L ∈ V ′) and the finite element approximation of a non-selfadjoint
elliptic differential operator, including convection and reaction terms
which is indeed essentially coercive.
To avoid any ambiguity, in the sequel, we let N = {0, 1, 2, · · · } and

N
∗ = N \ {0}.

The paper is organized as follows:
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2. Petrov–Galerkin approximation

In this section we give a characterization of the convergence of Petrov–
Galerkin methods, that, for short, we call Galerkin convergence. A
basic definition is the following.

Definition 2.1 (Approximating sequences of Banach spaces). Let V
be a separable Banach space. An approximating sequence of V is a
sequence (Vn)n∈N∗ of finite dimensional subspaces of V such that

dist(v,Vn) → 0 as n→ ∞
for all v ∈ V, where dist(u,Vn) := inf{‖u− χ‖ : χ ∈ Vn}.
Now let U and V be two separable, reflexive Banach spaces over

K = R or C and a a continuous sesquilinear form such that

|a(u, v)| ≤M‖u‖U‖v‖V for all u ∈ U , v ∈ V
where M > 0 is a constant. We assume that U and V are infinite di-
mensional and that (Un)n∈N∗ and (Vn)n∈N∗ are approximating sequences
of U and V respectively. We also assume throughout that

0 6= dimUn = dimVn for all n ∈ N
∗.

Given L ∈ V ′ we search a solution u of the problem:

(2.1) find u ∈ U such that a(u, v) = 〈L, v〉, for all v ∈ V.
Moreover we want to approximate such a solution by un, the solution
of the problem:

(2.2) find un ∈ Un such that a(un, χ) = 〈L, χ〉, for all χ ∈ Vn.
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Note that, given n ∈ N∗, there exists a unique un ∈ Un satisfying (2.2)
if and only if

(2.3) for all u ∈ Un,
(
a(u, χ) = 0 for all χ ∈ Vn

)
⇒ u = 0,

since, by assumption, Un and Vn have the same finite dimension.
Let us briefly recall the origin of the Banach-Nečas-Babuška condi-

tions for the well-posedness of (2.1) as stated for example in [8, 21, 2]
(equivalent conditions are proposed in [4] in the case of Hilbert spaces).
Let us consider the associated operator A : U → V ′ defined by

〈Au, v〉 = a(u, v) (u ∈ U , v ∈ V).
Then A is linear, bounded with ‖A‖ ≤ M . By the Inverse Mapping
Theorem, A has closed range and is injective if and only if there exists
β > 0 such that

(2.4) ‖Au‖V ′ ≥ β‖u‖U for all u ∈ U .
By the definition of the norm of V ′, this can be reformulated by

(2.5) sup
‖v‖V≤1

|a(u, v)| ≥ β‖u‖U for all u ∈ U .

Recall thatA is invertible if and only if A is injective and has a closed
and dense range. By the Hahn-Banach theorem, A has dense range
if and only if no non-zero continuous functional on V ′ annihilates the
range of A. By reflexivity, this is equivalent to the following uniqueness
property:

(2.6) for all v ∈ V,
(
a(u, v) = 0 for all u ∈ U

)
⇒ v = 0.

Thus (2.1) is well-posed (i.e. for all L ∈ V ′ there exists a unique u ∈ U
satisfying (2.1)) if and only if (2.5) and (2.6) are satisfied.
In order to obtain a result of convergence of the approximate solu-

tions we consider the following uniform Banach-Nečas-Babuška condi-
tion (called Ladyzenskaia-Babuška-Brezzi condition in the framework
of the mixed formulations), which is the estimate (2.5) for a|Un×Vn

uni-
formly in n ∈ N∗, namely

(BNB) ∃β > 0; ∀n ∈ N
∗, ∀u ∈ Un, sup

v∈Vn,‖v‖V=1

|a(u, v)| ≥ β‖u‖U .

We recall that (BNB) implies that the approximate solutions converge
to the solution if the problem is well-posed (see for example [8, 21,
2]). Here we will show that (BNB) is actually equivalent to Galerkin-
convergence, and surprisingly also to Galerkin-convergence for the dual
problem.
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Definition 2.2 (Convergence of Galerkin approximation). We say that
the Galerkin-approximation converges if (2.1) as well as (2.2) are well-
posed for all n ∈ N

∗ and if, in addition, there exists a constant γ > 0
such that for each L ∈ V ′,

(2.7) ‖u− un‖U ≤ γ dist(u,Un),

where u is the solution of (2.1) and un the solution of (2.2) for n ∈ N∗.
In particular, limn→∞ un = u in U .
We may also consider the dual problem of (2.1) where a is replaced

by the adjoint form a∗ : V × U → K given by

a∗(v, u) = a(u, v) (u ∈ U , v ∈ V).
If in Definition 2.2 the form a is replaced by a∗, then we say that the
dual Galerkin approximation converges. Similarly we note the following
dual uniform Banach-Nečas-Babuška condition

(BNB∗) ∃β∗ > 0; ∀n ∈ N
∗, sup

u∈Un,‖u‖U=1

|a∗(u, v)| ≥ β∗‖v‖V (v ∈ Vn).

Then the following theorem holds.

Theorem 2.3. The following assertions are equivalent:

(i) the Galerkin approximation converges;
(ii) (BNB) holds;
(iii) (BNB∗) holds;
(iv) the dual Galerkin approximation converges.

It is surprising that (BNB) and (BNB∗) are equivalent even though
the corresponding condition (2.5) is obviously not equivalent to its dual
form. In fact, it can well happen that A is injective and has closed
range (so that there exists β > 0 satisfying (2.5)) but the range of A
is a proper subspace of V ′ so that there exists v ∈ V such that v 6= 0
and a(u, v) = 0 for all u ∈ U ; in particular the dual form of (2.5) does
not hold for any β∗ > 0.
We will give the proof of Theorem 2.3 in several steps which give

partly even stronger results. At first we show that (ii) implies (i),
where γ can even be expressed in terms of β and M . Although the
proof of this result is classical (see for example [21, 8]), we provide
it for the convenience of the reader, but also to establish the well-
posedness of (2.1) which we did not assume. This will be important
for the proof of Theorem 2.3 and for the main result in Section 5.

Proposition 2.4. Let β > 0. Assume that for all n ∈ N∗,

(2.8) sup
v∈Vn,‖v‖V=1

|a(u, v)| ≥ β‖u‖U (u ∈ Un).
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Then the Galerkin-approximation converges and (2.7) holds with γ =
1 + M

β
.

Proof. Let L ∈ V ′. Note that (2.8) implies (2.3). Thus, for each n ∈ N∗

there exists a unique solution un of (2.2). By (2.8),

(2.9) ‖un‖U ≤ 1

β
sup

v∈Vn,‖v‖V≤1

|〈L, v〉| ≤ 1

β
‖L‖V ′.

Since U is reflexive, we find u ∈ U such that a subsequence of (un)n,
say, (unk

)k, converges weakly to u. Let v ∈ V. By assumption we find
vk ∈ Vnk

such that limk→∞ ‖v − vnk
‖V = 0. It follows that

a(u, v) = lim
k→∞

a(unk
, vk) = lim

k→∞
〈L, vk〉 = 〈L, v〉.

Thus we find a solution u of (2.1). But so far we do not know its
uniqueness. This will be a consequence of (2.7) which we prove now.
Indeed, observe that

(2.10) a(u, χ) = 〈L, χ〉 = a(un, χ) for all χ ∈ Vn.

It follows that a(u, χ) = a(un, χ) for all χ ∈ Vn (Galerkin orthogonal-
ity). Using this, for all χ ∈ Un,

‖u− un‖U ≤ ‖u− χ‖U + ‖χ− un‖U
≤ ‖u− χ‖U +

1

β
sup

v∈Vn,‖v‖V=1

|a(χ− un, v)|

= ‖u− χ‖U +
1

β
sup

v∈Vn,‖v‖V=1

|a(χ− u, v)|

≤
(
1 +

M

β

)
‖χ− u‖U .

Taking the infimum over all χ ∈ Un we obtain (2.7). In particular
limn→∞ ‖u− un‖U = 0 which shows uniqueness. �

The following result is due to Xu and Zikatanov [21, Theorem 2] (see
also [2, Satz 9.41]). We nevertheless provide its proof for the sake of
completeness.

Proposition 2.5. Assume that U is a Hilbert space and that β > 0 is
such that (2.8) holds. Then the Galerkin-approximation converges and
(2.7) holds with γ = M

β
.

Proof. Note that (2.8) implies (2.3). Consequently for each w ∈ U
there exists a unique Qnw ∈ Un such that

a(Qnw, χ) = a(w, χ) (χ ∈ Vn).
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Then Qn is a projection from U onto Un. Moreover,

β‖Qnw‖U ≤ sup
χ∈Vn,‖χ‖V=1

|a(Qnw, χ)|

= sup
χ∈Vn,‖χ‖V=1

|a(w, χ)|

≤ M‖w‖U .
Thus ‖Qn‖ ≤ M

β
.

Since 0 6= Un 6= U , one has Qn 6= 0, Id. It follows from a result due
to Kato [12, Lemma 4] that ‖Qn‖ = ‖Id−Qn‖.
Now let L ∈ V ′ and u the solution of (2.3), un the solution of (2.2).

Then for any χ ∈ Un,

u− un = (Id−Qn)u = (Id−Qn)(u− χ).

Hence

‖u− un‖U ≤ ‖ Id−Qn‖‖u− χ‖U = ‖Qn‖‖u− χ‖U ≤ M

β
‖u− χ‖U .

This implies that

‖u− un‖U ≤ M

β
dist(u,Un).

�

Remark 2.6. Also in certain Banach spaces an improvement of the
constant 1 + M

β
is possible, see Stern [19].

Next we show that even a weaker assumption than the convergence
of the Galerkin-approximation implies (BNB∗).

Proposition 2.7. Assume (2.3) for all n ∈ N∗ and that

sup
n∈N∗

‖un‖U <∞

whenever L ∈ V ′ and un is the solution of (2.2). Then (BNB∗) holds.

Proof. Since the spaces Vn and Un have the same finite dimension, our
assumption (2.3) implies also dual uniqueness, i.e. a(χ, v) = 0 for all
χ ∈ Un implies v = 0 whenever v ∈ Vn, and this for all n ∈ N

∗. Thus

‖v‖Vn
:= sup

u∈Un,‖u‖U=1

|a(u, v)|

defines a norm on Vn. Moreover,

|a(u, v)| ≤ ‖u‖U‖v‖Vn
for all u ∈ Un, v ∈ Vn.
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We show that the set

B :=

{
v

‖v‖Vn

: n ∈ N
∗, v ∈ Vn, v 6= 0

}

is bounded. For that purpose, let L ∈ V ′. By assumption there exist
c > 0 and un ∈ Un such that

a(un, v) = 〈L, v〉 for all v ∈ Vn

and ‖un‖U ≤ c for all n ∈ N
∗. Now, for v

‖v‖Vn

∈ B,
∣∣∣∣〈L,

v

‖v‖Vn

〉
∣∣∣∣ = |a(un, v)|

1

‖v‖Vn

≤ ‖un‖U ≤ c.

This shows that B is weakly bounded and thus, owing to the Banach–
Steinhaus theorem, norm-bounded. Therefore there exists β∗ > 0 such
that ‖v‖V ≤ 1

β∗‖v‖Vn
, i.e.

β∗‖v‖V ≤ sup
u∈Un,‖u‖U=1

|a(u, v)| for all v ∈ Vn, n ∈ N
∗.

This is (BNB∗). �

Proof of Theorem 2.3. (ii) ⇒ (i) and (iii) ⇒ (iv) via Proposition 2.4,
whereas (i) ⇒ (iii) and (iv) ⇒ (ii) follows from Proposition 2.7.

�

Remark: The hypothesis on U and V to be reflexive is not needed
in Proposition 2.4.

Finally we mention that the best lower bounds β for (BNB) and β∗

for (BNB∗) are the same if U and V are Hilbert spaces.

Proposition 2.8. Let β > 0. Then the two conditions (2.11) and
(2.12) are equivalent:
(2.11)

sup
‖v‖V≤1,v∈Vn

|a(u, v)| ≥ β‖u‖U for all u ∈ Un and for all n ∈ N
∗;

(2.12)
sup

‖u‖U≤1,u∈Un

|a(u, v)| ≥ β‖u‖U for all v ∈ Vn and for all n ∈ N
∗;

Proof. Let n ∈ N∗ and An : Un → Vn be given by

〈Anu, v〉V = a(u, v).

Then

〈A∗
nv, u〉U = a∗(v, u) = a(u, v),
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where A∗
n is the adjoint of A. Moreover, since An is invertible,

sup
‖v‖V=1,v∈Vn

|a(u, v)| ≥ β‖u‖U

for all u ∈ Un if and only if ‖A−1
n ‖ ≤ 1

β
. Since (A∗

n)
−1 = (A−1

n )∗, it

follows that ‖(A∗
n)

−1‖ = ‖(A−1
n )∗‖ = ‖A−1

n ‖ ≤ 1
β
and hence

sup
‖u‖U≤1,u∈Un

|a∗(v, u)| ≥ β‖v‖V for all v ∈ Vn.

�

3. Existence of a converging Galerkin approximation

In this section, we again let U and V be separable reflexive real
Banach spaces and let a : U×V → R be a continuous sesquilinear form
such that the problem (2.1) is well-posed; i.e. for all L ∈ V ′ there exists
a unique u ∈ U satisfying (2.1). Since U and V are separable, there
always exist approximating sequences (Un)n∈N∗ of U and (Vn)n∈N∗ of
V. Our question is whether there is a choice of these sequences which
is adapted to the problem (2.1); i.e. such that the associated Galerkin
approximation converges. We will show that the answer is related to
the approximation property. In fact, different versions of this property
play a role; we recall them in the next definition.

Definition 3.1 (Approximation property and Schauder decomposi-
tion). Let X be a separable Banach space.

a) The space X has the approximation property (AP) if, for every
compact subset K of X and every ε > 0, there exists a finite
rank operator R ∈ L(X ) such that

‖Rx− x‖ < ε for all x ∈ K.

b) The space X has the bounded approximation property (BAP)
if there exists a sequence (Pn)n∈N∗ of finite rank operators in X
such that

for all x ∈ X , lim
n→∞

Pnx = x.

c) The space X has the bounded projection approximation prop-
erty (BPAP) if each Pn in b) can be chosen as a projection (i.e.
such that P 2

n = Pn).
d) The space X possesses a finite dimensional Schauder decompo-

sition if one finds (Pn)n∈N∗ as in c) with the additional property

(3.1) PmPn = PnPm = Pm for all n ≥ m.
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e) The space X has a Schauder basis if d) holds with dimPn = 1
for all n ∈ N∗.

It is known that (BAP) is equivalent to (AP) if X is reflexive. The
first counterexample of a Banach space without (AP) has been given by
Enflo [7]. He constructed a space which is even separable and reflexive.
Obviously the properties a)–e) have decreasing generality. It was

Read [16] who showed that (BAP) does not imply (BPAP), even if re-
flexive and separable spaces are considered. Szarek [20] constructed a
reflexive, separable Banach space having a finite dimensional Schauder
decompositon but not a Schauder basis. Finally, it seems to be un-
known whether (BPAP) implies the existence of a finite dimensional
Schauder decomposition (see [15, Sec. 5.7.4.6] and [3, Problem 6.2]).
However, if X is reflexive and separable, then these two properties are
equivalent by [3, Theorem 6.4 (3)]).
Concerning the notion of finite dimensional Schauder decomposition,

there is an equivalent formulation, namely the existence of finite dimen-
sional subspaces Xn of X such that for each x ∈ X there exist unique
xn ∈ Xn such that x =

∑
n∈N∗ xn This explains the name. We refer

to [14, Chapter I] , [3] for more information and to [15, Sec. 5.7.4]
for the history of the approximation property. In the following theo-
rem, by the hypothesis of well-posedness, the two Banach spaces U and
V are isomorphic. For this reason they have the same Banach space
properties.

Theorem 3.2. Let U and V be separable reflexive Banach spaces and
let a : U × V → K be a continuous sesquilinear form such that (2.1) is
well-posed. Then the following assertions are equivalent.

(i) There exist approximating sequences (Un)n∈N∗ of U and (Vn)n∈N∗

of V such that the associated Galerkin approximation converges.
(ii) The space U has the (BPAP).
(iii) The space U has a finite dimensional Schauder decomposition.

Here convergence of the associated Galerkin approximation is under-
stood in the sense of Definition 2.2.

Proof of Theorem 3.2. (i) ⇒ (ii) Let u ∈ V. Then 〈L, v〉 := a(u, v)
defines an element L ∈ V ′. By Definition 2.2, for each n ∈ N∗, there
exists a unique Pnu ∈ Vn such that

a(Pnu, χ) = a(u, χ) for all χ ∈ Vn.

Moreover, ‖Pnu − u‖ ≤ γ dist(Un, u) for all n ∈ N∗ and some γ > 0.
In particular, limn→∞ Pnu = u. It follows from the definition that
P 2
n = Pn. Since PnU ⊂ Un, each Pn has finite rank. We have shown
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that the space U has the (BPAP).
(ii) ⇒ (iii) See [3, Theorem 6.4 (3)].
(iii) ⇒ (i) Let A : U → V ′ be the operator defined by 〈Au, v〉 =
a(u, v). Then A is invertible. By hypothesis there exist finite rank
projections (Pn)n∈N∗ such that limn→∞ Pnu = u for all u ∈ U . Let
f ∈ V ′, u := A−1f be the solution of (2.1). Then

(3.2) un := PnA−1f → u in U as n→ ∞.

We show that un is obtained as a Galerkin approximation. In fact,
fix n ∈ N∗. There exist b1, · · · , bm ∈ U , ϕ1, · · · , ϕm ∈ U ′ such that
〈ϕi, bj〉 = δi,j and

(3.3) Pnx =
m∑

k=1

〈ϕk, x〉bk

for all x ∈ U . Since V is reflexive there exist vk ∈ V such that

(3.4) 〈ϕk,A−1g〉 = 〈g, vk〉
for all g ∈ V ′ and k = 1, · · · , m. Define Vn = Span{v1, · · · , vm} and
Un = Span{b1, · · · , bm}. Now consider the given f ∈ V ′. Let w =∑m

k=1 λkbk ∈ Un. Then

(3.5) a(w, χ) = 〈f, χ〉 for all χ ∈ Vn

if and only if

(3.6) a(w, vj) = 〈f, vj〉 for j = 1, · · · , m.
By (3.4),

a(w, vj) =

m∑

k=1

λka(bk, vj) =

m∑

k=1

λk〈Abk, vj〉 =
m∑

k=1

λk〈ϕj, bk〉 = λj .

Therefore w =
∑m

k=1〈f, vk〉bk is the unique solution of (3.5). Again, by
(3.4),

un = PnA−1f =

m∑

k=1

〈ϕk,A−1f〉bk =
m∑

k=1

〈f, vk〉bk = w,

and it follows from (3.2) that limn→∞ un = u. This also implies that
dist(Un, u) → 0 as n→ ∞. Thus the sequence (Un)n∈N∗ is approximat-
ing.
It remains to show that the sequence (Vn)n∈N∗ is approximating in

V. For this we need the the additional property (3.1). Consider the
adjoint P ′

n ∈ L(U ′) of Pn. Then P
′
nϕ weakly converges to ϕ as n→ ∞

for all ϕ ∈ U ′. Thus
W := ∪n∈N∗P ′

nU ′
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is weakly dense in U ′. But, because of (3.1), W is a subspace of U ′.
Thus, by Mazur’s Theorem, W is dense in U ′. If ψ ∈ W, then there
exist m ∈ N

∗, ϕ ∈ U ′ such that ψ = P ′
mϕ. Thus

P ′
nψ = P ′

nP
′
mϕ = P ′

mϕ = ψ,

for all n ∈ N∗ by (3.1), and then limn→∞ P ′
nψ = ψ for all ψ ∈ W. Since

supn∈N∗ ‖P ′
n‖ < ∞, it follows that limn→∞ P ′

nϕ = ϕ for all ϕ ∈ U ′.
This implies that the sequence (P ′

nU ′)n∈N∗ is approximating in U ′. It
follows from (3.4) that Vn ⊃ (A−1)′P ′

nU ′. In fact, fix n and consider Pn

as in (3.3). Then (3.4) says that vk = (A−1)′ϕk. Since (P
′
nU ′)n∈N∗ is an

approximating sequence in U ′ and (A−1)′ is an isomorphism from U ′

to V, it follows that (Vn)n∈N∗ is an approximating sequence in V. �

4. Essentially coercive forms

Let V be a separable Hilbert space over K = C or R and a : V×V →
K be a sesquilinear form satisfying

|a(u, v)| ≤M‖u‖V‖v‖V for all u, v ∈ V
for some M > 0. Then we may associate with a the operator A ∈
L(V,V ′) defined by

〈Au, v〉 = a(u, v).

If a is coercive, i.e. if

|a(u, u)| ≥ α‖u‖2V (u ∈ V)
for some α > 0, then A is invertible. This consequence is the well-
known Lax-Milgram lemma.
Our aim is to find weaker assumptions than coercivity which help to

decide whether the operator A is invertible.
Note that a is coercive if and only if

lim
n→∞

a(un, un) = 0 implies that lim
n→∞

‖un‖V = 0.

We weaken this property in the following way.

Definition 4.1 (Essential coercivity). The continuous sesquilinear form
a (or the operator A) is called essentially coercive if for each sequence
(un)n∈N∗ in V weakly converging to 0 and such that limn→∞ a(un, un) =
0, one has limn→∞ ‖un‖V = 0.

The following is a characterization of this new property.

Theorem 4.2. The following assertions are equivalent:

(i) the form a is essentially coercive;
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(ii) there exist an orthogonal projection P ∈ L(V) of finite rank and
α > 0 such that

|a(u, u)|+ ‖Pu‖2V ≥ α‖u‖2V for all u ∈ V;
(iii) there exist a Hilbert space H, a compact operator J : V → H

and α > 0 such that

|a(u, u)|+ ‖Ju‖2H ≥ α‖u‖2V (u ∈ V);
(iv) there exist a compact operator K ∈ L(V,V ′) and α > 0 such

that

|a(u, u)|+ |〈Ku, u〉| ≥ α‖u‖2V (u ∈ V).
Proof. (i) ⇒ (ii): Let (en)n∈N∗ be an orthonormal basis of V and con-
sider the orthogonal projections Pn given by

Pnv :=
n∑

k=1

〈v, ek〉V ek.

Assume that (ii) is false for every Pn. Then there exists a sequence
(un)n∈N∗ ⊂ V such that ‖un‖V = 1 and

|a(un, un)|+ ‖Pnun‖2V <
1

n
.

Note that, since Id−Pn is a self-adjoint operator,

|〈(Id−Pn)un, v〉V | = |〈un, (Id−Pn)v〉V | ≤ ‖(Id−Pn)v‖V ,
with limn→∞ ‖(Id−Pn)v‖V = 0 for all v ∈ V. This implies that
(Id−Pn)un converges weakly to 0. Since limn→∞ ‖Pnun‖V = 0, it fol-
lows that un converges weakly to 0. Moreover limn→∞ |a(un, un)| ≤
limn→∞

1
n
= 0. Therefore a is not essentially coercive.

(ii) ⇒ (iii): Choose H = V and J = P .
(iii) ⇒ (iv): There exists a unique operator J∗ : H → V ′ such that

〈J∗u, v〉 = 〈u, Jv〉H
for all v ∈ V. Choose K = J∗J .
(iv) ⇒ (i): Let (un)n∈N∗ ⊂ V that tends weakly to 0 and such that
a(un, un) = 〈Aun, un〉 tends to 0 as n → ∞. Since K is compact,
‖Kun‖V → 0 as n → ∞. Hence |〈Kun, un〉V | → 0 as n → ∞. By
assumption there exists β > 0 such that

|〈Aun, un〉|+ |〈Kun, un〉| ≥ β‖un‖2V .
It follows that ‖un‖V → 0 as n→ ∞. �
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Next we want to justify the notion ”essentially coercive”. We recall
that by the Toeplitz–Hausdorff theorem [10], the numerical range of a,

W (a) := {a(u, u) : u ∈ V, ‖u‖V = 1},

is a convex set. Hence also W (a) is convex. For α > 0,

|a(u, u)| ≥ α‖u‖2V (u ∈ V)
if and only if

W (A) ∩Dα = ∅,
where Dα = (−α, α) in the real case and Dα = {w ∈ C : |w| < α} if
K = C. This observation leads to the following more precise description
of coerciveness.

Lemma 4.3. The form a is coercive if and only if there exist α > 0
and λ ∈ K with |λ| = 1 such that

Re(λz) ≥ α for all z ∈ W (a).

Proof. We give the proof for K = C. Assume that a is coercive. There
exists a maximal α > 0 such that W (a) ∩ Da = ∅. Then there exists

z0 ∈ W (a) of modulus α; i.e. z0 = eiθα for some θ ∈ R. The set

C := e−iθW (a) is convex and closed. Moreover α ∈ C and Dα∩C = ∅.
This implies that Re(z) ≥ α for all z ∈ C. Indeed, let z ∈ C such that
Re(z) < α. Then the segment [α, z] has a non-empty intersection with
Dα. Since C is convex it follows that z 6∈ C.
Conversely, clearly, if there exists α > 0 such that Re(λz) ≥ α for

all z ∈ W (a), then a is coercive. �

Theorem 4.4. Let A ∈ L(V,V ′). The following assertions are equiv-
alent:

(i) the operator A is essentially coercive;
(ii) there exists a finite rank operator K : V → V ′ such that A+ K

is coercive;
(iii) there exists a compact operator K : V → V ′ such that A+K is

coercive.

Proof. (i) ⇒ (ii): Choose the orthogonal finite rank projection P on V
and α > 0 as in Theorem 4.2 (ii). Let V1 = ker V and V2 = rangeP .
Then dimV2 <∞ and |a(u, u)| ≥ α‖u‖2V for all u ∈ V1. Let j : V → V ′

be the Riesz isomorphism given by

〈j(u), v〉 = 〈u, v〉V .
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Let A = j−1 ◦ A ∈ L(V). Then a(u, v) = 〈Au, v〉V for all u, v ∈ V.
Moreover A has a matrix decomposition

A =

(
A11 A12

A21 A22

)

according to the decomposition V = V1⊕V2 of V. Since P is orthogonal,
A11 is coercive. Thus, by Lemma 4.3, there exists z0 ∈ C such that
|z0| = 1 and

Re z0〈A11u, u〉 ≥ α‖u‖2V
for all u ∈ V1. Since dimV2 < ∞, there exists a finite rank operator
K1 ∈ L(V) such that

A+K1 =

(
A11 0
0 0

)
.

Choose a further finite rank perturbation K2 such that

B := A+K1 +K2 =

(
A11 0
0 αz0 IdV2

)
.

Since P is orthogonal, for Q = Id−P , we get

〈Bu, u〉V = 〈A11Qu,Qu〉V + αz0〈Pu, Pu〉V.
Hence

Re〈z0Bu, u〉V ≥ α‖Qu‖2V + α‖Pu‖2V = α‖u‖2V .
Now let K = j ◦ (K1 +K2). Then A+K is coercive.
(ii) ⇒ (iii) is obvious.
(iii) ⇒ (i): Condition (iii) implies clearly Condition (iv) of Theo-
rem 4.2; thus the claim (i) follows from that theorem. �

Corollary 4.5. Let a be a continuous essentially coercive sesquilinear
form. The following assertions are equivalent:

(i) for all L ∈ V ′ there exists a unique u ∈ V such that

a(u, v) = 〈L, v〉 for all v ∈ V;
(ii) a(u, v) = 0 for all v ∈ V implies that u = 0 (uniqueness);
(iii) for all L ∈ V ′ there exists u ∈ V such that a(u, v) = 〈L, v〉 for

all v ∈ V ( existence).

Proof. The assertion (i) means that A is invertible, the assertion (ii)
means that A is injective and the assertion (iii) means that A is sur-
jective. By Theorem 4.4, there exists a compact operator K ∈ L(V,V ′)
such that A+K =: B is invertible.
(ii) ⇒ (i): Assume that A is injective. Write

A = B − K = B(Id−B−1K).
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Then also (Id−B−1K) is injective. Since B−1K is compact, it follows
from the classical Fredholm alternative that (Id−B−1K) is invertible.
Consequently also A is invertible.
(iii) ⇒ (i): If A is surjective, write A = (Id−KB−1)B to conclude
that (Id−KB−1) is surjective. Again we deduce that (Id−KB−1) is
invertible and so is A. �

Moreover, we deduce from Theorem 4.4 the following properties of
essential coercivity.

Corollary 4.6. (a) The set of all essentially coercive operators on
V is open in L(V,V ′).

(b) If A ∈ L(V,V ′) is essentially coercive and K ∈ L(V,V ′) is
compact, then A+K is essentially coercive.

(c) If A ∈ L(V,V ′) is essentially coercive, then A is a Fredholm
operator of index 0.

The following example shows that the invertibility of A does not
imply the essential coercivity of a.

Example 4.7. Let V = ℓ2(N∗), K = R and

a(u, v) =

∞∑

n=0

(−1)nunvn.

Let j be the Riesz isomorphism introduced in the proof of Theorem 4.4.
Then A := j−1 ◦ A is a diagonal operator with merely 1 and −1 in
the diagonal. Thus A and obviously A are clearly invertible. Let fn =
(0, · · · , 1, 1, 0, · · · ) where the 1 is a coordinate for k = 2n and k =
2n + 1. Then ‖fn‖ =

√
2 and (fn)n tends weakly to 0 as n → ∞.

Moreover a(fn, fn) = 0 for all n, which shows that a is not essentially
coercive.

Remark 4.8. Let K = C. In [1] a continuous sesquilinear form a is
called compactly elliptic if there exists a compact operator J : V → H,
where H is some Hilbert space and there exists α > 0 such that

Re a(u, u) + ‖Ju‖2H ≥ α‖u‖2V .
In view of Theorem 4.2, each compactly elliptic form is essentially co-
ercive. In fact the following holds: the form a is essentially coercive if
and only if there exists λ ∈ C \ {0} such that λa is compactly elliptic.

Proof. If λa is compactly elliptic, then λa is essentially coercive and
hence also a is essentially coercive. Conversely, let a be essentially
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coercive. By Theorem 4.4, there exists a compact operator K : V → V ′

such that the form b defined by

b(u, v) = a(u, v) + 〈Ku, v〉
is coercive. By Lemma 4.3 there exist λ ∈ C of modulus one and α > 0
such that Re(λb(u, u)) ≥ α‖u‖2V for all u ∈ V. Now let j : V → V ′

be the Riesz isomorphism. Then J := j−1 ◦ K : V → V is compact.
Choosing H = V we see that λb is compactly elliptic. It follows from
[1, Proposition 4.4 (b)] that λa is compactly elliptic. �

5. Characterization of the universal Galerkin property

In this section we want to characterize those forms on a Hilbert
space for which every Galerkin approximation converges, whatever be
the choice of the approximating sequence.
Let V be a separable, infinite dimensional separable Hilbert space

over K = R or C, and let a : V × V → K be a continuous sesquilinear
form. Given L ∈ V ′ we again consider solutions of the problem:

(5.1) Find u ∈ V, a(u, v) = 〈L, v〉 for all v ∈ V.
We say that the form a satisfies uniqueness if for u ∈ V,

a(u, v) = 0 for all v ∈ V implies u = 0.

We say that (5.1) is well-posed if for all L ∈ V ′ there exists a unique
solution u ∈ V.
Definition 5.1 (Universal Galerkin property). The sesquilinear and
continuous form a has the universal Galerkin property if (5.1) is well-
posed and the following holds. Let (Vn)n∈N∗ be an arbitrary approxi-
mating sequence of V . Then there exist n0 ∈ N∗ and γ > 0 such that
for each L ∈ V ′ and each n ≥ n0, there exists a unique un ∈ Vn solving

a(un, χ) = 〈L, χ〉 for all χ ∈ Vn,

and
‖u− un‖V ≤ γ dist(u,Vn) for all n ≥ n0,

where u is the solution of (5.1).

As recalled in the introduction and in the preceding section, the
Lax-Milgram Theorem and Céa’s Lemma imply the universal Galerkin
property if a is coercive. We now show that the weaker notion of
essential coercivity also provides a sufficient condition for ensuring the
universal Galerkin property, and moreover that it is necessary.

Theorem 5.2. The following assertions are equivalent.

(i) The form a is essentially coercive and satisfies uniqueness.
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(ii) The form a has the universal Galerkin property.

Proof. (i) ⇒ (ii): let (Vn)n∈N∗ be an approximating sequence in V. By
Theorem 2.3 it suffices to show that there exist β > 0 and n0 ∈ N∗

such that

(5.2) sup
v∈Vn,‖v‖V=1

|a(u, v)| ≥ β‖u‖V for all u ∈ Vn, n ≥ n0.

Assume that (5.2) is false. We then find a subsequence (nk)k∈N∗ and
unk

∈ Vnk
such that ‖unk

‖V = 1 and

sup
v∈Vnk

,‖v‖V=1

|a(unk
, v)| < 1

k
for all k ∈ N

∗.

We may assume that (unk
)k converges weakly to u taking a further

subsequence otherwise. Let v ∈ V. Then there exist vk ∈ Vnk
such

that limk→∞ ‖v − vk‖V = 0. Thus

a(u, v) = lim
k→∞

a(unk
, vk) = 0.

It follows from the uniqueness assumption that u = 0. Thus (unk
)k

converges weakly to 0, limk→∞ a(unk
, unk

) = 0, but ‖unk
‖V = 1 for all

k. Therefore the form a is not essentially coercive.
(ii) ⇒ (i): the uniqueness condition is part of (ii). It remains to
show that a is essentially coercive. Let (en)n∈N∗ be an orthonormal
basis of V and Vn := Span{e1, · · · , en}. By our assumption, there exist
2 ≤ n0 ∈ N∗ and for all n ≥ n0 an operator Qn : V → Vn such that

a(Qnu, χ) = a(u, χ) for all χ ∈ Vn (n ≥ n0).

Denote by Pn : V → Vn the orthogonal projection. Define the operator

Jn : V → V × V
by

Jnu = (Pnu,Qnu), n ≥ n0.

Now assume that a is not essentially coercive. Then it follows from
Theorem 4.2 that for all n ≥ n0 we find un ∈ V such that ‖un‖V = 1
and

|a(un, un)|+ ‖Pnun‖2V + ‖Qnun‖2V <
1

(n+ 2)2
.

In particular ‖Pnun‖V < 1
(n+2)2

. This implies that un 6∈ Vn. Let Ṽn =

Span{Vn∪{un}}. Then (Vn)n≥n0
and (Ṽn)n≥n0

are both approximating

sequences. Let n ≥ n0 and let v ∈ Ṽn be arbitrary with unit norm.
There exist a unique w1 ∈ Vn and λ ∈ K such that

v = w1 + λun = w + λ(un − Pnun),
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where w := w1 + λPnun ∈ Vn. Thus

1 = ‖v‖2V = ‖w‖2V + |λ|2‖un − Pnun‖2V .
Consequently ‖w‖2V ≤ 1 and, since ‖Pnun‖V < 1

2
, it follows that

‖un − Pnun‖V ≥ 1

2
,

which implies that |λ|2 ≤ 4, i.e. |λ| ≤ 2.
Observe that the definition of Qn implies that a(un −Qnun, w) = 0.

Hence

|a(un, v)| = |a(un, w) + λa(un, un − Pnun)|
= |a(un −Qnun, w) + a(Qnun, w) + λa(un, un − Pnun)|
≤ |a(Qnun, w)|+ 2|a(un, un)|+ 2|a(un, Pnun)|

≤ M

n + 2
+

2

(n + 2)2
+

2M

(n+ 2)2
.

Consequently

lim
n→∞

sup
v∈Ṽn,‖v‖V=1

|a(un, v)| = 0.

Thus (BNB) is violated for the approximating sequence (Ṽn)n≥n0
. But

then (ii) does not hold by Theorem 2.3, which shows that the assump-
tion that a is not essentially coercive is false.

�

It is obvious that a form a is essentially coercive if and only if its
adjoint a∗ is essentially coercive. However, a surprising consequence
of Theorem 5.2 is that, for an essentially coercive form, uniqueness for
the form and uniqueness for its adjoint are equivalent, as the following
corollary shows.

Corollary 5.3. Let V be a separable Hilbert space on K and a : V×V →
K be a continuous essentially coercive form. The following assertions
are equivalent:

(i) for all u ∈ V, a(u, v) = 0 for all v ∈ V implies u = 0;
(ii) for all v ∈ V, a(u, v) = 0 for all u ∈ V implies v = 0;
(iii) for all L ∈ V ′ there exists u in V such that a(u, v) = 〈L, v〉, for

all v ∈ V;
(iv) for all L ∈ V ′ there exists v in V such that a(u, v) = 〈L, u〉, for

all u ∈ V.
Proof. (i) ⇐⇒ (ii): this follows from Theorem 5.2 and Theorem 2.3.
The other equivalences follow from Corollary 4.5. �
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6. The Aubin-Nitsche trick revisited

In this section we want to prove that on suitable Hilbert spaces
containing the space V continuously the approximation speed in the
Galerkin approximation can be improved. We refer also to [18] for
related, but different results in this direction.
Let V be a separable Hilbert space over K = R or C, and a : V×V →

K a sesquilinear form satisfying

|a(u, v)| ≤M‖u‖V‖v‖V .
Let (Vn)n∈N∗ be an approximating sequence of V. We assume that
(BNB) holds; i.e. there exists β > 0 such that

(6.1) For all n ∈ N
∗, sup

v∈Vn,‖v‖V=1

|a(u, v)| ≥ β‖u‖V for all u ∈ Vn.

Given L ∈ V ′ and n ∈ N∗, let un ∈ Vn be the solution of

(6.2) a(un, χ) = 〈L, χ〉 for all χ ∈ Vn,

and u ∈ V the solution of

(6.3) a(u, v) = 〈L, v〉 for all v ∈ V.
Note that, by subtracting (6.3) and (6.2), we obtain the following
Galerkin orthogonality :

(6.4) a(u− un, v) = 0 for all v ∈ Vn.

We know from Proposition 2.4 and Proposition 2.5 that

(6.5) ‖u− un‖V ≤ M

β
dist(u,Vn)

for all n ∈ N∗. We want to improve this estimate if the given data
L ∈ V ′ is in a suitable subspace of V ′.
Let X →֒ V ′; i.e. X is a Banach space such that X ⊂ V ′ and

‖f‖X ≤ cX‖f‖V ′

for all f ∈ X and some cX > 0. We define for n ∈ N∗

(6.6) γn(X ) := sup
f∈X ,‖f‖X=1

dist(A−1f,Vn),

where the distance is taken in V. Thus
(6.7) dist(w,Vn) ≤ γn(X )‖Aw‖X for all w ∈ A−1X ,
where A : V → V ′ is the isomorphism given by

〈Au, v〉 = a(u, v).
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Thus, if u is the solution of (6.3) and un the approximate solution of
(6.2), then, if L ∈ X , we have the estimate

(6.8) ‖u− un‖V ≤ M

β
γn(X )‖L‖X ,

which has the advantage of being uniform for L in the unit ball of X .

Remark 6.1. Let Qn : X → V, L 7→ un be the solution operator for
(6.2). Then (6.8) says that

‖A−1 −Qn‖L(X ,V) ≤
M

β
γn(X ).

We can characterize when γn(X ) → 0 as n→ ∞.

Proposition 6.2. One has

lim
n→∞

γn(X ) = 0 if and only if X →֒ V ′ is compact.

Proof. Denote by Pn : V → Vn the orthogonal projection onto Vn.
Then

γn(X ) = sup
f∈X ,‖f‖X=1

‖A−1f −PnA−1f‖V = ‖A−1 ◦ j−PnA−1 ◦ j‖L(X ,V),

where j : X → V ′ is the canonical injection. If j is compact, then
K := A−1◦j(BX ), where BX is the unit ball of X , is relatively compact
in V. Now, Pn converges strongly to the identity of V. Since ‖Pn‖ ≤ 1,
this convergence is uniform on compact subsets of X . This shows that
γn(X ) → 0 as n→ ∞.
Conversely, if γn(X ) → 0, then A−1 ◦ j is compact as limit of finite

rank operators. Then also j is compact. �

Similarly, we define

γ∗n(X ) := sup
f∈X ,‖f‖X=1

dist(A∗−1f,Vn),

where A∗ : V → V∗ is given by

〈A∗u, v〉 = a∗(u, v) := a(u, v).

As before we have γ∗n(X ) defined as γn(X ) but with a replaced by the
adjoint form a∗ of a. Thus we have for all w ∈ A∗−1X ,

(6.9) dist(w,Vn) ≤ γ∗n(X )‖A∗w‖.
Now we apply the Aubin–Nitsche trick in the following proof. In con-
trast to the literature [8] we allow non-selfadjoint forms and also let
L ∈ X where X →֒ V ′ is arbitrary. However, as usual, we fix a Hilbert
space H such that V →֒ H with dense range. Thus we have the Gelfand
triple
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V →֒ H →֒ V ′.

Now we let X →֒ V ′ be another Banach space in which we choose the
given data L, whereas our error estimate is done with respect to the
norm of H.

Theorem 6.3. Let L ∈ X and let u be the solution of (6.3), un the
solution of (6.2). Then

(6.10) ‖u− un‖H ≤ M2

β
γn(X )γ∗n(H)‖L‖X ,

for all n ∈ N∗.

Proof. Let n ∈ N∗. Then, on the footsteps of Aubin–Nitsche, we con-
sider the solution w ∈ V of

(6.11) a∗(w, v) = 〈u− un, v〉H (v ∈ V).
Then, by (6.11), for any χ ∈ Vn,

‖u− un‖2H = 〈u− un, u− un〉H = a∗(w, u− un) = a(u− un, w)

= a(u− un, w − χ) ≤M‖u− un‖V‖w − χ‖V
where in the last identity we used the Galerkin orthogonality (6.4).
Since χ ∈ Vn is arbitrary, this implies that

‖u− un‖2H ≤M‖u− un‖V dist(w,Vn).

Now we use (6.8) and (6.9) to deduce

‖u− un‖2H ≤M.
M

β
γn(X )‖L‖Xγ∗n(H)‖u− un‖H.

Consequently, we obtain

‖u− un‖H ≤ M2

β
γn(X )γ∗n(H)‖L‖X .

�

7. Applications

7.1. Selfadjoint positive operators with compact resolvent. As
an illustration, we apply Theorem 6.3 to selfadjoint positive operators
with compact resolvent. Let V,H be infinite dimensional, separable
Hilbert spaces over K = R or C such that V is compactly injected in
H and dense in H. Thus we have the Gelfand triple

V →֒ H →֒ V ′.
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Let a : V × V → K be continuous, symmetric and coercive. Then the
operator A : V → V ′ given by

〈Au, v〉 = a(u, v)

is invertible. Moreover, there exist an orthonormal basis (en)n≥0 of H
and λn ∈ R such that

0 < λ0 ≤ λ1 ≤ · · · , lim
n→∞

λn = ∞

and

V = {u ∈ H :

∞∑

n=0

λn|〈u, en〉H|2 <∞}

(see e.g. [2, Satz 4.49]) and

a(u, v) =
∞∑

n=0

λn〈u, en〉H〈en, v〉H.

Passing to an equivalent scalar product we may and will assume that

〈u, v〉V = a(u, v) (u, v ∈ V ).

Thus |a(u, v)| ≤ ‖u‖V‖v‖V and sup‖v‖V=1 |a(u, v)| = ‖u‖V ; i.e. we have
M = β = 1 in the above estimates.
Consider Vn = Span{e0, · · · , en−1}, n = 1, 2, · · · . Then (Vn)n∈N∗ is

an approximating sequence of V. We define for s ∈ [−1, 1]

Vs := {f ∈ V ′ :
∑

n≥0

λsn|〈f, en〉H|2 <∞},

which is a Hilbert space for the norm

‖f‖2Vs
=

∑

n≥0

λsn|〈f, en〉H|2.

Then it is easy to see that V−1 = V ′, V0 = H, V1 = V with identity of
the norms. Morever, for s ∈ (0, 1),

Vs = (V0,V1)s

(the complex interpolation space) and for s ∈ (−1, 0),

Vs = (V0,V−1)−s.

Lemma 7.1. One has for s ∈ [−1, 1],

γn(Vs) = |λn|−(1+s)/2 (n = 1, 2, · · · ).
In particular,

γn(H) = |λn|−1/2.
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Proof. Let ên = 1√
λn

en. Then (ên)n≥0 is an orthonormal basis of V. For
u ∈ V,

〈u, êk〉V =
∑

n≥0

λn〈u, en〉H〈en, êk〉H =
√
λk〈u, ek〉H

Thus

Pnu =

n−1∑

k=0

〈u, êk〉V êk =

n−1∑

k=0

〈u, ek〉H ek

defines the orthogonal projection of V onto Vn. Moreover, in V one has

dist(u,Vn)
2 = ‖u− Pnu‖2V =

∑

k≥n

λk|〈u, ek〉H|2.

Let f ∈ Vs, u = A−1f . Then

〈f, ek〉H = 〈Au, ek〉H = λk〈u, ek〉H.
Thus

γn(Vs)
2 = sup

Au=f

‖u− Pnu‖2V
‖f‖2Vs

= sup
f∈Vs,Au=f

∑
k≥n λk|〈u, ek〉H|2∑
k≥0 λ

s
k|〈f, ek〉H|2

= sup
f∈Vs

∑
k≥n λ

−1
k |〈f, ek〉H|2∑

k≥0 λ
s
k|〈f, ek〉H|2

= sup
f∈Vs

∑
k≥n λ

−1−s
k λsk|〈f, ek〉H|2∑

k≥0 λ
s
k|〈f, ek〉H|2

≤ λ−1−s
n

since (λk)k≥0 is increasing.

Taking f = en, one sees that γn(Vs)
2 ≥ λ−1

n

λs
n

= λ−s−1
n . �

Now let f ∈ Vs, where −1 ≤ s ≤ 1 and let u = A−1f . Let un ∈ V
such that

a(un, χ) = 〈f, χ〉 (χ ∈ Vn),

i.e. un is the approximate solution. Then by Theorem 6.3

‖u− un‖H ≤ γn(X )γn(H)‖f‖Vs
= |λn|−(1+s)/2|λn|−1/2‖f‖Vs

.

Thus we obtain the following error estimate

(7.1) ‖u− un‖H ≤ |λ|−1−s/2‖f‖Vs
.

Remark 7.2. In this special case one can compute the error directly.
In fact u =

∑∞
k=0

1
λk

〈f, ek〉Hek and un =
∑n−1

k=0〈f, ek〉Hek. Thus

‖u− un‖2H =
∞∑

k=n

1

λ2k
|〈f, ek〉H|2 =

∞∑

k=n

λ−2−s
k λsk|〈f, ek〉H|2 ≤ λ−2−s

n ‖f‖2Vs
,
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which is exactly the estimate (7.1). This means that Theorem 6.3 gives
the best possible estimate of the error.

Let us provide an example of application of (7.1). Let K = C,

H = L2(0, 2π) with norm ‖u‖2H = 1
2π

∫ 2π

0
|u(t)|2dt. Let V = {u ∈

H1(0, 2π) : u(0) = u(2π)} with norm

‖u‖2V =
1

2π

∫ 2π

0

|u′(t)|2dt+ 1

2π

∫ 2π

0

|u(t)|2dt.

Then the injection V →֒ H is compact. Let a : V ×V → C be given by

a(u, v) =
1

2π

∫ 2π

0

u′(t)v′(t)dt+
1

2π

∫ 2π

0

u(t)v(t)dt.

Let f ∈ L2(0, 2π). Then there exists a unique u ∈ H2(0, 2π) such that

u− u′′ = f, u(0) = u(2π), u′(0) = u′(2π).

In fact, u is the unique element of V such that a(u, v) = 〈f, v〉 for all
v ∈ V.
For u ∈ H, let û(k) = 1

2π

∫ 2π

0
u(t)e−iktdt be the k-th Fourier coeffi-

cient. Then

a(u, v) =
∑

k∈Z
(1 + k2)û(k)v̂(k).

Let ek(t) = eikt, t ∈ (0, 2π). Then (ek)k∈Z is an orthonormal basis of H
and û(k) = 〈u, ek〉H. Let Vn = Span{ek : |k| < n} and let un be the
approximate solution i.e.

a(un, χ) = 〈f, χ〉H (χ ∈ Vn).

Then our estimate shows that

‖un − u‖L2 ≤ 1

(1 + n2)1/2
‖f‖L2.

Let 0 < s ≤ 1 and Vs := {u ∈ L2(0, 2π) :
∑

k∈Z(1 + k2)s|û(k)|2 < ∞}.
If f ∈ Vs, then by (7.1),

(7.2) ‖u− un‖L2 ≤ (1 + n2)−1−s/2‖f‖Vs
.

7.2. Finite elements for the Poisson problem. In this section we
want to apply our results to show the convergence of a numerical ap-
proximation via triangularization for the solution of a Poisson problem
where coercivity is violated but essential coercivity holds. For simplic-
ity we choose K = R throughout this section. Let Ω ⊂ R

d be an open,
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bounded, convex set and let aij : Ω → R (1 ≤ i, j ≤ d) be Lipschitz
continuous functions such that

aij = aji and

d∑

i,j=1

aij(x)ξiξj ≥ α|ξ|2 (ξ ∈ R
d)

for all x ∈ Ω, where α > 0. Moreover, let bj , cj ∈ W 1,∞(Ω) for j =
1, · · · , d and b0 ∈ L∞(Ω). We consider the operator A given by

Au := −
d∑

i,j=1

Di(aijDju)+

d∑

j=1

bjDju−
d∑

j=1

Dj(cju)+b0u (u ∈ H2(Ω)).

Note that A : H2(Ω) → L2(Ω) is linear and continuous.
Our aim is to study the Poisson equation

(7.3) Au = f

where f ∈ L2(Ω) is given and a solution u ∈ H1
0 (Ω) ∩ H2(Ω) is to

be determined and calculated by approximation. We will impose the
uniqueness condition

(7.4) For all u ∈ H1
0 (Ω) ∩H2(Ω), Au = 0 implies u = 0.

We use the continuous, coercive form

a0 : H
1
0 (Ω)×H1

0 (Ω) → R

given by

a0(u, v) =
d∑

i,j=1

∫

Ω

aijDjuDiv

and also the perturbed form a given by

a(u, v) = a0(u, v) +
d∑

j=1

∫

Ω

(bjDjuv + cjuDjv) +

∫

Ω

b0uv.

Note that the adjoint form a∗ defined by a∗(u, v) = a(v, u) has the same
form as a. This is the reason why we also consider the coefficients cj .
Then the following well posedness result holds.

Theorem 7.3.

i) The form a is essentially coercive.
ii) Assume (7.4). Then for each f ∈ L2(Ω) there exists a unique

solution u ∈ H1
0 (Ω) ∩H2(Ω) of (7.3).



28 W. ARENDT, I. CHALENDAR, AND R. EYMARD

Proof. a) We first show H2-regularity. Let u ∈ H1
0 (Ω), f ∈ L2(Ω) such

that a(u, v) =
∫
Ω
fv for all v ∈ H1

0 (Ω). Then u ∈ H2(Ω) and Au = f .
In fact, let

g := f − b0u−
d∑

j=1

(bjDju−Dj(cju)).

Then g ∈ L2(Ω) and a0(u, v) =
∫
Ω
gv for all v ∈ H1

0 (Ω). Now it follows
from the classical H2-result of Kadlec [11] (see [9, Theorem 3.2.1.2])
that u ∈ H2(Ω). It clearly follows that Au = f .
b) We show that a is essentially coercive. Let un ⇀ 0 as n → ∞ in
H1

0 (Ω) and a(un, un) → 0 as n → ∞. Then Djun ⇀ 0 as n → ∞ in
L2(Ω). Since the embedding of H1

0 (Ω) in L
2(Ω) is compact, it follows

that un → 0 in L2(Ω). Consequently
∫

Ω

bjDjun.un → 0,

∫

Ω

cjDjun.un → 0 and

∫

Ω

b0un.un → 0 as n→ ∞.

Thus also a0(un, un) → 0 as n → ∞. Since a0 is coercive this implies
‖un‖H1 → 0 as n→ ∞.
c) The form a satisfies uniqueness. In fact, let u ∈ H1

0 (Ω) such that
a(u, v) = 0 for all v ∈ H1

0 (Ω). Then u ∈ H2(Ω) by part a) of the proof.
Hence u = 0 by our assumption (7.4).
d) Let f ∈ L2(Ω). It follows from Corollary 4.5 that there exists a
unique u ∈ H1

0 (Ω) such that a(u, v) = 〈f, v〉L2 for all v ∈ H1
0 (Ω). Now

a) implies that u ∈ H2(Ω) and Au = f .
�

Concerning the uniqueness property, we make the following remark.

Remark 7.4 (Eigenvalues and uniqueness). Replace the operator A by
Aλ := A − λ Id (i.e. b0 by b0 − λ) where λ ∈ R. Then there exists a
finite or countable infinite set such that

{λ : (7.4) is violated for Aλ} = {λn : n ∈ N
∗, n < N}

where 1 < N ≤ ∞ and λn ∈ R, limn→∞ λn = ∞ if N = ∞.
If b1 = · · · = bd = c1 = · · · = cd = 0 and b0 ≥ 0, then λn > 0 for all
n ∈ N∗ and then we are in the coercive case. But in general there will
be also negative eigenvalues. The uniqueness condition (7.4) for A is
equivalent to saying that λn 6= 0 for all n ∈ N∗.

Our final aim is to show that the finite element method yields an
approximation of the solution of (7.3).
For that purpose we assume that d = 2 and that Ω is a convex

polygon. Let {τh}h>0 be a quasi-uniform admissible triangularization
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of Ω (see [2, Definition 9.26]). In particular each τh consists of finitely
many triangles covering Ω of outer radius rT ≤ h.
For h > 0, we consider the corresponding finite element space Vh (see

[2, Equation (9.35)]). Thus Vh consists of those continuous functions
on Ω which vanish at ∂Ω and are affine on each triangle T ∈ τh.
The following fundamental estimates are classical (see e.g. [2, Ko-

rollar 9.28]) .

Proposition 7.5. There exists a constant c > 0 such that for all h ∈
(0, 1) and for each v ∈ H2(Ω),

(7.5) inf
χ∈Vh

‖v − χ‖H1(Ω) ≤ ch|v|H2(Ω),

where |v|2H2(Ω) :=
∫
Ω
(|D2

1v|2 + 2|D1D2v|2 + |D2v|2).
Note that Proposition 7.5 shows how we can approximate functions

in H2(Ω) by finite elements and so far there is no relation with the
solutions of the Poisson equation.
We assume the uniqueness condition (7.4). Then by Theorem 5.2,

since the form a is essentially coercive, there exists h0 ∈ (0, 1] such that
for 0 < h ≤ h0 and u ∈ Vh

(7.6) a(u, χ) = 0 for all χ ∈ Vh implies u ∈ Vh.

Let f ∈ L2(Ω). Since Vh is finite dimensional, it follows from (7.6) that
for all 0 < h ≤ h0, there exists a unique uh ∈ Vh such that

(7.7) a(uh, χ) =

∫

Ω

fχ for all χ ∈ Vh.

The finite elements (uh)0<h≤h0
are the approximation of the solution of

(7.3) we are interested in. They converge in H1(Ω) with convergence
order 1 and in L2(Ω) with convergence order 2. More precisely, the
following is our main theorem of this section.

Theorem 7.6. Let f ∈ L2(Ω) and consider the approximate solutions
uh, 0 < h ≤ h0. Then there exist 0 < h1 ≤ h0 and constants c1, c2
independent of f such that

(7.8) ‖u− uh‖H1(Ω) ≤ c1h‖f‖L2(Ω)

and

(7.9) ‖u− uh‖L2(Ω) ≤ c2h
2‖f‖L2(Ω)

where u is the solution of (7.3).

Proof. Applying the closed graph theorem in the situation of Theo-
rem 7.3, we find a constant c3 > 0 such that

(7.10) ‖u‖H2(Ω) ≤ c3‖f‖L2(Ω)
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whenever f ∈ L2(Ω) and u solves (7.3).
By Theorem 5.2, there exist γ > 0, 0 < h1 ≤ h0, both independent

of f , such that

‖u− uh‖H1(Ω) ≤ γ inf
χ∈Vh

‖χ− u‖H1(Ω)

for all 0 < h ≤ h1. Thus (7.5) implies that for 0 < h ≤ h1,

‖uh − u‖H1(Ω) ≤ chγ|u|H2(Ω).

Now (7.8) follows from (7.10).
Next we establish the L2-estimate (7.9). For that we compute using

(7.5),

γh(H) = sup
w∈H1

0
(Ω)∩H2(Ω)

dist(w,Vh)

‖Aw‖L2(Ω)

≤ sup
w∈H1

0
(Ω)∩H2(Ω)

ch|w|H2(Ω)

‖Aw‖L2(Ω)

.

Since |w|H2(Ω) ≤ ‖w‖H2(Ω), it follows from (7.10) that γh(H) ≤ cc3h for
all h > 0.
The same estimate is true for γ∗h(H). Now assume that (7.9) is

false. Then there exists a sequence hn ↓ 0 as n → ∞ such that (7.9)
does not hold for all h = hn and any constant c2. This contradicts
Theorem 6.3. �

Remark 7.7. There are other methods to approximate the solution of
a non-coercive advection-diffusion equation as (7.3). In fact, Le Bris,
Legoll and Madiot [13] use the Banach-Nečas-Babuska lemma (instead
of essential coercivity as we do) and a special measure to construct an
approximation.
The advantage is that no initial mesh h1 has to be considered; on

the other hand there seems to be no such precise error estimate as our
quadratic convergence obtained in Theorem 7.6 even though numerical
examples are given in [13].
Still, another approach (based on Fredholm perturbation) is presented

by Christensen [5], which also involves the Babuska inf-sup condition.
Finally, let us mention the works by Droniou, Gallouët and Herbin

based on finite volume methods, which also present the advantage to
provide an approximate solution for this problem on any admissible
mesh [6].
One of the first results on the Galerkin method in a special non-

coercive case are due to Schatz [17] and Schatz–Wang [18].
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