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Abstract

Given a connected unit-weighted graph, we study the Maximum k-Cutset Prob-
lem, consisting in cutting a graph into k vertex-disjoint sub-graphs, each con-
nected. We propose some exact and heuristic solutions to solve the problem.
The first Integer Linear Program is based on a combination of a cut model and
an assignment model. The two other Integer Linear Programs are based on the
existence of spanning trees. The presented heuristics are clustering algorithms
using local search. Experiments have been run on randomly generated instances
and a specific set of instances. We observe that the running times are related
to the tree-arboricity of graphs. The tree-arboricity is also used to ensure the
optimality of solutions found by our heuristics.

Key words: Combinatorial optimization, Heuristics, Integer programming,
Graph partitioning

1. Introduction

The problem of decomposing a graph (network) into smaller pieces, more
commonly known as graph partitioning, has a long history dating back to the
early 70s [19]. Many variants of the problem have been proposed since then and
we discuss several below. While the problem of partitioning a graph into k > 2
subgraphs has received some attention, the additional constraint of maintaining
connectedness is less common. Yet in the context of decomposition of geograph-
ical entities into sub-regions, this is a natural requirement. In this paper we
consider connected k-cut, the problem of cutting (decomposing) a graph into k
vertex-disjoint sub-graphs, each connected.

We investigate several algorithms for this problem, of which some are exact
and some heuristic. With weights attached to the graph edges that represent
the undesirability of assigning two adjacent vertices to the same partition, our
algorithms can be viewed as finding a maximum k-cut in the graph – that
is, remove as many “bad” (large) edges as possible. Alternatively, one may
model the problem as finding a minimum k-cut where (larger) edge weights
now represent the desirability or attraction of two adjacent vertices being co-
assigned. Since both of these problems are NP-hard [10, 12] in the general
case, we model the problem as one of maximization in what follows.
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Many problems in a geographical setting require decomposition of a network
into connected entities and this work will be of relevance here. Examples include
telecommunications or cable TV networks. The siting of municipal service
facilities will also require that the service center be connected to each “client”.
However, our immediate application is motivated by electoral districting. The
Irish parliament, the Dil, is composed of elected members from 40 electoral
constituencies created from an agglomeration of 3409 atomic electoral divisions
(EDs), of average area, 20km2. The composition of electoral constituencies
is reviewed and revised periodically on the basis of population census data.
Figure 1 illustrates the distribution of EDs.

Figure 1: The 3409 Electoral Divisions of the Republic of Ireland.

Adjacency relations amongst EDs are naturally modeled as a graph and a
40-partition of the 3409-vertex graph is a basic requirement of any constituency
map. Due to EDs being under different administrative regions it is more desir-
able for some adjacent EDs to be in the same electoral constituency than others.
Conversely, if logically adjacent EDs are separated by a significant physical fea-
ture (large lake or river) then it may be desirable to assign such EDs to different
constituencies. The desirability or undesirability of nominating logically adja-
cent EDs to be in the same constituency may be controlled by the assignment
of weights to the edges. Crucially, it has been longstanding custom for electoral
constituencies to be a single geographical region. The connected k-partitioning
defined in the next section addresses exactly this problem.1

The paper is organised as follows. After defining the problem and briefly
describing notation below, we discuss some simplifications of the problem. We
describe then related work and the present status of the field in Section 3.

1While it may seem sufficient to solve the maximum spanning forest problem (or some
variant [7]) we wish for the entire connected component to be a tight, cohesive unit, and not
alone the spanning tree.
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Section 4 proposes three Integer Linear Program models to solve the problem
exactly. It will be seen that the models exhibit distinct behaviors according
to graph density. A heuristic algorithm is then proposed and we discuss 3
variants. In Section 6 we present our experimental work and results. The
paper is concluded in Section 7.

2. Basics and Problem Definition

Let G = (V,E) be an undirected graph of size m = |E| and order n = |V |,
where V is the set of vertices and E is a set of edges which are unordered
pairs of vertices of V . An edge {u, v}, where u and v are two vertices of V , is
denoted uv (or vu). In this paper, we only consider simple graphs, i.e. graphs
with neither multiple edges nor loops. For each uv ∈ E, the vertices u and v are
said to be neighbours. In the following, the neighbourhood of a vertex v ∈ V
is denoted by NG(v) ⊆ V . The degree of v is denoted by δG(v) = |NG(v)|.
We extend the notion of neighbourhood to a subset of vertices V ′ ⊆ V by
NG(V ′) =

⋃
v∈V ′ NG(v). In a graph, a real number w(e), called weight, can be

associated with each edge e ∈ E. For a subset E′ ⊆ E, w(E′) =
∑

e∈E′ w(e) is
the weight associated with E′.

Let V = {V1, V2} be a partition of V . A cut of G associated with V, denoted
by C(V), is the set of all edges of G having one end vertex in V1 and the other
in V2. Removing the edges of a cut from a connected graph G results in a graph
having at least two components. If it has exactly two components, the cut is
called a cutset or bond. Equivalently, a cutset is a cut of minimal size (none
of its non-empty proper subsets is a cut). A well-known theorem states that a
cut in a connected graph G is a cutset or union of edge-disjoint cutsets of G.
Let T be a spanning tree of a connected graph G, and let b be a branch of T .
The graph obtained by deleting b from T is denoted T − b. If V1 and V2 are the
vertex-sets of the two components of T − b then the cut C(V), V = {V1, V2}, is
a cutset of G. This cutset is called the fundamental cutset of G with respect to
the branch b of T . For each spanning tree T of G, there are n− 1 fundamental
cutsets, one for each branch of T .

Let k be an integer such that 2 ≤ k ≤ n and let V = {V1, . . . , Vk} be a
k-partition of V . The set C(V) of all those edges of G having their end vertices
in distinct subsets of V is called a k-cut of G. A k-cut of a connected graph
is called a k-cutset if the removal of the edges in the k-cut results in a graph
having exactly k components. The associated partition is then called connected
k-partition. In the following, we will refer to K as the set {1, . . . , k}.

Proposition 1. Let C be a k-cutset in a connected graph G. Then, there exists
at least one spanning tree of G such that C is the union of k − 1 fundamental
cutsets associated with this spanning tree.

Proof. Let C(V) be a k-cutset of a connected graph G where V = {V1, . . . , Vk}
is a k-partition of V . We denote by ∂(Vi, Vj) the set of all edges of G having one
end vertex in Vi and the other in Vj , i < j. Note that ∪{∂(Vi, Vj) ; i < j, (i, j) ∈
K2} = C(V). Let GR = (VR, ER) be the contraction of G obtained as follows.
For each i ∈ K, all edges of G[Vi] are contracted in one vertex vi, which is added
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to VR. Then, the edge vivj is added to ER if and only if ∂(Vi, Vj) is not empty.
Let TR be a spanning tree of GR. Let B be one of the (k − 1) fundamental
cutsets of GR associated with TR. Then ∪{∂(Vi, Vj) ; i < j, vivj ∈ B} is a
cutset of G. This construction is illustrated by an example on Figure 2, where
B1 = {e1, e2, e5, e10}, B2 = {e1, e8, e11} and C(V) = B1 ∪B2.

e2

e4

e1

e5

e7

e6

e10

e8

e11

e3

e9

.

.

v1 v2 v3

B1 B2

.

.

Figure 2: Construction of GR and TR.

The maximum cut problem (max-cut) consists in finding a cut of maximum
weight. The maximum cutset problem (max-cutset) consists in finding a cutset
of maximum weight. The maximum k-cut problem (max k-cut) consists in
finding a k-cut of maximum weight. In this paper we consider the maximum
k-cutset problem defined as follows.

Definition 1. The maximum k-cutset problem (max k-cutset) consists in find-
ing a k-cutset of maximum weight or, equivalently, to find a connected k-
partition V such that w(C(V)) is maximum or w(E)− w(C(V)) is minimum.

Let us now consider unweighted graphs G = (V,E), i.e. w(e) = 1 for all
e ∈ E. Then, the weight of a subset of edges is its cardinality. For the graph
presented on Figure 2, the 3-cutset value is 6 and it is maximum (all subgraphs
are trees).

Let V = {V1, . . . , Vk} be a k-partition of V where each induced subgraph
G[Vi], i ∈ K, is a tree. Such a partition is called a k-tree-partition. Then,
|C(V)| = |E|−

∑
i∈K(|Vi|−1) = |E|−|V |+k and C(V) is a maximum k-cutset.

Furthermore, adding any edge in E \ C(V) to C(V) results in a (k + 1)-tree-
partition and a maximum (k + 1)-cutset of cardinality |E| − |V | + (k + 1). In
a related work [5], the authors define the tree-arboricity ta(G) of a graph G as
the minimum integer value k such that G admits a k-tree-partition. This leads
to the following obvious result.

Proposition 2. Every simple connected graph G = (V,E) admits a maximum
k-cutset of cardinality |E| − |V |+ k if and only if k ≥ ta(G).

As mentioned earlier, our study was motivated by the Irish electoral con-
stituency problem. As each constituency is expected to be topologically con-
nected agglomeration of electoral divisions, the problem can be seen as a max
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k-cutset for a connected graph. For disconnected graphs, the problem has to
be solved by taking into account that each component has its own partition. Let
us suppose that G is a union of c disjoint components, denoted by G1, . . . , Gc.
Let Cj be a kj-cutset of Gj , 1 ≤ j ≤ c. If

∑
1≤j≤c kj = k then ∪1≤j≤cCj is a

k-cutset of G. To solve the max k-cutset for such graphs is not obvious. Indeed,
finding the kj values is a part of the problem which makes it more difficult to
solve. This could be the subject of further studies.

3. State of the art

Several problems of immediate relevance to the k-cutset have been previ-
ously studied. We now describe this work.

Cut and max-cut. The max-cut is a classical problem in combinatorial optimiza-
tion and is among the twenty one problems whose NP-hardness was established
in [17]. Different approaches are presented below.
Within the field of approximation, an efficient algorithm has been proposed in
[11], providing a quality of at least 0.878 times the optimal solution. Based on
these results, Bertoni et al. [3] proposed a new algorithm which is very efficient
in practice. It ensures similar quality in reduced computing times, although
only providing a 0.39 quality ratio. In [20], the authors propose an efficient
algorithm to get approximate global solutions of max-cut. Their algorithm is
based on a discrete filled function algorithm embedded with continuous approx-
imation.
Festa et al. [9] have presented a heuristic algorithm using local search to im-
prove a feasible solution. In [16], the authors give a survey of different heuristics
and compare the results on some well-known benchmarks. A tabu search algo-
rithm is presented in [18].
Other researchers focused on exact methods. An exponential-time exact algo-
rithm using polynomial space is described in [8]. A Branch-and-Bound approach
is proposed in [22]. In [2], the authors propose some valid inequalities for the
cut polytope and study their facial structure.
The max-cut problem has also been studied for planar graphs by Orlova and
Dorfman in [21] and by Hadlock in [13]. They proposed a polynomial-time algo-
rithm by translating the max-cut into a maximum weighted matching problem
for which there exists a polynomial bounded algorithm.

k-cut and max k-cut. Some approaches by approximation of the max k-cut are
presented in [24] and [10]. In [23], Sahni et al. have proposed a heuristic built-in
algorithm to solve the max k-cut. This simple algorithm can be considered as
the first known approximation algorithm guaranteeing good quality solutions.
Among exact methods, Ales et al. introduce a mixed integer linear program-
ming formulation with edge variables, and representative variables and analyse
the associated polytope [1].

max-cutset. Haglin and Venkatesan have shown in [14] that the max-cutset is
NP-complete even for planar graphs in contrast to the max-cut which can be
solved in polynomial time on planar graphs as we mentioned above. Several
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formulations of the problem have been presented and used in Branch-and-Cut
algorithms in [4].

The max k-cutset (Definition 1) is a generalization of the previous problem
for k partitions with k ≥ 2. To the best of our knowledge, no result has
been published yet concerning this problem. Indeed, in the mentioned works
studying k-cut, the connectivity of the induced subgraphs is not a required
property. When this property is studied, the number k of subsets is limited
to two. In a very recent preprint [15], the authors present some models using
a different approach from ours to take into account the connectivity of the
subgraphs. They study two alternative mixed-integer linear formulations, a
cut model and a flow model. They also propose improvements, some of them
making the models more efficient. As there are some similarities with our
models, especially the cut model, we focus on the differences of the models as
well as on the performance behaviour.

4. Integer Linear Program models

We propose three Integer Linear Programming (ILP) formulations to solve
the max k-cutset for a simple connected graph G = (V,U): our goal is to find
a connected k-partition V = {V1, . . . , Vk} of V such that w(C(V)) = |C(V)| is
maximum. The first ILP is based on the combination of a cut model and an
assignment model, and the two others are based on label structures inducing k
spanning trees.

4.1. Cut / Assignment model (CAM)

In the ILP below, the variables ziv indicate if a vertex v is assigned to a
subset Vi of the partition, for all i ∈ K. The variables yuv indicate if uv is in
the cutset, for all uv ∈ E.

ziv =

{
1 if v ∈ Vi,
0 otherwise,

∀v ∈ V,∀i ∈ K

yuv =

{
1 if uv ∈ C(V),
0 otherwise,

∀uv ∈ E.

For the sake of simplicity, we introduce variables ȳuv = 1 − yuv, for all
uv ∈ E, indicating if both ends of an edge uv are in the same partition. The
ILP is defined as follows.
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max
∑
uv∈E

yuv (1)∑
i∈K

ziu = 1, ∀u ∈ V, (2)∑
u∈V

ziu ≥ 1, ∀i ∈ K, (3)

(PCAM) ziu − ziv ≤ yuv, ∀uv ∈ E, ∀i ∈ K, (4)

ziv − ziu ≤ yuv, ∀uv ∈ E, ∀i ∈ K, (5)

ziu + ziv ≤ 1 + ȳuv, ∀uv ∈ E, ∀i ∈ K, (6)

yuv ∈ {0, 1}, ∀uv ∈ E, (7)

ȳuv ∈ {0, 1}, ∀uv ∈ E, (8)

ziu ∈ {0, 1}, ∀u ∈ V, ∀i ∈ K. (9)

The inequalities (2) ensure partitioning. Each subset of the partition must
be non-empty, which is guaranteed by (3). Inequalities (4)–(6) are classically
used to model the cutset associated to the partition.

Then, we only have to ensure the connectivity of each induced subgraph
G[Vi], Vi ∈ V. Let Cuv be the set of all u − v cuts in G. Recall that a u − v
cut partitions V into two subsets, the first one containing u and the second one
containing v. Thus, we introduce the following inequalities:∑

u′v′∈C
ȳu′v′ ≥ ziu + ziv − 1,∀i ∈ K,∀u ∈ V,∀v ∈ V,∀C ∈ Cuv. (10)

If u and v are in the same set Vi, then at least one edge of each u − v
cut must belong to Ei, the set of edges of G[Vi]. Otherwise, there is no path
connecting u and v in G[Vi], and thus G[Vi] is not connected.

There is an exponential number of inequalities of type (10) and thus, to
solve this model, we must be able to separate infeasible solutions in an efficient
way. Let ȳ∗ ∈ {0, 1}m, u, v ∈ V and i ∈ K. The separation problem associated
with inequalities (10) entails finding a u− v cut C such that

∑
u′v′∈C

ȳ∗u′v′ < ziu + ziv − 1. (11)

This problem can be solved in polynomial time using a min s− t cut algo-
rithm between each pair of vertices of G where each edge uv is weighted by ȳ∗uv.
If the inequality (11) is verified, then we add (10) to the model.

This model has been studied in [15] where the authors added various im-
provements to the basic model making it more efficient. We report on our
results with several variants of this model in Section 6.
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4.2. Label Models

These models are based on the fact that a graph admits a spanning tree if
and only if it is connected. Finding a connected k-partition V is hence equivalent
to find a spanning forest of G, composed of n−k edges in k disjoint trees. Note
that for a partition Vi there are an exponential number of spanning trees, each
giving a different, yet symmetric, solution.

To eliminate some (but not all) of these symmetric solutions, we fix a repre-
sentative for each partition Vi. Let D = (V,A) be the directed graph (digraph)
obtained from G, where each edge uv ∈ E is replaced in A by two arcs (u, v)
and (v, u). Let F = ∪i∈KTi be a directed spanning forest of D. Then, the
roots of the directed spanning trees Ti = (Vi, Ai) of D[Vi] can be chosen as
representatives of the subsets Vi. Edges uv of G[Vi] such that neither (u, v) nor
(v, u) is an arc of Ti are called friends. The models proposed in this section use
both G and the support graph, D.

We present two slightly different approaches to define representatives: in
the first one they are chosen among the vertices of V , and the second one uses
k dummy vertices.

4.2.1. Label model with representatives (LMR)

In this model, representatives are designated directly among the vertices
of V . Vertices are indexed by natural numbers and we say that a vertex u is
smaller than a vertex v, u < v, if the index of u is smaller than the index of v.
The representative of a subset Vi (and all of its vertices) is the smallest vertex,
chosen as the root of its spanning tree Ti. In this model, the following variables
are used.

xuv =

{
1 if (u, v) is an arc in F,

0 otherwise
∀(u, v) ∈ A,

zuv =

{
1 if u is the representative of v,

0 otherwise
∀u, v ∈ V,

yuv =

{
1 if e ∈ C(V),

0 otherwise
∀uv ∈ E,

lu = length of the path to u from its representative ∀u ∈ V.

The variable zuu indicates if u is the representative of one of the subsets of
V. We define the ILP as follows.
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max
∑
uv∈E

yuv (12)∑
u∈V

zuu = k, (13)

zuv ≤ zuu , ∀u ∈ V,∀v ∈ V, v > u (14)∑
u≤v

zuv = 1, ∀v ∈ V, (15)

zwu + zwv + yuv ≤ 2, ∀uv ∈ E, w ∈ V, (16)

zwu − zwv ≤ yuv, ∀uv ∈ E, v < u,∀w ∈ V, (17)

(PLMR) zwv − zwu ≤ yuv, ∀uv ∈ E, v < u,∀w ∈ V, (18)

xuv + xvu + yuv ≤ 1, ∀uv ∈ E, (19)

zvv +
∑

(u,v)∈A

xuv = 1, ∀v ∈ V, (20)

lu ≤M(1− zuu), ∀u ∈ V, (21)

−M(1− xuv) ≤ lv − lu − 1, ∀(u, v) ∈ A, (22)

lv − lu − 1 ≤M(1− xuv), ∀(u, v) ∈ A, (23)

xuv ∈ {0, 1}, ∀uv ∈ E, (24)

yuv ∈ {0, 1}, ∀uv ∈ E, (25)

zvu ∈ {0, 1}, ∀u ∈ V,∀v ∈ V, (26)

lu ∈ N, ∀u ∈ V. (27)

Equality (13) ensures that there are exactly k representatives. Inequalities
(14) express the fact that if a vertex v has u as a representative, then u is a
representative of itself. Equality (15) ensures that each vertex has exactly one
representative: itself or a smaller vertex. Equations (13)–(15) guarantee, then,
that the smallest vertex of each subset is its unique representative. Inequalities
(16) indicate that either both ends of an edge are in the same subset, or the
edge is in the cut set. Inequalities (17) and (18) ensure that if two vertices u
and v are in different classes, uv is a cut edge. Inequalities (19) guarantee that
each edge uv is in one of the three situations: (i) uv is in the cut set, (ii) uv is a
friend edge, (iii) (u, v) or (v, u) is an arc of the forest. Equality (20) ensures that
the representatives are the roots of the spanning trees. Furthermore, a vertex
not being a representative itself has exactly one direct predecessor in the forest.
Inequalities (21)–(23) define some conditions on labels: each representative is
labelled 0; the further a vertex is from the root, the greater its label is. They also
ensure that each tree of the forest is connected and hence cycles are forbidden.
The constant M can be bounded by n.

4.2.2. Label model with dummy vertices (LMD)

In this model, k dummy vertices are added to V . The representative of each
subset of the partition is one of these dummy vertices.
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Let D = (V ′, A′) be the (support) digraph defined by

– V ′ = V ∪ Vd where Vd = {v1, ..., vk} is a set of dummy vertices;

– A′ = A ∪Ad where Ad = {(vi, u)|u ∈ V, vi ∈ Vd, i ∈ K}.

The spanning directed forest F ′ is defined in an analogous way as in the
previous model. The root of each tree of F ′ is one of the dummy vertices. The
variables are defined as follows:

xuv =

{
1 if (u, v) is an arc in F ′,

0 otherwise
∀(u, v) ∈ A′.

ziv =

{
1 if v ∈ Vi,
0 otherwise

∀v ∈ V,∀i ∈ K.

ye =

{
1 if uv ∈ C(V),

0 otherwise
∀uv ∈ E.

lu = the pseudo-length of the path to u in F ′ ∀u ∈ V.

As in the previous model, the variables xuv indicate if (u, v) is an arc of the
forest and lu is the pseudo-distance (one edge less than the geodesic distance)
between u and the root (a dummy vertex) in a spanning tree. Variables ziv are
defined in the same way as in the Cut/Assignment model, indicating if a vertex
v is in a subset Vi of the partition. Each dummy vertex vi can be considered as
the root of a spanning tree. In all models, variables yuv indicate if uv is a cut
edge.

10



The ILP corresponding to this model is defined as follows:

max
∑
uv∈E

yuv (28)∑
i∈K

ziu = 1, ∀u ∈ V, (29)∑
u∈V

ziu ≥ 1, ∀i ∈ K, (30)∑
(v,u)∈A′

xvu = 1, ∀u ∈ V, (31)

∑
u∈V

xviu = 1, ∀i ∈ K, (32)

(PLMD) ziu + ziv + yuv ≤ 2, ∀uv ∈ E, i ∈ K, (33)

ziu − ziv ≤ yuv, ∀uv ∈ E, v < u,∀i ∈ K, (34)

ziv − ziu ≤ yuv, ∀uv ∈ E, v < u,∀i ∈ K, (35)

xuv + xvu + yuv ≤ 1, ∀uv ∈ E, (36)

lu ≤M(1− xviu), ∀(vi, u) ∈ Ad,∀i ∈ K, (37)

−M(1− xuv) ≤ lv − lu − 1, ∀(u, v) ∈ A \Ad, (38)

lv − lu − 1 ≤M(1− xuv), ∀(u, v) ∈ A \Ad, (39)

xuv ∈ {0, 1}, ∀uv ∈ E, (40)

yuv ∈ {0, 1}, ∀uv ∈ E, (41)

ziu ∈ {0, 1}, ∀u ∈ V,∀i ∈ K, (42)

lu ∈ N, ∀u ∈ V. (43)

Equalities (29) ensure that each vertex belongs to exactly one subset. Inequal-
ities (30) ensure that none of the subsets is empty, (29)–(30) thus ensure the
partition. Equalities (31) indicates that a true vertex has exactly one direct
predecessor in the forest and (32) that each dummy vertex has exactly one di-
rect successor in the forest. Inequalities (33) are analogous to (16): either both
edges are in the same subset or the edge is in the cutset. As with (17) and (18),
inequalities (34) and (35) ensure that if two vertices u and v are in different
partitions, uv is a cut edge. Inequalities (36) are the same as (19) (3 possible
situations for an edge). Inequalities (37)–(39) define the same labelling condi-
tions as in the previous model, with value 0 for vertices succeeding a dummy
vertex in a spanning tree.

5. Heuristics

We now propose some heuristics which are inspired by the following works.
In [23], Sahni and Gonzales proposed a 1/k approximate algorithm for the

max-k-cut problem, which we will refer to below as the S&G algorithm. Let
V = {V1, V2, . . . , Vk} be a connected k-partition of V . The algorithm starts by
assigning one vertex to each partition. Then, the |V | − k remaining vertices
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are examined one by one. A vertex v is added to the partition Vi for which the
score function score(v, i) =

∑
u∈Vi∩N(v)w(uv) is minimal (i.e. the contribution

to the objective function is optimal).
Kahruman et al. [16] proposed some variations of the S&G algorithm for

the max-cut problem for complete weighted graphs. At each step, they select
the non-assigned vertex with the best score. Three different score definitions
were proposed and experimentally compared. They have also proposed an edge
contraction heuristic. Starting with the initial graph, each step consists in
contracting an edge into one vertex. The process ends when only 2 vertices
remain, each one corresponding to a partition.

Festa et al. present another algorithm based on the S&G algorithm [9].
The authors define a set of not yet assigned vertices called the restricted can-
didate list. At each step, this set is rebuilt by using a similar score to [23] and
[16]. Then, a vertex is chosen randomly from this list and is assigned to the
corresponding partition. The k-partitions obtained by this greedy randomized
algorithm are then improved by different local search phases. The shared idea
of these local searches is to find a vertex such that its reassignment improves
the objective function.

In this paper, we focus on the maximum k-cutset problem for unweighted
connected graphs. The algorithms we propose guarantee the connectivity of
the partitions which is not the case of the algorithms presented above. We use
a randomized building phase of k connected partitions using score functions
ensuring connectivity. In our algorithm, the local search phase is embedded in
the building phase, in contrast to Festa’s [9] algorithm. The local search phase
is called only if the current partition is not a k-tree-partition, thus reducing the
running time of the first iterations.

Formally, we define the algorithms as follows. Let G = (V,E) be an undi-
rected weighted graph and let V = {V1, V2, . . . , Vk} be a connected k-partition
of V . We denote by δi(v) = |N(v)∩Vi| the number of neighbours of v belonging
to Vi and δ̄i(v) = δ(v)− δi(v) denotes the number of neighbours of v belonging
to V \ Vi, for all i in K and v in V . If V is a connected k-partition of V ,
then |E| = |C(V)|+ |C̄(V)|, where |C(V)| = 1

2

∑
i∈K

∑
v∈Vi δ̄i(v) and |C̄(V)| =

1
2

∑
i∈K

∑
v∈Vi δi(v) is the total size of the k induced connected subgraphs G[Vi],

i ∈ K. Let us also introduce the quantity d(V) = |E|−2|C(V)| = 2|C̄(V)|−|E|.
In the following, we present the building and the local search phases of our

heuristic maximizing |C(V)|. The heuristics maximizing d(V) and minimizing
|C̄(V)| are similar.

Building phase. At each iteration, let us consider V ′ as being the set of not
yet assigned vertices and let V̄ ′ = V \ V ′ be the set of assigned vertices. C
denotes the current cut value of G[V̄ ′]. The initialization of the building phase
consists in randomly choosing k vertices {v1, . . . , vk} and setting Vi = {vi} for
all i ∈ K. We also use a classification indicator table of the vertices, denoted
ρ. At the beginning of the algorithm, we set V̄ ′ = {v1, . . . , vk}, ρ[vi] = i for all
i ∈ K and C = 0. At each step, we consider the vertices of V ′′ = N(V̄ ′)\ V̄ ′. A
vertex v ∈ V ′′ can be assigned to a partition Vi, if δ̄i(v) is maximum on K and
satisfies the connectivity constraint δi(v) ≥ 1. Notice that a vertex can satisfy
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these conditions for different partitions Vi. Let (v′, i′) be randomly chosen in
the set {(v, i)} of all possible assignments. Then, v′ is assigned to subset Vi′

(ρ[v′] = i′) and the cut value is set to C + δ̄i′(v
′) (see Heuristic – part 1).

Heuristic - part 1 Main loop of the building phase

while |V ′| > 0 do
V ′′ ← N(V̄ ′) \ V̄ ′
δ̄max ← max{δ̄i(v) | (v, i) ∈ V ′′ ×K; δi(v) ≥ 1};
S ← {(v, i) ∈ V ′′ ×K | δ̄i(v) = δ̄max; δi(v) ≥ 1};
randomly choose (v, i) in S
Vi ← Vi ∪ {v} ; ρ[v]← i ; V ′ ← V ′ \ {v}; V̄ ′ ← V̄ ′ ∪ {v}
C ← C + δ̄max

if |E| − C > |V̄ ′| −K then
local search(ρ,V, C)

end if
end while

Local search phase. We first construct a list of vertices L = (v1, . . . , vn) where
the vertices are sorted in an increasing order of their contribution: δ̄ρ[vi](vi) ≤
δ̄ρ[vj ](vj), for all 1 ≤ i < j ≤ n. We intend to first reassign vertices having
the worst contribution. For each v ∈ L, v is reassigned to another partition
whenever the objective function C is improved or unchanged after the reas-
signment. This loop is repeated until no reassignment has been done or no
improvement occurred during the previous nmax iterations. The parameter
nmax is used to avoid infinite back-and-forth between equivalently scored parti-
tions (nmax = log n in our algorithm). Notice that if a vertex is an articulation
vertex, it cannot be reassigned to another partition. The local search phase is
presented below (see Heuristic – part 2).
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Heuristic - part 2 Local search phase

repeat
change ← false
improved ← false
for v ∈ L do

if v is a not an articulation vertex of G[Vρ[v]] then
δ̄max ← max{δ̄i(v) | i ∈ K; δi(v) ≥ 1};
S ← {i ∈ K | δ̄i(v) = δ̄max; δi(v) ≥ 1};
if (δ̄ρ[v](v) ≤ δ̄max) then

randomly choose i in S
if i 6= ρ(v) then
C ← C + δ̄max − δ̄ρ[v]
Vi ← Vi ∪ {v} ; Vρ[v] ← Vρ[v] \ {v} ; ρ[v]← i
change ← true
improved ← δ̄ρ[v](v) < δ̄max

end if
end if

end if
end for

until ¬change or ¬improved for the last nmax iterations

6. Experimental results

The experiments were run using Java 8 with CPLEX 12.63 on a Linux com-
puter, with Intel Core I5-370 3.4GHz quad core processors and 8GB memory.
CPLEX’s working memory and tree sizes were not limited; a time limit of 3600
seconds was imposed on each run; all runs were single-threaded, that is, they
were run without parallelism.

We present some comparisons between the models presented in [15] and ours.
The computations of [15] were run on a Linux cluster with Intel Xeon E5 3.5GHz
quad core processors and 32GB memory and the authors used SCIP 5.0.1 with
the LP solver CPLEX 12.7.1 to solve the instances. Thus, our environment
being less performant, our results cannot be compared to theirs in an exact
way. Nevertheless, we can assume that using a more efficient environment the
results could only be better.

Our experiments consider the exact and heuristic models introduced in the
previous sections. Two main types of data were used as input.

• To examine the behaviour of the models as a function of parameters such
as vertex count, edge density of the input graph and partition counts, we
generated pseudo-random graphs of varying sizes.

• We also compare our results to the results of the authors of [15]. As their
code is not available currently, we cannot make an exhaustive comparison
between our models and theirs. Nevertheless, we ran some tests on the
same set of unweighted graph instances from the Color02 symposium [6]
and could compare the number of completions and the running times.
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Finally, as a more realistic input, we used the 3409-vertex Electoral Divisions
graph described in the Introduction. As it is beyond the abilities of the exact
methods to solve this graph, we only used it as an input for heuristics methods.

6.1. Instances

Our pseudo-random instances are generated as follows. For each couple
(|V |, d), |V | ∈ {15, 20, 25} and density d ∈ {0.25, 0.50, 0.75}, 10 instances were
generated. In order to ensure connectivity, each instance was built by generating
an initial random tree. Then, random edges are added until the appropriate
density is reached. All edges weights are unitary. Therefore, 90 input graphs
were generated in total. On each of these graphs a maximum k-cutset problem
was solved for k ∈ {2, 3, . . . , 8}. This yielded 630 problem instances for each of
the models.

The Color02 instances correspond to 51 of the smallest instances from the
Color02 symposium on coloring problems [6]. The number of vertices varies
from 11 to 282 except for one instance, which has 2368 vertices. The density
varies from 3.4% to 89.6%.

6.2. Exact methods

Recall that our ILP algorithms are based on three models: a cut/assignment
model (CAM), a label model where the representative vertices are vertices of
the graph (LMR) and a label model where dummy vertices determine the par-
titioning (LMD). As mentioned earlier, the CAM proposed in [15] is more com-
prehensive than ours, so we focus on LMR and LMD.

Each model was run on each of the 90 graph instances with k specified from
2 to 8. Table 1 compares the two label models proposed in this paper. We
observe that LMD is more efficient than LMR: more instances are solved to
optimality.

630 runs LMD LMR
#opt 616 608
Total time 92474 97428
Mean time 146.8 154.65

Table 1: Aggregate completions, total and mean running times (in seconds) for each model,
on all randomly generated instances (k ∈ {2, . . . , 8}, |V | ∈ {15, 20, 25} and graph density
∈ {25, 50, 75}).

In Tables 2, 3 and 4, we give some more details concerning the results on
randomly generated instances for the LMD and LMR, for different values of |V |:
15, 20 and 25. We present as #opt the number of instances solved to optimality
within the given time (one hour). The running time G-mean time (also used in
[15]) is given in shifted geometric mean

∏n
i=1(ti + s)1/n − s, where n = 51 and

s = 10. This way to compute the running times decreases the outliers’ influence.
Mean time is the average running time by instance based on the total running
time. We can observe that all instances are solved to optimality for |V | = 15
for both models. For |V | = 20, only one instance is not solved by LMD. For
|V | = 25, none of the models can solve all of the instances. We observe that
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LMR is more efficient than LMD for smaller number of vertices. Indeed, for
greater values, the number of variables in LMR increases more, inducing bigger
running times, especially for k < ta(G). For both models, it decreases in a
significant way when the tree-arboricity is reached.

LMD

k
Density

#opt
G-Mean Mean

25 50 75 time time
2 10 10 10 30 1.16 1.36
3 10 10 10 30 2.13 2.23
4 10 10 10 30 1.25 1.90
5 10 10 10 30 0.61 0.63
6 10 10 10 30 0.26 0.27
7 10 10 10 30 0.15 0.16
8 10 10 10 30 0.13 0.13
Sum 70 70 70 210 5.69 0.95

LMR

k
Density

#opt
G-Mean Mean

25 50 75 time time
2 10 10 10 30 0.34 0.34
3 10 10 10 30 0.71 0.72
4 10 10 10 30 0.39 0.49
5 10 10 10 30 0.09 0.09
6 10 10 10 30 0.05 0.05
7 10 10 10 30 0.04 0.04
8 10 10 10 30 0.03 0.03
Sum 70 70 70 210 1.65 0.25

Table 2: Aggregate completions, G-mean and mean running times (in seconds) for LMD and
LMR, |V | = 15, on randomly generated instances.

LMD

k
Density

#opt
G-Mean Mean

25 50 75 time time
2 10 10 10 30 5.73 47.15
3 10 10 9 29 45.96 155.14
4 10 10 10 30 108.82 151.08
5 10 10 10 30 7.32 7.85
6 10 10 10 30 2.94 3.42
7 10 10 10 30 1.67 1.79
8 10 10 10 30 1.03 1.11
Sum 70 70 69 209 173.47 52.51

LMR

k
Density

#opt
G-Mean Mean

25 50 75 time time
2 10 10 10 30 2.09 2.10
3 10 10 10 30 40.59 44.80
4 10 10 10 30 27.18 36.74
5 10 10 10 30 0.50 0.51
6 10 10 10 30 0.32 0.32
7 10 10 10 30 0.21 0.21
8 10 10 10 30 0.15 0.15
Sum 70 70 70 210 71.04 12.12

Table 3: Aggregate completions, G-mean and mean running times (in seconds) for LMD and
LMR, |V | = 20, on randomly generated instances.

LMD

k
Density

#opt
G-Mean Mean

25 50 75 time time
2 10 10 10 30 23.43 30.85
3 10 10 10 30 176.82 619.71
4 10 10 0 20 112.86 1211.63
5 10 10 7 27 74.84 192.16
6 10 10 10 30 16.91 28.69
7 10 10 10 30 9.59 17.46
8 10 10 10 30 5.94 7.70
Sum 70 70 57 197 420.39 301.17

LMR

k
Density

#opt
G-Mean Mean

25 50 75 time time
2 10 10 10 30 27.33 60.01
3 10 10 0 20 227.63 1373.33
4 10 10 0 20 80.05 1207.48
5 10 10 8 28 41.11 519.05
6 10 10 10 30 1.96 2.27
7 10 10 10 30 0.98 1.01
8 10 10 10 30 0.96 1.02
Sum 70 70 48 188 380.02 504.92

Table 4: Aggregate completions, G-mean and mean running times (in seconds) for LMD and
LMR, |V | = 25, on randomly generated instances.

Figure 3 allows to more precisely analyze the running times, showing the
influence of the density of the graphs. We observe that there is a spike for
each instance G. This spike corresponds to k ∈ {ta(G), ta(G) − 1, ta(G) − 2},
depending on the model and the instance. When k ≥ ta(G), any optimal
partition is a k-tree-partition. Then, as the number of k-partitions increases
further with k, finding a k-partition becomes easier still.
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Figure 3: G-mean CPU times (in secs) for LMD and LMR, |V | ∈ {15, 20, 25} and graph
density ∈ {25, 50, 75}.

In Tables 5 and 6, we compare the best results obtained by the authors
of [15] to ours obtained by LMD and LMR. Tests were run on the Color02

instances. Columns Best of [15] of Table 5 present the best results obtained by
the authors of [15], whatever the formulation and improvement, columns Flow
form. no impr [15] present their results using a flow formulation (applying no
improvement), and columns Cut form. no impr [15] present their results with
a cut formulation (also with no improvement). We present their results with
no improvements to provide a fair comparison between raw formulations.

51 instances
Best of [15] Flow form. no impr [15] Cut form. no impr [15]

k=2 k=5 k=10 k=2 k=5 k=10 k=2 k=5 k=10
#opt 20 17 21 13 1 1 15 1 1
G-mean time 796.4 1298.6 698.4 1323.0 3251.0 3206.3 1039.4 3217.3 3207.0

Table 5: Aggregate completions and mean running times (in seconds) for models of [15], on
the Color02 instances.
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51 instances
LMD LMR

k=2 k=5 k=10 k=2 k=5 k=10
#opt 8 15 18 7 12 18
G-mean time 1818.3 1287.1 1044.6 1992.4 1305.2 957.7

Table 6: Aggregate completions and mean running times (in seconds) for models LMD and
LMR, on the Color02 instances.

We observe that, comparing the raw formulations, LMD and LMR solve
more instances than the flow or cut formulations of [15] when k 6= 2. We can also
notice that the efficiency of the formulations [15] decreases with increasing k,
whereas our formulations show an opposite behaviour. Using all improvements,
their results are better than ours but the difference is not that significant when
k 6= 2. Our models are less efficient for k = 2 due to the large search space.

6.3. Heuristics

In this section, we present the results obtained by heuristics. For randomly
genarated instances, see Tables 7, 8 and 9. On each instance, 100 × |V | tests
were run. The percentage of success represents the percentage of runs over all
runs for which an optimal solution is found. Running times correspond to the
total time needed to launch 100 × |V | tests for all 10 instances of the bench-
mark. We observe that, as for the ILPs, the tree-arboricity has an influence on
the results. Indeed, we can see that the percentage of success decreases until
the tree-arboricity is reached. After that threshold, the percentage of success
significantly increases. The ratio between the number of optimal solutions and
the number of feasible solutions is larger when the tree-arboricity is reached.
Hence, the probability for one run to find an optimal solution is bigger.

For the Color02 instances, see Table 10. For k = 2, the optimal solutions
found by LMR are also found by heuristics. For the other values of k, #opt
is the number of optimal solutions corresponding to a k-tree-partition. Again,
the tree-arboricity has an important impact on the results. The corresponding
values are in bold. When it is reached, the problem becomes easier to solve.

k
Percentage of success Running times

Density Average Density
Total

Average
25 50 75 over 4500 runs 25 50 75 per instance

2 55.13 31.32 51.47 45.97 0.78 1.39 2.08 4.25 0.14
3 79.91 76.50 17.48 57.97 0.55 0.64 1.39 2.58 0.08
4 89.05 98.79 72.20 86.68 0.45 0.45 0.69 1.60 0.05
5 93.21 99.89 99.69 97.59 0.40 0.41 0.44 1.25 0.04
6 95.49 99.99 99.99 98.49 0.38 0.39 0.40 1.16 0.04
7 97.17 100 100 99.05 0.35 0.36 0.39 1.10 0.04
8 98.34 100 100 99.45 0.35 0.37 0.37 1.10 0.04

Table 7: Percentage of success and running times (in seconds) for heuristics, |V | = 15, on
randomly generated instances, over 1500 runs on each instance.
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k
Percentage of success Running times

Density Average Density
Total

Average
25 50 75 over 6000 runs 25 50 75 per instance

2 19.35 33.25 43.31 31.97 2.23 4.71 6.89 13.83 0.46
3 84.68 8.97 29.84 41.17 1.07 2.45 5.02 8.54 0.28
4 95.24 92.26 2.86 63.45 0.80 0.99 3.18 4.96 0.16
5 98.32 99.53 65.14 87.67 0.69 0.74 1.39 2.82 0.09
6 99.16 99.97 99.04 99.39 0.64 0.67 0.78 2.09 0.07
7 99.61 99.98 100 99.86 0.58 0.62 0.67 1.88 0.06
8 99.73 99.99 100 99.91 0.57 0.62 0.63 1.82 0.06

Table 8: Percentage of success and running times (in seconds) for heuristics, |V | = 20, on
randomly generated instances, over 2000 runs on each instance.

k
Percentage of success Running times

Density Average Density
Total

Average
25 50 75 over 7500 runs 25 50 75 per instance

2 10.28 40.1 31.24 27.20 6.99 14.80 20.77 42.56 1.42
3 84.66 4.78 28.41 39.28 2.34 9.80 16.84 28.98 0.97
4 97.16 49.69 8.29 51.72 1.45 4.25 12.21 17.92 0.60
5 98.86 98.89 0.57 66.11 1.16 1.44 7.60 10.21 0.34
6 99.39 99.98 65.448 88.27 1.02 1.09 3.00 5.10 0.17
7 99.73 99.99 99.512 99.74 0.92 0.98 1.31 3.21 0.11
8 99.84 99.99 100 99.95 0.86 0.93 1.04 2.83 0.09

Table 9: Percentage of success and running times (in seconds) for heuristics, |V | = 25, on
randomly generated instances, over 2500 runs on each instance.

51 instances
Best of [15] Heuristics

k=2 k=5 k=10 k=2 k=5 k=10 k=15
# opt 20 17 21 7 22 37 43
G-mean time 796.4 1298.6 698.4 168.7 59.4 17.4 8.4

Table 10: Aggregate completions and mean running times (in seconds) for models of [15] and
heuristics, on the Color02 instances (heuristics: 1500 runs for each instance).

We observe that heuristics provide better results than the best ones of [15],
except for k = 2. The tree-arboricity property proves the optimality of the
solutions, the running times are very small and decrease with k increasing.

Finally, we ran some tests on the graph representing the electoral divisions
of the Republic of Ireland (3409 vertices and 9638 edges). Ten runs have been
launched, taking 7606 seconds. The best objective value obtained for the 40-
cutset is 5992. As the found solution is not a 40-tree partition, we cannot ensure
its optimality. However, a solution is found, which is impossible with any of
the exact methods studied in this paper.

7. Conclusion

In this paper, we proposed exact and heuristic approaches to solve the Max-
imum k-Cutset Problem. Concerning the exact models, LMR is more efficient
than LMD for instances with a small or medium number of vertices since sym-
metrical solutions are avoided. For higher numbers of vertices, LMD performs
better than LMR thanks to the smaller number of variables. The proposed
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heuristics provide good results: the running times are very small, and the solu-
tions are optimal (guaranteed by the tree-arboricity or confirmed by an exact
method ran using four threads with no time limit).

In future work, we aim to extend the study on weighted graphs. These
weights can be associated with edges or vertices, to represent distances between
cities or their demography, respectively.
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