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RESUME 
 
 
 
The Liénard equation is a subject that has occupied mathematicians for almost a 
century. In spite of this, we are still dealing with the same rare examples, including 
that of the Van der Pol equation. Mathematicians are lacking a wide collection of 
cases from which to test or draw some hypotheses. 
 
We present algorithms that make it very easy to botanize many new specimens. This 
should energize the subject. 
 
The usual approach used for the search for periodic solutions is that of analysis. In 
general it deals only with the existence of periodic solutions very close to the origin 
for functions containing a very small forced oscillation.  
 
We deal with functions without forced oscillation and identify and locate periodic 
solutions at even very long distances from the origin. 
 
The tools of analysis that are usually used require the mastery of elaborate 
techniques and it is not easy to make the link between the analytical results and the 
appearance of the trajectories. 
 
We use elementary mathematical tools and a geometric approach completely in 
symbiosis with the appearance of trajectories. 
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The numerical search methods for periodic solutions do not allow us to know whether 
we have explored sufficiently far from the origin or limit the time of calculation to the 
strict necessary. 
 
We give a method to determine very simply, for a very wide range of functions, the 
bounded space in which all the periodic solutions are located. 
 
The Grail underlying the study of the Liénard equation is that of the resolution of the 
16th Hilbert problem. 
 
We have not solved it however we show that the number of periodic solutions is at 

least 
 ( )
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MAIN RESULTS 
 
 
 

The main results obtained are: 
 

1) For ( ) = ∏ ( − ) there are at least  periodic solutions namely at 
least one periodic solution crossing − − 1 ; − and   ; + 1  for all 

1≤ ≤  and at leat one crossing −∞; − and  ; ∞  

 
 

2) For ( ) =

                       
−

| | | | |sin( )|        ∈ ⋃  ; + 1 

0                                                     = 0                               
| | | | |sin( )|           ∈ ⋃  ; + 1     

  where 

∈ ℤ  , ∈ ℝ∗ and ≥ 2 there are an infinity of periodic solutions 
including at least one that cuts − − 1 ; − et  ; + 1  for all ∈ ℤ∗    
 
We give other examples.  
 
 

3) For ( ) = sin( ) there are at least 10  periodic solutions with at least one 
that cuts − − 1 ; − et  ; + 1  for all1 < ≤ 10  In reality there is very 

probably an infinity of periodic solutions. 
 
We give other examples.  
 
 

4) When ( ) is a polynomial of odd degree then the potential periodic solutions 
are included in a limited space around the origin and we give two general 
methods to determine this space. 
 
By example for ( ) = −  when > 0 and > 0 the possible periodic 
solutions are located in the space  

− (2 + ) ; (2 + ) − (2 + ) ; (2 +

)  and do not cross –  ; or 

− ; − ; ;  

 
 

5) When ( ) is a polynomial of even degree the potential periodic solutions are 
crossing a limited interval of  and we give a general method to determine 
this space. 
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By example for ( ) =  the potential periodic solutions  

are crossing − 2 − ; 0  

 
6) The number of periodic solutions for ( ) is not equal to the number of 

periodic solutions for ( ) when ∈ ℝ/ 1  
 
 

7) We present a «Trap» a «Fishing zone» a «Fishing line» un «Fishing net» and 
un «Comb» which are polynomial algorithms which detect the presence of 
periodic solutions and where applicable give a precise location of them. 
These methods allow to botanize all kind of new configurations of periodic 
solutions included some non-symmetrical ( )  
 
 

8) The study of periodic solutions for polynomials factorizable on ℝ comes down 
to the study of periodic solutions for polynomials of form ( ) = ∏ ( −

) where ≠ 0 and ∈ −1; 1  for all1 ≤ ≤  
 
 

9) If ( ) is a polynomial of degree  then the probability of not having any 

periodic solutions is greater or equal to 
if ≥ 2 and even     

if ≥ 3 and odd

 

 
In particular if ( ) =  +  when ≠ 0  and ≠ 0  there is no periodic 
solution. 
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CHAPTER 1  
 
We establish a relation between functions that frame ( ) and the relative position of 
their respective trajectories when they are issued from the same point. 
 
We use the  symmetry of ( ) to determine the criteria for the existence of periodic 

solutions. 
 
In case ( ) is a polynomial we determine the existence of periodic solutions in 
function of its coefficients. 
 
We establish function equivalency classes when they are factorizable polynomials on 
ℝ 
 
 
CHAPTER 2 

 
We determine criteria for ( ) so that all periodic solutions cut a closed interval of  

(this is the case for polynomials of even degree) or are in a bounded space around 
the origin (this is the case for polynomials of odd degree). 
 
We give two algorithms for this purpose and apply them to the classical examples. 
 
We give an example of a function such that the number of periodic solutions for ( ) 
is different from that for ( ) 
 
 
CHAPTER 3  
 
When cutting  the trajectories issued from a finite set of points define a partition of 

 that we use to define a linear application. And the study of this application makes 
it easy to detect and locate periodic solutions. 
 
If for two functions that frame ( )  there is a periodic solution, we prove that there is 
a periodic solution for ( ) and that this periodic solution is located between the 
other two periodic solutions. 
 
We give an algorithm based on that and apply it on the classical examples. 
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CHAPTER 4  
 
We give an algorithm which consists in framing ( ) by two stair functions and 
applying the results of Chapter 3 to these three functions. 
 
We apply it to the classic examples discussed in Chapter 3. 
 
 
CHAPTER 5 
 
We give an algorithm that consists of framing ( ) with two « comb » functions. 
 
 
CHAPTER 6 
 
We determine criteria so that there is at least one periodic solution that goes through 

the intervals – − 1; −  and ; + 1  

  
 
CHAPTER 7 
 
We apply the results of Chapter 6 to ( ) = ∏ ( − ) and prove that there are 
at least  periodic solutions. 
 
To facilitate the reading we have included in the Appendix various results which are 
necessary for the demonstrations, but which are heavy and daunting without having 
particular difficulties or conceptual interests. 
 
 
CHAPTER 8 
 
We apply the results of Chapter 6 to 

( ) =

                       
−

| | | | | ( )|        ∈ ⋃  ; + 1 

0                                                     = 0                               
| | | | | ( )|           ∈ ⋃  ; + 1     

  and prove that there are 

an infinity of periodic solutions. 
 
 
CHAPTER 9 
 
We apply the results of Chapter 6 to ( ) = ( ) and numerically determine that 
there are at least 10  periodic solutions. 
  


