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Abstract

We present the first real size evidence of targeted energy transfer in a concrete

building, with an efficient action on low frequency noise reduction. It is

achieved by the means of a hybrid Electro-Acoustic Nonlinear Energy Sink

(EA-NES). The EA-NES action is based on targeted energy transfer. As

in previous works the EA-NES is made of two elements: a membrane with

a nonlinear dynamics, and an active system based on a loudspeaker which

controls the pressure applied to the rear face of the membrane. We study

here a proportional feedback control law driving the loudspeaker in current

mode, and compare it with the voltage mode command law. The experiment

is fully modeled. A singular perturbation method around a 1:1 resonance is

used to find the slow critical manifold of the system and its dependence on

the control loop gain for the two driving modes, in view of finding conditions

allowing Strongly Modulated Regime (SMR). A good quantitative agreement

is found between the model and the experiments. In the experimental study
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we observe a range in the excitation level corresponding to SMR where the

sound level in the room is limited. We study the influence of its parameters

on the thresholds of the working range of the EA-NES. We measure up to

8 dB of attenuation around 43 Hz.

Keywords: Nonlinear absorber, Targeted energy transfer, Periodic

excitation, Acoustic resonance, Noise reduction

1. Introduction

It is always a challenge to reduce low-frequency noise transmission through

an enclosure as for example in the case of acoustic enclosures for machine

noise attenuation. Recent works focus on passive, active and hybrid ac-

tive/passive devices. In [1, 2], the authors study passive acoustic resonators

used as noise absorbers. In [3, 4], electro-acoustic absorbers are proposed.

They are based on the use of an enclosed loudspeaker including an electric

load that shunts the loudspeaker electrical terminals. An electro-acoustic

absorber can either be passive or active in terms of external power, including

pressure or velocity feedback techniques. In [5, 6], loudspeakers have also

been used to design an active system which controls the normal impedance

of surfaces in a room. Two approaches have been developed. The first is

referred to as direct control: the acoustic pressure is measured close to the

diaphragm of the loudspeaker and used to produce the desired impedance. In

the second approach, passive and active means are combined: the rear face

of a porous layer is actively controlled so as to make the front face normal

impedance take a prescribed value. In [7], devices involving loudspeakers for

active/passive control of both absorption and transmission are investigated.
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This challenge is considered here through the relatively new concept of

Targeted Energy Transfer (TET). TET is based on a coupling between a pri-

mary system (which vibrations must be mitigated) and a nonlinear absorber.

The principle is to place the coupled system on one of its nonlinear modes in

order to produce quasi-irreversible transfers of the vibratory energy from the

primary system to the nonlinear absorber. This phenomenon is called en-

ergy pumping [8] and the nonlinear absorber is known as NES for Nonlinear

Energy Sink. A basic NES generally consists of a light mass, an essentially

nonlinear spring and a viscous linear damper. In the field of structural vibra-

tion, a wide variety of NES designs has been proposed, with different types of

stiffness (cubic , non-polynomial, non-smooth nonlinearities...) [9, 10, 11, 12].

In acoustics, two types of NES have been proposed, one named acoustic

NES based on an Helmholtz resonator with nonlinear behaviors [13], the

other named vibroacoustic NES based on the use of a simple thin clamped

structure involving geometric nonlinearity at large displacement. In [14, 15,

16], the thin clamped structure consists of a simple thin circular latex (visco-

elastic) membrane whereas in [17] a loudspeaker used as a suspended piston is

considered. It was demonstrated that a vibroacoustic NES can achieve very

efficient noise reduction at low frequency. In both cases, the thin clamped

structure has to be part of the frontier of the closed acoustic domain, one

face (named the front face) is exposed to the primary acoustic field (to be

controlled) whereas the other face (the rear face) radiates outside [16]. It

results in a pressure difference applied to the membrane, which is necessary

for TET. Neglecting the rear radiation impedance, the thin baffled structure

is mainly coupled to the primary acoustic field.
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In [16] a theoretical study was made on a system quite close to the one

presented here, but it was much simpler (the NES was made of a bare mem-

brane on the room’s wall), the NES dynamics was simplified (purely passive,

and no linear part in the membrane dynamics) and the numerical results

were found for a very low damping (quality factor Q = 36000) that cannot

be found in usual buildings. Moreover, like similar studies the rear face of the

membrane needed to be exposed to a null acoustic field. In practice it means

that it could not be enclosed and thus caused unwanted outward radiations

preventing applications for acoustic enclosures.

In [18], a modified vibroacoustic NES was used on a resonant tube in

order to provide noise reduction. The proposed NES named hybrid Electro-

Acoustic nonlinear membrane absorber (EA-NES) is composed of a thin cir-

cular visco-elastic membrane with one face coupled to the acoustic field to be

reduced and the other face enclosed. The enclosure includes a loudspeaker

for the control of the acoustic pressure felt by the rear face of the membrane

through proportional feedback control. It was shown experimentally that

the EA-NES is able to perform resonance capture with the acoustic field,

resulting in noise reduction by targeted energy transfer. Furthermore it was

shown that the EA-NES provides a better noise attenuation in this setup

than the classic vibroacousctic NES[15, 16], but in [18] there was no model

of the dynamics of the experiment.

The objective of this paper is to investigate analytically and experimen-

tally the performance of the EA-NES considering voltage and current driving

mode of the control loudspeaker in realistic conditions. Unlike previous the-

oretical or experimental studies, the primary system where the acoustic field
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is meant to be mitigated is an acoustic cavity mostly made of concrete walls.

Indeed the enclosure of the EA-NES makes the membrane interact with the

primary acoustic field without the need to be placed across the outer bound-

ary and thus solves the problem of outward radiation. A simple three De-

grees Of Freedom (DOF) model is developed coupling an electro-mechanical-

acoustic model for the EA-NES with a model cavity representative of one

of the acoustic modes. We investigated the targeted energy transfer occur-

ring between the acoustic medium and the EA-NES during sinusoidal forced

regimes. The predictions of this model is compared with the experimental

data.

The paper is organized as follows. In Section 2, we start with a short

description of the system under study and the experimental setup, then we

describe each element of the acoustic system, considering first each sub-

structure separately, and then modeling the coupled system. In Section 3,

we study the forced responses to harmonic excitation. The responses are

estimated with the complexification averaging method, and compared with

results of direct numerical integration of the equations in time domain. In

Section 4, we begin with a description of the experimental setup. Then, we

check the stability analysis of the feedback loop and perform a frequency

analysis under broadband excitation. In the last part we analyze the forced

responses and their agreement with the model in the nonlinear regime, and

we discuss the efficiency of the EA-NES.
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2. System under study

The system under study is shown in Fig. 1. It is composed of an acoustic

cavity that includes the EA-NES at the position Ma and a source loudspeaker

at the position MS. We are looking at the acoustic pressure at positions M1,

M2 and M3.

O x

yz

LyLx

Lz

(1)

(2)MS

Ma
M1

(3)

M2

M3

(3)

(3)

Figure 1: Schematic representation of the acoustic cavity: (1) EA-NES, (2) loudspeaker

source, (3) microphones.

2.1. The hybrid electro-acoustic nonlinear membrane absorber (EA-NES)

2.1.1. Description of the setup

The same EA-NES as introduced in [18] is considered in this study. It

is composed (see Fig. 2) of a plywood box with a circular (nonlinear) vis-

coelastic (latex) membrane clamped on one face. The clamped membrane

with its supporting device is shown in Fig. 2(a). The device includes a slid-

ing system used to apply a constant and permanent in-plan pre-stress to the

membrane. An enclosed electrodynamic loudspeaker (BEYMA 8P300Fe/N

6



VeVr

xm
xLS pe

pr

K
Power

Amplifier

p

Conditioning

filter

(1)
(2)

(3)

(4)

Figure 2: Picture and schematic representation of the hybrid electro-acoustic nonlinear

absorber: (1) clamped membrane, (2) control loudspeaker, (3) control microphone, (4) am-

plifier with conditioning filter loop gain.

loudspeaker, 8 Inch) named ”control loudspeaker” is mounted inside the box

(see Fig. 2(b)). The coupling between the membrane and the control loud-

speaker is ensured acoustically by the air in a coupling box of a volume Ve.

The volume of the rear enclosure of the control loudspeaker is Vr. An active

controller is used to perform a pressure reduction at the rear face of the mem-

brane using the control loudspeaker in voltage or current driving mode. The

controller is an analog feedback loop that reduces the pressure measured in

the enclosure Ve by using a proportional gain K. The gain K is calibrated by

feeding the power amplifier with a reference sinus of 0.1 Vrms and measuring

its output level. The maximum value for K is limited by the stability of the

loop and depends on the electrical driving mode. The maximum value of K

before instability can be predicted thanks to the measurement of the open

loop transfer, as described in [18].
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The EA-NES is based on the conjugate functioning of three elements:

(i) the clamped membrane that interacts with the acoustic field in order

to provide noise attenuation in its non-linear range; (ii) the hood by which

the EA-NES can work inside a surrounding acoustic field unlike previous

developed NES; (iii) the feedback loop that reduces the pressure in the hood

and allows to use a small hood volume and also to tune the stiffness and

damping linear behavior of the EA-NES.

2.1.2. Equations of Motion

A simplified model is developed to address the properties of the device.

The model is obtained by coupling the behaviors of the membrane and the

control loudspeaker.

As explained in [15], a simplified model of the pre-stressed membrane

motion can be formulated as a one DOF nonlinear oscillator

mmẍm(t) + c1mẋm(t) + k1mxm(t) + gm(xm(t), ẋm(t)) =
Sm

2
(pe(t)− p(t)) (1)

where xm denotes the transverse displacement of the center of the mem-

brane, pe(t) denotes the acoustic pressure in the coupling box Ve and p(t) is

the acoustic pressure at the outer (front) surface of the membrane; p(t) is

considered here as the forcing term. The linear parameters are given by [15]

mm =
ρmhmSm +ma

3
, k1m = k0m(

f1m

f0m

)2 and c1m = ηk0m (2)

with

k0m =
2πEh3

m

3(1− ν2)R2
m

and f0m =
1

2π

√
1.0154π4Eh2

m

12(1− ν2)ρmR4
m

. (3)
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The nonlinear term is given by [15]

gm(xm, ẋm) = k3m(x3
m + 2ηx2

mẋm) with k3m =
1

2

8πEmhm

3(1− ν2)R2
m

(4)

where ρm is the mass volume, ν the Poisson’s coefficient and E the Young’s

modulus of the membrane (made here in latex), hm is its thickness, Rm its

radius and Sm its area. A mass term ma has been added to include in the

model the mass of the air column introduced by the sliding system. The

coefficients k1m and k3m stand for the linear and nonlinear stiffness coeffi-

cients, respectively. As suggested and justified in [15], the coefficient k3m

was divided by 2 [19]. f0m represents the resonance frequency of the mem-

brane without pre-stress. The last two parameters f1m (≥ f0m) and η (> 0)

have to be adjusted. The first one is related to the pre-tension applied to

the membrane. When no pre-tension is considered, f1m = f0m. The second

parameter η characterizes the damping.

Considering now the control loudspeaker, assuming a linear behavior, the

equations of motion follow from Newton’s second and Kirchhoff’s laws as

mmsẍLS(t) + cmsẋLS(t) + kmsxLS(t) = BliLS(t) + SLS (pr(t)− pe(t)) , (5)

uLS(t) = ReiLS(t) +BlẋLS(t) (6)

where xLS(t) is the diaphragm displacement, uLS(t) the voltage applied at

the electrical terminals of the control loudspeaker, iLS(t) the electrical current

flowing through the voice coil and pr(t) the acoustic pressure in the rear

enclosure. The coefficients mms, cms and k−1
ms represent the moving mass,

the mechanical damping and the mechanical compliance accounting for the

elastic surround suspension and the spider. Bl is the force factor of the

transducer, SLS is the effective radiation area of the loudspeaker and Re is
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DC resistance (the inductance has been neglected) of the voice coil. All

the parameters used in this model are commonly denoted as a part of the

Thiele-Small parameters of the loudspeaker.

Equations (1) and (5) are coupled by writing that the acoustic pressures

pe(t) and pr(t) are related to the relative variation of the volumes Ve and

Vr due to the motion of the membrane and the diaphragm of the control

loudspeaker as

pe(t) =
ρac

2
0

Ve

(SLSxLS(t)− Sm

2
xm(t)) and pr(t) = −ρac

2
0

Vr

SLSxLS(t) (7)

where ρa is the density of the air and c0 is the sound wave velocity in the air.

Finally the feedback loop using the electric terminals of loudspeaker as

input is defined as

uLS(t) = −KSmicpe(t) (8)

when the loudspeaker is driven by voltage-output power amplifier and

iLS(t) = −KSmicpe(t) (9)

when the loudspeaker is driven by current-output power amplifier. In

Eqs. (8) and (9), Smic denotes the microphone sensibility and K the con-

trol gain of the feedback loop. Note that a minus sign has been included

in the model to ensure that a positive gain K leads to a reduction of the

pressure pe(t) in the volume Ve as observed for the step up.

Combining Eqs. (1) to (9) and eliminating the variables pe(t), uLS(t),iLS(t)

and pr(t), results in a 2-DOF nonlinear system of the form

MẌ(t) + CẊ(t) + KX(t) + Bgm(xm(t), ẋm(t)) = −B
Sm

2
p(t) (10)
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where X(t) = (xm(t), xLS(t))T , B = (1, 0)T ,

M =

mm 0

0 mms

 , C =

c1m 0

0 cms +
αms(Bl)

2

aa

 and (11)

K =

 k1m +
ρac

2
0

Ve

S2
m

4
−ρac

2
0

Ve

Sm

2
SLS

−ρac
2
0

Ve

Sm

2
(
Bl

aa
KSmic + SLS) kms +

ρac
2
0

Ve

SLS(
Bl

aa
KSmic + SLS

Ve + Vr

Vr

)


(12)

with aa = 1 − αms + αmsRe. The parameter αms has been introduced to

characterize the output power amplifier mode of the loudspeaker. If αms = 1,

the loudspeaker is assumed driven by a voltage output power amplifier (Eq.

(8)) whereas if αms = 0, the loudspeaker is driven by a current output power

amplifier (Eq. (9)).

Independently of the control loop strategy, the mass M and the damping

C matrices are always diagonal with positive terms whereas the stiffness

matrix K is not symmetric except if K = 0 (passive system). When the

loudspeaker is driven by a current output power amplifier only the stiffness

matrix K is affected and the damping effect is only due to the mechanical

system whereas when the loudspeaker is driven by a voltage output power

amplifier the stiffness matrix K and the damping matrix C are affected by

the electrical resistance. In this case, the corrective term in the damping

matrix C is equal to
(Bl)2

Re

and, in practice, it dominates over the mechanical

damping constant cms. The corrective terms in the stiffness matrix K due

to the control loop are proportional to
Bl

aa
KSmic reducing to

Bl

Re

KSmic when

αms = 1 and to BlKSmic when αms = 0 and showing that choosing the

gain
K

Re

when the loudspeaker is driven by a current output power amplifier
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is equivalent in terms of stiffness matrix to choosing the gain K when the

loudspeaker is driven by a voltage output power amplifier.

2.2. Primary system: acoustic room

The primary system is a rectangular shaped room with dimension Lx,

Ly and Lz (see Fig. 1). We assume that all the walls of the room are rigid.

The equation of motion as a one DOF system is obtained by performing a

Rayleigh-Ritz reduction taking account of one mode on the following wave

equation (see for example [16])

1

c2
0

∂2

∂t2
p(M, t)−∆p(M, t) = −ρa(δMa(M)q̇m(t) + δMS

(M)q̇S(t)) on Ω,(13)

∂np(M, t) = 0 on ∂Ω (14)

where Ω is the internal volume of the room and ∂Ω is the surface of room.

The first term of the right hand side of Eq. (13) characterizes the coupling

with the EA-NES considering the volumetric flow rate qm(t) resulting from

the vibration of the membrane as

qm(t) = −Sm

2
ẋm(t). (15)

The minus sign results from the vector direction used to represent the motion

of the membrane (see Fig. 2). The last term in Eq. (13) characterizes the

acoustic source inside the room as a point flow source with the volumetric

flow qS(t).

Considering the mode marked by the integers (l,m, n) defined by the

frequency ωlmn and the mode shape Φlmn(x, y, z) as

ωlmn = c0π

√
l2

L2
x

+
m2

L2
y

+
n2

L2
z

and Φlmn(x, y, z) = cos
lπx

Lx
cos

mπy

Ly
cos

nπz

Lz
,
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and approximating the acoustic pressure as

p(M, t) = Φlmn(M)p(t), (16)

Eqs. (13) and (14) reduce to

mlmnp̈(t) + clmnṗ(t) + klmnp(t) = ρ2
ac

2
0(Φlmn(Ma)

Sm

2
ẍm(t)− Φlmn(MS)q̇S(t))

(17)

where mlmn = mc((2− δ0(l)(2− δ0(m))(2− δ0(n))))−1 and klmn = mlmnω
2
lmn

with mc = ρaLxLyLz (the mass of the air inside the cavity). The acoustic

damping gives a viscous term clmn =
√
mlmnklmnQ

−1
lmn with Qlmn the quality

factor associated to the corresponding mode.

Finally for the sake of simplicity, we do not model the loudspeaker source

and its power supply. We assume that the volumetric flow source is of the

form

qS(t) =
√

2AS cos(ωSt) (18)

where ωS(= 2πfS) denotes the excitation frequency and AS the RMS value

of the excitation amplitude.

2.3. The final dimensional and non-dimensional 3-DOF systems

The final dimensional model is obtained by grouping Eq. (17) with Eq. (10).

Introducing the non dimensional quantity by normalizing the acoustic pres-

sure p(t) with ρac
2
0, normalizing the time with the resonance frequency ωlmn

of the cavity and resealing the final dimensional system with the parameter

ε as

p̃(t) = p(t)/(ρac
2
0), t̃ = ωlmnt and ε =

mm

mlmn

, (19)

13



we obtain the following non-dimensional 3-DOF system (after omission of

tilde)

p̈+ ελpṗ+ p− εµpẍm = −εβ(1 + εσ̄) sin((1 + εσ̄)t), (20)

εẍm + ελmẋm + ελ2mx
2
mẋm + εk̄11xm + εk̄12xLS + εk̄3mx

3
m + εµmp = 0,(21)

εγLSẍLS + ελLSẋLS + εk̄21xm + εk̄22xLS = 0 (22)

where now the dot denotes the differentiation with respect to the new time

variable,

λp = clmn

mmωlmn
, µp = Φlmn(Ma)ρaSm

2mm
, k̄11 = k11

mmω2
lmn

, k̄12 = k12
mmω2

lmn
, (23)

k̄21 = k21
mmω2

lmn
, k̄22 = k22

mmω2
lmn

, λm = c11
mmωlmn

, λ2m = 2ηk3m
mmωlmn

, (24)

k̄3m = k3m
mmω2

lmn
, µm =

Φlmn(Ma)ρac20Sm
2mmω2

lmn
, γLS =

mLS
mm

, λLS = c22
mmωlmn

, (25)

β =
Φlmn(MS)ρa

√
2AS

mmωlmn
and σ̄ =

ωS−ωlmn

ωlmn

mlmn

mm
(26)

with kij (respectively cij) denotes the ij-component of the matrix K (respec-

tively C).

2.4. About the numerical values for the parameters of the models

The biggest size, Lx, of the room was Lx = 3.928 m given (with ρa =

1.17 kg m−1 and c0 = 344.5 m s−1) for the (1, 0, 0)-mode the frequency

f100 ' 43.8 Hz in good agreement with the measured one. The quality factor

was fixed as Q100 = 133 the measured one.

The volumes of the two main closed boxes of the EA-NES were Ve =

0.018225 m3 and Vr = 0.0248 m3. The membrane parameters were: radius

Rm = 0.05 m, thickness hm = 0.00024 m and material parameters defined by

ρm = 980. kg.m−3, ν = 0.49, E = 1500000. Pa. The free parameters of the
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membrane model, ma, f1m and η, were adjusted as ma = 0.00011 kg (about

15% of the mass membrane), f1m = 2.5 Hz (corresponding to moderate pre-

tension) and η = 0.001 (light damping). These numerical values were chosen

in accordance with numerical/experimental studies proposed in [15, 20, 16].

The Thiele-Small parameters of the control loudspeaker were measured

given the following parameter values: mms = 19.4 10−3 kg, cms = 1.7 Nsm−1,

kms = 2834.9 Nm−1, SLS = 0.022 m2, Re = 6.6 Ω, Bl = 9.21 NA−1. The

resonance frequency of the driver part is 60.8 Hz and the effective diaphragm

area is six time larger than the effective latex membrane.

A microphone G.R.A.S. 40BH with a sensitivity Smic = 0.46 mVPa−1 was

used as the control microphone.

The source loudspeaker was positioned at MS with coordinates xMS
=

0.3 m, yMS
= 2.75 m and zMS

= 0.5 m. The EA-NES was positioned at

Ma with coordinates xMa = 3.65 m, yMa = 0.35 m and zMa = 0.35 m. The

microphone M1 (respectively M2 and M3) was positioned at (3.65, 2.8, 0.2)

(respectively (0.5, 0.2, 0.2) and (3.65, 0.2, 0.2)). To maximize the modal

sensitivity they are located in the corners and near the floor, reducing the

perturbation due to the ceiling pyramidal shape.

To characterize completely the behavior of the EA-NES, we have to choose

the driving mode of the control loudspeaker (current (αms = 0) or voltage

(αms = 1)) and the gain value K.

3. Asymptotic analysis

In this section we assume that ε << 1 i.e the mass of the membrane

is small with respect to the mass of the primary system (ε = 5 · 10−5 with
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parameter values as described in Section 2.4). We assume also that the

parameters λp, µp, k̄11, k̄12, k̄21, k̄22, λm, λ2m, k̄3m, µm, γLS, λLS, β, and σ̄ are

of order 0(1).

The objective of the asymptotic analysis is to characterize analytically

the forced responses of Eqs. (20) to (22) near the resonance frequency of the

primary system.

We follow the same methodology as proposed in [21]. The method com-

bines the complexification averaging procedure (as described in [22]) and an

asymptotic analysis which is here based on the framework of the geometric

singular perturbation theory [23, 24].

The complexification consists in introducing the change of variables

ψ1 = ṗ+ jp, ψ2 = ẋm + jxm and ψ3 = ẋLS + jxLS (27)

where j2 = −1 and writing the complex variables ψi as

ψi = φie
jt for i = 1, 2, 3 (28)

where the φi are the complex (assumed) slow modulated amplitude of the

fast component et.

Substituting Eqs. (27) and (28) into Eqs. (20) to (22) and averaging over

one period of frequency 1 yields to a system of equations describing the

behavior of the slow complex amplitudes φi as

φ̇1 = εf1(φ1, φ2, φ3), (29)

φ̇2 = f2(φ1, φ2, φ3, ε), (30)

φ̇3 = f3(φ1, φ2, φ3, ε) (31)
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where

f1(φ1, φ2, φ3) =
j

8
(4β + (4jλp − 8σ̄ + 4µmµp)φ1 + 4µp(jλm + k̄11)φ2

+4k̄12µpφ3 + (3k̄3mµp + jλ2mµp)|φ2|2φ2), (32)

f2(φ1, φ2, φ3, ε) =
j

8
(4µmφ1 + (4k̄11 + 4jλm − 8σ̄ε− 4)φ2 + 4k̄12φ3

+(3k̄3m + jλ2m)|φ2|2φ2), (33)

f3(φ1, φ2, φ3, ε) =
j

2γLS

(
k̄21φ2 + (k̄22 − 2σ̄εγLS − γLS + jλLS)φ3

)
. (34)

Eqs. (29) to (31) have a classic form of singular perturbation equations

(slow-fast system), which is more evident by switching from the fast time

scale t to the slow time scale τ = εt as

φ′1 = f1(φ1, φ2, φ3), (35)

εφ′2 = f2(φ1, φ2, φ3, ε), (36)

εφ′3 = f3(φ1, φ2, φ3, ε) (37)

where (.)′ = d/dτ and φ(τ) = φ(t = τ/ε), since now the small parameter

affects the first derivative of some slow-fast state variables (φ2 and φ3 here).

Stating ε = 0, the following subsystems are derived from Eqs. (29) to (31)

and Eqs. (35) to (37) respectively

φ̇1 = 0, (38)

φ̇2 = f2(φ1, φ2, φ3, 0), (39)

φ̇3 = f3(φ1, φ2, φ3, 0) (40)

17



which is the fast subsystem, and

φ′1 = f1(φ1, φ2, φ3), (41)

0 = f2(φ1, φ2, φ3, 0), (42)

0 = f3(φ1, φ2, φ3, 0) (43)

which is the slow subsystem.

In the following sections the geometric singular perturbation theory is

used to describe the dynamics of the full system Eqs. (29) to (31) (and

Eqs. (35) to (37)) for 0 < ε << 1 from the analysis of the fast, Eqs. (38) to

(40), and slow, Eqs. (41) to (43), subsystems.

3.1. The Slow Invariant Manifold

At slow time, the motions of the slow subsystem, Eqs. (41) to (43), take

place in the so-called Slow Invariant Manifold (SIM) defined by the algebraic

equations (42) and (43) as

CM :=

{
(φ1, φ2, φ3) ∈ C3

∣∣ f2 (φ1, φ2, φ3, 0) = 0, f3 (φ1, φ2, φ3, 0) = 0

}
.

(44)

The points of the SIM are also fixed points for the fast subsystem (fast time)

(Eqs. (38) to (40)).

Substituting Eq. (43) into Eq. (42), the SIM can take the following form

φ1 = φ2F (|φ2|), (45)

φ3 =
k̄21

γLS − k̄22 − jλLS

φ2 (46)

where the complex function F of a real variable is defined as F (x) = FR(x)+
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jFI(x) with

FR(x) =
k̄12k̄21(k̄22 − γLS)

µm

((
k̄22 − γLS

)
2 + λ2

LS

) +
1− k̄11

µm

− 3

4

k̄3m

µm

x2, (47)

FI(x) = − k̄12k̄21λLS

µm(
(
k̄22 − γLS

)
2 + λ2

LS)
− λm

µm

+
1

4

λ2m

µm

x2. (48)

It is convenient to characterize the CM in the real domain. To achieve

this, polar coordinates are introduced as

φi = Nie
jθi for i = 1, 2, 3 (49)

and we compute successively the module and the argument of Eqs. (45) and

(46) that lies to

N2
1 = N2

2 (FR(N2)2 + FI(N2)2), (50)

N3 = | k̄21

γLS − k̄22 − jλLS

|N2, (51)

θ1 = θ2 + arctan(
FI(N2)

FR(N2)
, (52)

θ3 = θ2 + arg(
k̄21

γLS − k̄22 − jλLS

). (53)

The SIM is characterized by as a one-dimensional parametric curve (N2, N1, N3)

evolving in R+3
. A typical critical manifold is plotted in Fig. 3(a)(red curve).

Due to the linear relation (51), its form is mainly given by its projection on

the (N2, N1)-plane (see Fig. 3(a)(blue continuous curve)) which corresponds

to Eq. (50). The expression of the SIM is similar to that obtained in [21]

to study harmonic forced linear system. As in [21], the SIM do not depend

on the excitation level, the damping of the primary system and the coupling

term µp.
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(a) (b)

Figure 3: Typical slow invariant manifold: (a) in (N2, N1, N3)-space (red curve) and (b) in

(N2, N1)-plane (blue curve) with fold points (maximum-black, minimum-red) and unstable

zone (dotted curve).

The form of the SIM is characterized by the local extrema of the function

H(x) = x2(FR(x)2 + FI(x)2) in the (N2, N1)-plane (see Eq. (50)). Local

extrema are equivalently defined as the positive root of the derivative of H

as a function of x2 resulting in a polynomial of degree 2 admitting zero, one

or two positive roots.

The stability of each point of the SIM as a fixed point of the fast subsystem

(38-40) (fast time) can be determined. It can be shown that the condition of

stability is equivalent to

H ′(N2) > 0 (54)

where H ′(x) = dH(x)/dx. Hence when two local extrema exist for H, de-

noted N f1
2 and N f2

2 , these local extrema define two points (N f1
2 ,
√
H(N f1

2 )

and (N f2
2 ,
√
H(N f2

2 ) called fold points where stability change occurs. Fig. 3

corresponds to a case where two fold points exist, see Fig. 3(b), and the sta-

bility zones are also reported. Such a SIM structure may give rise to Strongly
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Modulated Responses (SMR)[21].

Formulating conditions on the model parameters for getting two positive

roots would result in large expressions which would be difficult to manipulate.

Some numerical parametric study will only be discussed in Section 3.2.

A characterization of the fixed points and folded singularities of the slow-

flow from the slow subsystem (41)-(43) is given Appendix Appendix A in-

cluding conditions on the excitation level β for allowing SMR.

3.2. Parametric study of the current and voltage gain K

The SIMs are plotted Fig. 4(a) from Eq. (50) in the (N2, N1)-plane using

the numerical values discussed Section 2.4 and for different values of gain K

for current control. The associated plot, Fig. 4(b), represents the critical ex-

citation level βcr versus K from Eq. (A.22) for the same conditions. For small

values of K, the SIM does not show fold points whereas for K > Krel ≈ 2.01

(see Fig. 4(b)), two fold points exist (see Fig. 4(a)). Hence Krel defines the

threshold gain from which SMRs can take place if β > βrel
cr (i.e if the excita-

tion level is sufficient high). The critical excitation level βrel
cr characterizes a

threshold in terms of excitation level. Equivalently a threshold can be defined

in terms of N1-amplitude (primary system) by
√
H(N f1

2 ) (the ordinates of

the fold points, see Fig. 4(a)(black markers)). Both thresholds increase with

the gain K.

Figure 5 represents the same quantities but obtained for different values of

gain K for voltage control. Here also for small values of K, the SIM does not

show fold points whereas for K > Krel ≈ 27.18Re (see Fig. 5(b)), two fold

points exist (see Fig. 5(a)). Contrary to the current control, the excitation

level threshold slowly decreases and the N1-amplitude level threshold slowly
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increases when the gain K increases. Finally the thresholds associated to

the voltage control are greater than the thresholds associated to the current

control.

They give an order of magnitude for the excitation level needed in the

unstable region, in view of setting the experimental conditions.

(a) (b)

Figure 4: System with EA-NES driven by current: (a) Slow invariant manifold with fold

points (maximum-black, minimum-red) for K = 0, Krel, 4, 6, 10, 14, 18, 22 and 28

from the red curve (K = 0) to the blue curve (K = 30). (b) Critical values βcr versus

K: the dotted red curve corresponds to the red fold points whereas the continuous black

curve corresponds to the black fold points (Krel ' 2.01).

Figure 6 gives an example of the action of the EA-NES. We focus on

EA-NES driven by current with K = 7.5 (> Krel) and β = 0.032 (> βcr).

The acoustic pressure amplitude at point M3 obtained with the adimensional

model Eqs. (20) to (22) and the asymptotic analysis Eq. (A.13) are compared

in Fig. 6 (a). Also plotted are the response of the primary system showing

the efficiency of the EA-NES. It is slightly shifted to lower frequencies due

to the absence of the linear part of the NES in the model of the room. The
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(a) (b)

Figure 5: System with EA-NES driven by voltage: (a) Slow invariant manifold with fold

points (maximum-black, minimum-red) with K/Re = 0, 10, Krel/Re, 28, 30, 34, 38, and

40 from the red curve (K/Re = 0) to the violet curve (K/Re = 40). (b) Slow invariant

values βcr versus K/Re: the dotted red curve corresponds to the red fold points whereas

the continuous black curve corresponds to the black fold points (Krel/Re ' 27.18).

differential models were solved using c©Mathematica ordinary differential

equations solver NDSolve (with the choice Automatic for the option Method)

with the trivial equilibrium point as initial conditions. In the area of the

stable periodic solutions, the asymptotic approximation matches very well

with the integrated solution. In the unstable area, the integrated solution has

a low amplitude compared to the response without EA-NES. This reduction

is what the EA-NES is aimed at.

When the periodic solution is unstable, the system can exhibit SMR as

observed Fig. 6 (b) for fS = 44.2 Hz. The time response obtained from

Eq. (20-22) is plotted in the (N2, N1)-plane. It oscillates around the unstable

range.

These observations show that the EA-NES we study should be able to
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reduce significantly the sound level in the room. These observations give

also an indication about the source level and frequency around which the

experiments should be done.

(a) (b)

Figure 6: System with EA-NES driven by current with K = 7.5 and As = 0.136 (β =

0.032): (a) Forced response (acoustic pressure) at point M3: primary system without

NES (black dots), Eq. (20-22) (red squares), and stable (blue diamonds) and unstable

(green triangles) fixed points obtained from Eq. (A.13). (b) Time responses (red curves)

obtained from Eq. (20-22) in the (N2, N1)-plan for fS = 44.2 Hz with the fold points

(maximum-black and minimum-red markers) and the unstable fixed point (green marker).
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4. Experimental study

4.1. Setup and primary analysis

The experiments were conducted in a concrete parallelepipedic room, ex-

cept for the ceiling which has the shape of a shortened pyramid covered by a

thick wooden floor as it can be seen in Fig. 7(a). A complete description can

be founding in [25]. The size of the room is Lx = 3.928 m and Ly = 3.05 m

with height from Lz = 2.4 m to 2.7 m. The source loudspeaker (an Electro

Voice ELX118), the EA-NES and the microphones (a G.R.A.S 40BH at M1,

a G.R.A.S 40PR at M2 and a G.R.A.S AF at M3) were positioned as shown

Fig. 1 and detailed in Section 2.4.

During a measurement, a target voltage signal e(t) from a generator

(not shown in Fig. 1) and a power amplifier TIRA, BAA120 (not shown in

Fig. 1) provide an input current signal to the source loudspeaker operating

in current-feedback control mode. The responses of the system are recorded

simultaneously using a multi-channel analyzer/recorder OROS, OR38 (not

shown in Fig. 1): the acoustic pressures at M1, M2 and M3, the acous-

tic pressure pe(t) inside the EA-NES and the displacement at the center of

the membrane of the EA-NES measured with an optical sensor Keyence LK-

G152 (not shown in Fig. 1). Also recorded are the control loudspeaker current

iLS(t) and voltage uLS(t) responses and the source loudspeaker current is(t)

and voltage es(t) responses. The sampling frequency is fs = 8192 Hz.

The Frequency Response Function (FRF) denoted p(M2)/is measured be-

tween the source loudspeaker current is(t) and the acoustic pressure, p(M2, t),

at M2 with the blocked EA-NES inside the room is plotted Figure 7(b). The

FRF was measured using a white noise in the frequency range [30, 80] Hz as
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target signal e(t). Blocked EA-NES means that the front face membrane is

covered by a rigid plate and does not interact with the acoustic pressure. This

configuration defines the primary system as introduced Section 2. The first

resonance frequency appears at f ≈ 43.8 Hz corresponding to the (1, 0, 0)-

mode and it is associated to a quality factor near to Q100 ≈ 133. Note that

these numerical values have been used in the previous theoretical analysis.

(a)

(b)
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Figure 7: (a) Picture of the room with the EA-NES. (b) Frequency response function

p(M2)/is measured with the blocked EA-NES inside the room.

4.1.1. The EA-NES

The tension of the membrane of the EA-NES must be tuned so that the

resulting resonance frequency may be under the frequency of the targeted

mode (43.8 Hz). The resonance at low level of the EA-NES is identified by

using a short Kundt tube following the methodology described in [26]. This
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measurement is made for some values of K for current and voltage feedback

controls. Successive modifications of the pre-stress applied to the membrane

were performed up to obtain the results displayed Table 1. For both current

and voltage feedback controls, the resonance frequency is for K = 0 near

the resonance frequency of the (1, 0, 0)-mode and decreases when the gain K

increases.

Current K 0 2.5 5. 7.5 15.

f (Hz) 43.7 41 39.2 35.7 33.7

Voltage K 0 100. 200. 400. 550.

f (Hz) 43.9 31.1 27.7 24.6 24.

Table 1: Measured resonance frequency of the EA-NES versus gain K for current and

voltage feedback controls

.

4.2. Nonlinear analysis

We measure the response of the cavity around its (1, 0, 0)-mode under

sinusoidal forcing defined from a target signal

e(t) = E sin(2πfe + φe) (55)

which provides an input current signal to the source loudspeaker. Several

measurements were performed increasing the forcing amplitude E from 0.01

to 0.25 and varying the forcing frequency from 42.5 Hz to 45 Hz, with a step

of 0.1 Hz. The phase φe is introduced arbitrarily by the signal generator.
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Figure 8: System with the EA-NES driven by current with K = 7.5: RMS values of the

steady state regime of the acoustic pressure at the point M3 as a surface level according

to frequency and excitation amplitude: (a) measured values, (b) simulated values.

4.2.1. EA-NES driven in current with K = 7.5

We first consider the EA-NES with current feedback control and the gain

value K = 7.5. TET has been observed with this configuration in the nu-

merical simulation. The RMS values of the acoustic pressure measured at

location M3 are plotted in Fig. 8(a) as a surface level depending on the ex-

citation frequency and the RMS values of the source loudspeaker current.

The related numerical simulation are plotted Fig. 8(b). We can observe that

the two surfaces are very similar. As expected a resonance peak around

f ≈ 44 Hz is observed on the acoustic pressure response at low excitation

level. The flat surface at low excitation level becomes, due to the nonlin-

ear behavior of the EA-NES, substantially disturbed by an increase in the

excitation level accompanied by a reduction of the response level and the
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Figure 9: System with the EA-NES driven by current with K = 7.5: Ridge line of the

RMS values of pressure measured at point M1 (magenta triangle markers), at point M2

(green triangle markers) and at point M3 (red diamond markers), and simulated at point

M3 (blue square markers). The blue circle markers correspond to the ridge line at point

M3 with the blocked EA-NES.

occurrence, at high excitation level, of a resonance peak around f ≈ 43.6 Hz,

smaller than the resonance frequency observed at low excitation level. These

behaviors were already reported in NES analysis [19, 18] and attributed to

TET from the primary system to the NES. In order to quantify the trig-

gering threshold and the width of the TET, ridge lines are extracted from

each 3D plot of the acoustic pressure. The ridge line is defined as the max-

ima of the RMS values of the acoustic pressure for the considered frequency

range for a given excitation amplitude. The measured ridge line at position

M3 (obtained from Fig. 8(a)) is displayed with the related simulations (ob-

tained from Fig. 8(b)) in Fig. 9. Also plotted are the measured ridge line

at positions M1 and M2. Furthermore we also present as a reference the

29



ridge line measured at position M3 with the blocked EA-NES. In the blocked

EA-NES configuration, the EA-NES is isolated from the acoustic field and

cannot perform TET. It allows to measure the attenuation provided by the

EA-NES as a function of the level of excitation. One can observe a limitation

of the pressure (around 11 Pa) at positions M1, M2 and M3 from As = 0.08

to As = 0.17. According to the reference ridge line, the EA-NES provides

until 8 dB of attenuation in the pumping range. The power spent into the

loudspeaker (around 2 W[25]) is in the range of the acoustic power absorbed

from the room[27]. It is interesting because these orders of magnitude are

consistent with self-powering by acoustic energy harvesting. This result is

close to the numerical simulations except for the upper boundary of the ex-

citation range which is overestimated. In this range the SMR regimes that

mark the transfer of energy from the cavity to the EA-NES occur as it can

be seen in Fig. 10 where three families of response regimes are illustrated

depending of the excitation level. At low excitation level (As = 0.03), the

regime is sinusoidal, the EA-NES do not act (Fig. 10(a,b)). For As = 0.12

(in the limitation range), a SMR regime occurs (Fig. 10(c,d)) and, for large

excitation level (As = 0.19), the regime is again periodic (Fig. 10(e,f)). Note

that we have chosen to plot the complete measured time responses including

a first step with no source signal, a second step with source signal and a last

step with no source signal. Furthermore one notices a good match between

numerical simulation and measurements.

4.2.2. Influence of K in current and voltage modes

The influence of the parameters characterizing the active part of the EA-

NES on the TET efficiency are investigated in order to validate the asymp-
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(a) (b)

(c) (d)

(e) (f)

Figure 10: System with EA-NES driven by current withK = 7.5: (a, c, e) acoustic pressure

at point M3 and (b, d, f) displacement at the center of the membrane for fs = 43.9 Hz and

(a,b) As = 0.03, (c,d) As = 0.12 and (e,f) As = 0.19. Numerical results from Eq. (20-22)

(red curves) and data (blue curves).

totic analysis discussed in Section 3. The parameters are: the feedback

control mode of the loudspeaker (current versus voltage) and the gain K.

The gain K varies from K = 0 to K = 15. when current feedback control

is considered and K = 550. when voltage feedback control is considered. In

all cases, the stability of the feedback control system is satisfied. For both

feedback control modes, the value K = 0 is set with a shortcut on the input

of the amplifier of the control loudspeaker and a gain set to the maximum.

We focus on the analysis to the ridge line (as defined in the previous

section) of the acoustic pressure at position M3. Indeed the ridge lines are
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convenient to compare the triggering threshold and width of pumping regimes

between the different configurations.

According to the Fig. 11(a), the triggering threshold of the TET depends on

the gain K in the case of the current control as observed in the SIM in Fig. 4.

Indeed, starting from K = 2.5, the triggering threshold increases from 9 Pa

to 15 Pa. The same phenomenon is observed with the voltage drive but in

a less pronounced way (see Fig. 11(b)). As shown in [18], the effect of the

gain K is to decrease the resonance frequency of the EA-NES at low level.

As a consequence the needed level of excitation to synchronize the EA-NES

with the (1, 0, 0)-mode is increasing and one can observe in the related SIM

that the fold points also increase. One can also observe that the excitation

range where occurs the limitation of the pressure depends very little on the

gain K.

At last the influence of the electrical drive of the EA-NES is investigated

thanks to the comparison of the ridge lines obtained with each type of control.

We only take account of the ridge lines where a limitation of pressure can be

observed. Indeed these ridge lines correspond to the values of K for which the

TET has been observed. In each case, we plot the lower and the higher ridge

line obtained with one type of control. Theses pairs of curves are plotted

in Fig. 11(c) with the reference ridge line obtained with the blocked EA-

NES. It appears that the current control gives the ridge lines with the lowest

triggering thresholds in comparison with the voltage control. We obtain 15 Pa

for the highest triggering threshold with current whereas the lowest triggering

threshold occurs at 25 Pa. From another hand the voltage control results in

a largest range for the limitation of the pressure than current control (0.13
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versus 0.09 for As).
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Figure 11: Ridge line of the RMS values of pressure measured at point M3 for the system

with EA-NES driven by (a) current, (b) voltage. (c) Comparison between current and

voltage modes. In all plots, the blocked EA-NES is also reported.
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5. Conclusion

We have studied a hybrid EA-NES coupled to a resonant room. We have

modeled the electro-mechanical dynamics of the system. The asymptotic

study of the model shows the existence of a critical value above which SMRs

can exist. This threshold rises along with the gain of the control loop and

is affected by the kind of control loop command law (voltage or current

command law).

The experimental study shows that a hybrid EA-NES can work in a con-

crete building. It is able to limit the sound level in the room in its working

range up to 8 dB for a footprint of only 0.2% of the room volume. The dif-

ferent regimes observed correspond well to previous observations for NESs,

including SMRs, although the system or experimental conditions in previous

works were far from this study’s ones. Unlike previous acoustical studies,

here the SMR responses are simulated with a good quantitative agreement,

in voltage or current command law. We have also simulated and observed

that the thresholds defining the working range of the NES can be tuned elec-

trically by setting the gain K of the control loop. The thresholds are at

sound levels much lower than in the previous studies [18] where the primary

system and its coupling to the EA-NES were different.

This work opens the way to direct applications for acoustic noise treat-

ment. It permits to envision further studies in several directions, like devel-

opments of the control law (adaptive tuning) in view of particularly reducing

the the triggering threshold of the TET, or the merging of the EA-NES

membrane and loudspeaker into one part only.
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Appendix A. Fixed points and folded singularities of the slow-flow

This appendix characterizes the fixed points and folded singularities of

the slow-flow from the slow subsystem Eqs. (41) to (43).

Substituting Eqs. (45) and (46) into Eqs. (41), the slow subsystem can

be written only with respect to the variable φ2 as

(φ2F (|φ2|))′ = f1(φ2F (|φ2|), φ2,
k̄21

γLS − k̄22 − jλLS

φ2),

= j
β

2
+ f1φ2(|φ2|) (A.1)

where

f1φ2(x) =
j

8

(
(4jλp − 8σ̄ + 4µmµp)F (|φ2|) + (3k̄3mµp + jλ2mµp)|φ2|2

)
φ2

+
j

8

(
4µp(jλm + k̄11) +

4k̄12µpk̄21

γLS − k̄22 − jλLS

)
φ2. (A.2)

Using the polar coordinates (49) for i = 2 with now N2 and θ2 being τ

dependent, and separating real and imaginary parts, Eq. (A.1) takes (after

some calculation steps) the following form

a11(N2)N ′2 + a12(N2)θ′2 = b1(N2, θ2), (A.3)

a21(N2)N ′2 + a22(N2)θ2 = b2(N2, θ2) (A.4)
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with

a11(x) = xF ′R(x) + FR(x), a12(x) = −rFI(x), (A.5)

a21(x) = xF ′I(x) + FI(x), a22(x) = xFR(x), (A.6)

b1(x, θ) = <(f1φ2(x)) +
β

2
sin(θ), b2(x, θ) = =(f1φ2(x)) +

β

2
cos(θ)(A.7)

where <(.) (respectively =(.)) denotes the real part (respectively imaginary

part) of (.)

Systems of Eqs. (A.3) and (A.4) can be finally reduced (after some cal-

culation steps) to the following form

g(N2)N ′2 = fN2(N2, θ2), (A.8)

g(N2)θ′2 = fθ2(N2, θ2) (A.9)

where

g(x) = a11(x)a22(x)− a12(x)a21(x) = H ′(x)/2, (A.10)

fN2(x, θ) = a22(x)b1(x, θ)− a12(x)b2(x, θ), (A.11)

fθ2(x, θ) = −a21(x)b1(x, θ) + a11(x)b2(x, θ). (A.12)

From Eqs. (A.8) and (A.9) it is possible to detect fixed points and folded

singularities.

The (regular) fixed points of Eqs. (A.8) and (A.9), denoted hereafter

(N e
2 , θ

e
2), are defined by

fN2(N
e
2 , θ

e
2) = 0, fθ2(N

e
2 , θ

e
2) = 0 with g(N e

2 ) 6= 0. (A.13)

For ε << 1, the (regular) fixed points are good approximation of the fixed

points of the full system Eqs. (29) to (31) corresponding to a periodic solution
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of the adimensional model. The stability of the periodic solution is found by

looking at the sign of the real parts of the eigenvalues of the Jacobian matrix

of differential system Eqs. (A.8) and (A.9).

The folded singularities of Eqs. (A.8) and (A.9), denoted hereafter (N s
2 , θ

s
2),

are defined by

fN2(N
s
2 , θ

s
2) = 0, fθ2(N

s
2 , θ

s
2) = 0 and g(N s

2 ) = 0. (A.14)

A folded singularity is a fold point (N s
2 = N f1

2 or N f2
2 ) satisfying

fN2(N
f1/2
2 , θs2) = 0, fθ2(N

f1/2
2 , θs2) = 0 (A.15)

where N
f1/2
2 denotes N f1

2 or N f2
2 .

Recalling Eqs. (A.7), (A.11) and (A.12), Eq. (A.15) is reduced to the

linear system with respect to (sin(θs2), cos(θs2)) as

β

2
(a22(N

f1/2
2 ) sin(θs2)− a12(N

f1/2
2 ) cos(θs2)) = d1(N

f1/2
2 ), (A.16)

β

2
(−a21(N

f1/2
2 ) sin(θs2) + a11(N

f1/2
2 ) cos(θs2)) = d2(N

f1/2
2 ) (A.17)

where the functions d1(x) and d2(x) are not explicitly given.

The associated determinant of this linear system is equal to zero show-

ing that one of the two equations can be removed. Therefore, the folded

singularities can be only defined by Eq. (A.17) as

−a21(N
f1/2
2 ) sin(θs2) + a11(N

f1/2
2 ) cos(θs2) =

2

β
d2(N

f1/2
2 ) (A.18)

which can be solved with respect to θs2 giving the following pair of solutions
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(for each fold point)

θ
s1/2
2 = arcsin

−a21(N
f1/2
2 )√

a11(N
f1/2
2 )2 + a12(N

f1/2
2 )2

(A.19)

± arccos
2d2(N

f1/2
2 )

β

√
a11(N

f1/2
2 )2 + a12(N

f1/2
2 )2

(A.20)

if the condition

| 2d2(N
f1/2
2 )

β

√
a11(N

f1/2
2 )2 + a12(N

f1/2
2 )2

| ≤ 1 (A.21)

is satisfied.

Condition Eq. (A.21) shows that the fold point N
f1/2
2 is a folded singu-

larity for values of excitation level β such that

βcr1/2 = | 2d2(N
f1/2
2 )√

a11(N
f1/2
2 )2 + a12(N

f1/2
2 )2

| < β. (A.22)

However, Condition (A.22) is necessary but not sufficient to guarantee

the stability of SMR regimes. Under certain conditions, the slow flow may

be attracted to another stable response. This mechanism of annihilation of

SMR is explained in detail in [21] and to access this possibility, a procedure of

1D mapping has been also developed. We have not extended this procedure

to our case.
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