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Abstract: Automotive software systems become 
more and more complex presenting tougher 
safety requirements and tighter timing constraints. 
On the other hand, today, timing verification of 
automotive systems is considered late in the de-
velopment process, mainly at the implementation 
stage. Consequently, this leads generally to late 
detection of design mistakes involving extra costs. 
In this paper, we propose a model driven ap-
proach to perform real-time analysis since the ear-
liest design phases. This approach is based on 
the combination of two modeling languages for 
system design (EAST-ADL2 and MARTE) and the 
integration of an open source toolset for schedul-
ing analysis, MAST.* Benefits of the proposed ap-
proach are discussed through a practical 
automotive case study. 
 
Keywords: Modeling, Scheduling analysis, EAST-
ADL2, MARTE, Timing verification. 
   
1. Introduction 
 

Today, highly competitive industries develop-
ing real-time systems must face industry require-
ments both quickly and dependably. “Quickly” 
refers to the time-to-market issue, where delays in 
design or implementation incur penalties and 
hence reduces market profits. “Dependably” refers 
to the trustworthiness of the services provided by 
developed systems. One of the key dependability 
factors in real-time systems is related to system 
failures. Hence, whenever fault tolerance cannot 
be guaranteed, fault prevention is the only way to 
catch possible remaining system failures. Particu-
                                                           
* This work is performed with the support of the 
EDONA project of the system@tic Paris region 
cluster. 

larly, timeliness, memory constraints and other 
non-functional constraints belong to the set of 
properties that must be assured for prevention of 
real-time system failures.  
In modern cars, more and more algorithms are 
implemented as distributed systems. For example, 
the development of an ACC-System (Adaptive 
Cruise Control) involves today a minimum of five 
ECUs (Electronic Control Units): Engine ECU, 
Gearbox ECU, Breaking ECU, the MMI-Interface, 
and an ECU operating the radar system. Handling 
the overall timing behavior of such a distributed 
system is a fundamental challenge during design. 
For example, on of the key issue of this context is 
verifying that the so-called end-to-end timing from 
a sensor to an actuator must meet a given dead-
line. In order to fulfill such requirements, the tim-
ing properties on the bus, the ECU timing 
properties, but also the timing properties of the 
communication controller have to be taken into 
account. These timing properties have to be opti-
mized across (potentially multiple) suppliers in-
volved in the system development, which is a 
challenging task for a complex distributed system. 

Automotive applications development cost is 
particularly impacted by bad design choices made 
at the early development stages but only detected 
later, often after implementation. In particular, tim-
ing-related failures are mostly raised very late in 
the development process, usually during the im-
plementation, or even later at the system integra-
tion phase. Timing behavior is mostly addressed 
by means of measuring and testing, rather than 
through formal and systematic analysis. For this 
reason, innovative and complex functionalities are 
used to be not implemented in a cost-efficient 
manner. 

Therefore, there is a strong need for an ap-
proach that would enable performing timing prop-



erties verification at very early design phases. 
Thus, an early prediction of the system timing be-
havior can be done, resolving potential weak 
points in the design as soon as possible. In this 
context, quantitative analysis techniques [1] (such 
as scheduling or performance analysis) are good 
candidates for analyzing non-functional properties 
at an early stage. They allow designers to detect 
unfeasible real-time architectures, prevent costly 
design mistakes, and provide an analytical basis 
to assess design tradeoffs associated to resource 
optimization.  

Moreover, in order to master the system 
complexity and assess system-level trade-offs 
seeking higher quality and dependability, model-
based engineering (MBE) is gaining momentum in 
the automotive domain [2]. One of the advantages 
expected from this kind of approaches is their 
specific ability to exploit correct-by-construction 
and incremental design processes, thereby relying 
extensively on automated, or at least assisted, 
model transformations and synthesis, and formal-
izing computer-based correctness analysis.  

In this paper, we propose a model driven ap-
proach to perform scheduling analysis for automo-
tive systems during the early design phases. Our 
approach is based on the combination of two 
modeling languages: EAST-ADL2 [3], an architec-
ture description language and MARTE, the OMG 
language for modeling and analysis of real time 
embedded systems [4]. This choice has particular 
benefits for our framework: On one hand, EAST-
ADL2 is a domain specific language dedicated for 
the development of automotive systems. There-
fore, it allows a good description of the elec-
tric/electronic architecture of automotive systems 
with a variety of concepts supporting most of 
structural features of automotive applications. On 
the other hand, MARTE is known by its rich ex-
pressive power to model system real time proper-
ties and constraints. This capability has been 
exploited to define a MARTE-based methodology 
whose objective is to complete application models 
with the information needed to perform scheduling 
analysis [11]. Actually, the methodology presented 
here, while inspired by the methodology in [11], 
has the particular objective of completing EAST-
ADL models, to enable scheduling analysis at the 
design level. 

The scheduling analysis is actually performed 
by the MAST tool [6] via an automatic transforma-
tion of MARTE models to MAST input models. 
This latter transformation is supported by the Op-
timum tool chain developed by CEA LIST. 

The proposed model driven approach has 
been then successfully applied in the context of an 
automotive use case.  

The paper is organized as follows: In the first 
section, we present the modeling process of 
EAST-ADL2 with respect to timing analysis needs. 
The second section shows how the MARTE mod-
eling approach could contribute to complete our 
methodology. The third section introduces the 
EAST-ADL2/MARTE based methodological 
framework for modeling and analyzing automotive 
systems. Finally, we illustrate this work with an 
automotive use case in the fourth section. 
 
2. EAST-ADL2 and Scheduling Analysis 
 

EAST-ADL2 is an architecture description 
language defined as a domain specific language 
for the development of automotive electronic sys-
tems. It includes modeling entities to describe fea-
tures, requirements, variability, software and 
hardware components. 
As shown in Figure 1, the core concepts of the 
structural organization of EAST-ADL2 are dedi-
cated to the description of the models at different 
abstraction levels: vehicle level, analysis level, 
design level and implementation level. The elec-
tronic functions/features are described at different 
levels of abstraction, reflecting the details refine-
ment of the architecture. The different artifacts 
drive the functional decomposition of the functions 
from abstract models down to implementation in 
software components and hardware elements of 
the system architecture.  
Let us notice that the implementation level is sup-
ported by AUTOSAR [8] 
 

 
Figure1: EAST-ADL2 abstraction levels 

 
Modeling of the electronic systems of a vehicle 
with EAST-ADL2 starts with capturing the func-
tions at the Vehicle level providing this way the 
product line organization and description. 



These functions are then realized at the analysis 
level by abstract entities describing models of 
software functions and devices that interact with 
the vehicle environment.  
At the design level, models are refined including 
more implementation-oriented details that allow a 
subsequent software decomposition of the func-
tional architecture. Devices are split into elements 
of the hardware architecture such as sensors or 
actuators, and the software parts for signal trans-
formation (such as “LocalDeviceManager”). Mid-
dleware is modeled to project the platform specific 
services and functionality to the functional level. 
The hardware architecture that is introduced in 
parallel, captures the hardware entities as abstract 
elements (e.g. I/O, sensor, actuator, power, ECU, 
electrical wiring including communication bus) to 
describe the topology of the electronic architecture 
of the system. The overall structure is such that 
one or several entities can be later realized by 
AUTOSAR entities at the implementation level. 
More details about the modeling process of 
EAST-ADL2 can be found in [3]. 

In our approach, we suggest to perform 
scheduling analysis starting from the design level 
of EAST-ADL2. We think that this is the highest 
modeling level of EAST-ADL2 against which it will 
be possible to perform a scheduling analysis be-
cause at the previous levels, the so-called vehicle 
and analysis levels, there is no enough detailed 
information to do it. For example, there is no 
hardware description, no possibility to describe 
allocation, etc…  

For timing analysis, EAST-ADL2 defines con-
cepts in order to model timing and behavioral in-
formation of the system. All this concepts are 
related to a core concept for modeling the system 
architecture in EAST-ADL2 the "ADLFunction-
Type". This latter is used to describe system func-
tions at the design phase. 
In EAST-ADL2, behavior modeling relies on the 
definition of a set of elementary functions that are 
executed based on the assumption of synchro-
nous run-to-completion execution (read inputs 
from ports, compute, and write outputs on ports). 
EAST-ADL2 gives also means to define the acti-
vation patterns of an ADLFunctionType: the trig-
gering of such function is defined either by time or 
by an event on one of its input ports. This is done 
through the concept “trigger” that defines the trig-
gering parameters of ADL Functions. 

As mentioned previously, the design level of 
EAST-ADL2 includes concepts for hardware and 
middleware modeling. For scheduling analysis in 
particular, the relative speed of the ECU and the 

data transmission rates of the bus are necessary 
to obtain absolute execution times and communi-
cation delays. 

Nevertheless, many modeling features re-
quired for scheduling analysis of automotive appli-
cations are not supported by EAST-ADL2. A 
comprehensive summary of those features is pro-
vided in [5]. 
For example, EAST-ADL2 does not model explic-
itly OS tasks or the allocation of functions to these 
tasks. On the other hand, scheduling analysis 
methods are typically scenarios-based. This leads 
to a behavior model supported by the notion of 
end-to-end flows. This notion is not supported in 
EAST-ADL2. 

In conclusion, EAST-ADL2 abstracts away 
many timing features and relies on AUTOSAR. 
That is why it is necessary to complete it with 
more scheduling oriented concepts in order to be 
able to perform scheduling analysis at the design 
level. 
For this purpose, we suggest to use MARTE, as it 
provides a dedicated specific framework for per-
forming scheduling analysis aware modeling. In 
the next section, we describe a set of UML exten-
sions for supporting model-based schedulability 
analysis as supported by MARTE. Firstly, we cata-
log some essential modeling features to support 
state-of-the-art scheduling analysis of automotive 
architecture description. These features suffice for 
the purpose of this section, which is to provide an 
informal review of the expressive power provided 
by MARTE. A more detailed description of 
MARTE can be found in the MARTE specification 
(version 1.0 [4]) and in [2]. 

In our approach, we propose to use MAST 
(Modeling and analysis Set for Real Time Applica-
tions) to perform scheduling analysis. An interest-
ing feature in MAST is its open source aspect; this 
aspect is important for us, it indicates that there is 
potential for enriching it to support more automo-
tive-oriented features (e.g. implementing new 
automotive scheduling algorithms). Due to space 
limitation, a detailed description of this tool is not 
provided here, further information on MAST can 
be found via its website: [6]. 
  
3. MARTE and scheduling analysis modeling 
       

We organize the features considered in two 
categories, system-oriented and design-oriented 
modeling features. 
 
3.1 System-oriented features 
 



These modeling features are related to the at-
tributes and constraints of the targeted system 
itself (i.e., information completeness). Figure 3 
shows a simplified canonical model of the model-
ing features required for scheduling analysis, 
which is discussed in this section. 

 

 
Figure 3: Simplified canonical model for schedul-

ing analysis 
 

Timing constraints: MARTE provides mechanisms 
to annotate timing requirements and constraints in 
models. Basic timing constraints include deadlines 
and maximum jitters. One key modeling feature is 
the concept of observation. This concept enables 
to mark specific points in models to anchor real-
time assertions. Some common assertions have 
been predefined in ready-to-use patterns, such as 
jitters or conditional time constraints. These con-
straints can be for instance applied to the comple-
tion of a control/data flows of a functional chain or 
to arbitrary events within computation and com-
munication chains. 
 
End-to-end flows: Scheduling analysis methods 
are typically scenario-based, and consequently 
underlying behavior models rely mainly on the no-
tion of end-to-end flows that one defines as follow: 
An end-to-end flow refers to a unique causal set of 
execution/communication functions triggered by 
an activation event (or logical combination of 
events). 
In MARTE, end-to-end flows describe logical units 
of processing work in the system, which contend 
for the use of processing resources (e.g., proces-
sors and buses) [2]. Let us also notice that firstly, 
data and control can be part of the processing, 
and secondly, different kind of timing constraints 
can be attached to end-to-end flows (e.g., dead-
lines or output jitters). 
One important feature in MARTE is that end-to-
end flows can be represented in behavioral views 

(e.g., Sequence or Activity diagrams) comple-
menting structural models. This approach allows 
modelers to specify multiple end-to-end flow con-
figurations that could be likely related to (a) spe-
cific operational modes, (b) alternative execution 
chains, or (c) different quantitative scenarios of 
activation parameters or other non-functional an-
notations. 
 
Activation events: Both event-triggered and time-
triggered architectural patterns are involved in 
automotive applications. Event-triggered means 
that tasks are started, or messages are transmit-
ted, following the occurrence of one (or a conjunc-
tion of) significant event(s): e.g., "a door has been 
opened"). Time-triggered architectures consist of 
tasks started, or messages transmitted, at prede-
termined points in time, usually periodically. 
Whatever the architectural style used for specify-
ing an application (often, mix approaches are ap-
plied), the activation models need to be formally 
specified to enable further timing analysis. In 
MARTE, activation models are denoted by means 
of workload events. It can be modeled under dif-
ferent forms: by known patterns (e.g., periodic, 
aperiodic, sporadic or burst), by irregular time in-
tervals, by trace files, or by workload generator 
models (e.g., state machine models). Workload 
events also enable specifying additional parame-
ters for periodic and aperiodic patterns such as 
jitters, burst parameters, and distribution probabili-
ties. 
 
SW and HW resources: What is needed for sched-
uling analyses is to take into account the impact of 
the computing platform of the embedded system, 
i.e. the operating system (OS) and the hardware 
resources on the software applications. For ex-
ample, some scheduling analyses need to con-
sider the overheads due to the OS and the stack 
of communication layers or throughputs and band-
widths of underlying networks. Among these as-
pects, access protocols to mutual exclusive 
resources are of paramount importance in sched-
uling analysis of modern multiprocessor architec-
tures. 
The MARTE analysis model distinguishes two 
kinds of processing resources: execution hosts, 
which include for example processors, coproces-
sors and controllers, and communication hosts, 
which include networks and buses. 
Processing resources can be characterized by 
throughput properties such as processing rate, 
efficiency properties such as utilization, and over-



head properties such as blocking times and clock 
overheads. 
The system model shown in Figure 3 thereby cap-
tures information about the applications and the 
available resources provided by the platform of 
the system. It defines also the mapping of applica-
tion functions to OS resources, ECUs and buses. 
 
3.2 Design-oriented features 
 

The design-oriented features category relates 
to the modeling constructs and styles that serve to 
organize models and to improve the designer de-
cision-making capability. 
 
Application vs. Platform: In a typical automotive 
development process, application and platform 
descriptions evolve separately. Application arti-
facts center on functionality and control logic, 
while platform artifacts focus on ECU/bus selec-
tion, middleware layers, and OS services. 
 MARTE supports this separation of views at dif-
ferent abstraction levels. For the particular case of 
scheduling analysis as denoted in Figure 4, the 
modeling concepts are organized into a workload 
behavior model and a resources platform model. 
The former is dealing with application-specific an-
notations, whereas the second is dedicated to 
computing and communication annotations. 
 

 
 

Figure 4. Expected organization of analysis-
specific model elements in MARTE 

 
Analysis scope: Due to the specific tools targeted 
by scheduling analysis, it is important to bind sys-
tem model elements to a particular analysis or 
evaluation scope that represents a real time situa-
tion to be analyzed and for which the system tim-
ing constraints or properties are valid. As 
automotive electronic functions become more and 
more complex, there is often the need to repre-
sent a system by multiple analysis models, corre-
sponding to different application-platform 
allocations, abstraction levels, operational modes, 
or different quantitative values of non-functional 
parameters. 

For that purpose, MARTE defined the notion of 
analysis context (see Figure 4). An analysis con-
text stands for the root concept used to collect 
relevant quantitative information for performing a 
specific analysis scenario. Starting with the analy-
sis context and its parameters, a tool can follow 
the links of the model to extract the information 
that it needs to perform scheduling analysis. Ana-
lysis results can also be annotated back in appli-
cation models to be taken into account, for 
instance, for architecture optimization or refine-
ment. 
 
Allocation: Performing system-level analysis re-
quires taking into account the influence of underly-
ing platforms in order to provide accurate results. 
To enable that, we will build an integrated global 
model where application and platform models are 
associated. 
In MARTE, the allocation profile must be used for 
supporting this activity. By using this profile, it is 
then possible to denote a so-called allocation 
model that will define how the application model is 
mapped to the platform model. The allocation 
model is built orthogonally to the mapped models 
(the application and the platform models) and al-
lows describing several possible mappings in or-
der to explore different architecture options with 
respect to a set of functionalities and thereby re-
using an architecture platform with different func-
tions. 
This allocation model may also include the asso-
ciated timing attributes resulting from the alloca-
tion. For example, when allocating a runnable to a 
given OS task and ECU, one needs to specify its 
execution time (e.g. by calculated or measured). 
In MARTE, it is achieved by specifying non-
functional constraints attached to allocations. 
       
4. EAST-ADL2/MARTE based methodology 

for scheduling analysis aware modeling 
 

In this section, we describe the EAST-
ADL2/MARTE modeling framework for scheduling 
analysis aware modeling with respect to the 
abovementioned requirements. 
 
4.1 General overview 
 

UML2 encompasses many concepts of non-
object-oriented design. For instance, activity and 
composite structure diagrams strive to support 
procedural and component-based design ap-
proaches. In particular, the UML capability for 
modeling component-based architectures is very 



convenient since the automotive domain follows 
this approach. 
System models, as described by component-
based approaches, often do not fully match the 
models used as input in the state-of-the-art of 
scheduling analyses. Beyond syntactical mis-
matches (which can be solved by model transfor-
mation techniques), semantics shall be preserved 
in order to enable reliable and consistent analysis 
with respect to other activities of the development 
process such as code generation or simulation. In 
particular, the semantics of port communication 
and internal behavior of software components 
need to be conciliated with the causal model sup-
ported by scheduling analysis techniques. The 
modeling framework defined in this section aims 
at answering to this issue. 
Our modeling architectural framework [9] is organ-
ized into a set of views, each providing a modeling 
concern of the system under study: 
• Application Components View: This view de-

scribes the application structure organized in 
components, ports, interfaces and connec-
tors. 

• System End-to-end Flow View: In this view, 
we highlight the system-level behavior as or-
ganized in end-to-end data and control flows. 

• Platform View (SW & HW). It describes the 
software (which includes an OS task model) 
and hardware resources (which includes the 
processors, buses, devices, etc.), into specific 
configurations of allocation. 

• Allocation view. This view describes the allo-
cation of functions to software resources and 
the allocation of software resources to hard-
ware resources. 

The first view, application component view, de-
scribes the application logic. Although this model 
view is important for the initial design scope, sys-
tem-level behavior, platform models and allocation 
are the most important for scheduling analysis. 
 
4.2 Application component view 
 

In this view, components and data/event flows 
between components are described with UML 
composite structure diagrams using EAST-ADL2 
concepts for structure modeling. In this view, a 
component defines a self-contained entity of a 
system, which may encapsulate structured data 
and behaviors. The composite structure diagram 
consists of a main component (called “ADLFunc-
tionType”) that is internally structured as a set of 
components (UML parts) communicating between 
them (called “ADLFunctionPrototypes”). The con-

cept of “ADLPort” defines an explicit interaction 
point through which components may be con-
nected through a connector (“ADLConnectorPro-
totype”), and through which they can 
communicate. 
In this view, both data-based and service-based 
communication are supported. This is done 
through “ADLFlowPort” and “ADL-
Clien/ServerPort” of EAST-ADL2. 
 
4.3 System end-to-end flows view 
 

Starting with the application components view, 
we should be able to model explicitly component 
interaction, event/data flow, and activation events. 
The granularity of the entities involved in a model 
for scheduling analysis is often related to the 
choice of black or gray-box component modeling. 
For the first case, port-to-port delays should be 
considered, while for the second scenario internal 
“functions” may be considered. Whatever the 
granularity, scheduling analysis require to model 
the ordering of these functions. For that purpose, 
on applies the predecessor-successor patterns, 
with the possibility of multiple concurrent succes-
sors and predecessors, stemming from concur-
rent function joins and forks respectively. 
To model this behavior information, we use the 
end-to-end flows of MARTE. However, design 
models are not always constructed to show end-
to-end flows explicitly. Instead, they are implied by 
the presence of component interactions and inter-
nal behavior models. Therefore, there is a need to 
derive the end-to-end flow models from design 
models used e.g. for code generation. 
All possible end-to-end flows in a given system 
can be generated by starting from the activation 
events, and then forming event sequences by re-
cursively considering the output event set for the 
functions producing the events. Of course, many 
of the possible end-to-end flows may be meaning-
less since the appropriate triggering conditions 
may not hold. 
As mentioned previously, MARTE end-end-flows 
can be represented in behavioral views comple-
menting component models. According to the 
UML 2.0 specification [7], seven UML diagrams 
can be used to specify the behavior of a system: 
Activity, Sequence, Communication, Interaction 
Overview, Timing, Use Case and State Machine 
diagrams. In this modeling framework, we pro-
pose to use activity diagrams as modeling views 
for behavior scenarios. This choice has some par-
ticular benefits for our method:  



• Activity diagrams are very intuitive representa-
tions of processing chains. They give a full 
support of the different precedence relation-
ships between actions (joins, forks, etc.), that 
are not easily represented in sequence dia-
grams for example. In addition, activity dia-
grams allow modeling both service-based and 
data based communication while sequence 
diagrams allow only modeling service-base 
communication. Furthermore, unlike state 
machine, activity diagrams can explicitly rep-
resent end-to-end processing scenarios. 
These aspects qualify activity diagrams as the 
more suitable UML behavioral diagrams for 
developing scheduling analysis aware models. 

• Structural elements, such as objects, compo-
nents and actors, can be consistently mod-
eled with UML::ActivityPartition in an activity 
diagram. 

• Activity diagrams are also good candidates to 
model workload behavior annotations. An 
UML::AcceptEventAction can define a work-
load with the corresponding arrival pattern and 
related parameters (period, jitter, etc.). 

In order to avoid ambiguities in the use of activity 
diagrams, we adopted a set of well-formed inter-
pretations for MARTE annotations, which are de-
scribed below. We will limit our description to the 
set of annotations that makes the model complete 
and consistent from the point of view of the 
schedulability analysis performed by MAST. Fur-
ther details on the MAST system model may be 
found in [10] 

• The activity diagram for representing a 
single system end-to-end flow is stereo-
typed as «saEndtoEndFlow». Deadlines 
on the end-to-end flow can be specified 
through the attribute “end2endD”. 

• The activation event that triggers the be-
havior of the system in the considered 
scenario needs to be specified and 
stereotyped as «gaWorkloadEvent». This 
way the arrival pattern of the event can be 
specified thanks to the attribute “Arrival-
Pattern”. The value of this attribute priority 
is in form of a VSL expression (Value 
Specification Language [2]). For instance, 
a periodic event with inter-arrival period of 
100ms will be annotated with an attribute 
arrivalPattern whose value is equal to pe-
riodic (value=100, unit=ms). 

Each activity representing the execution of an op-
eration will be stereotyped as a «saStep» Each 
step is indeed an operation call described in the 
application component view. If the activity repre-

sents the sending of a message, it will be stereo-
typed as «saCommunicationStep». For both types 

of steps, it is required to specify the execution 
time of each step through the attribute “exec-

Time”. This execution time represents the host 
demand for executing the called function. Dead-

lines can be applied at the step level by assigning 
values to the deadline attribute. The execTime 

attribute value should be specified with the follow-
ing syntax: (min=value1,max=value2,unit=ms). 

 
4.4 Platform view 
 

As mentioned previously, MARTE allows for 
separating application and platform views, as well 
as describing a separated view for system alloca-
tions. 
In order to comply with the MAST model, we pro-
pose to use the following set of annotations: 

• The elements composing the software 
platform need to be stereotyped as 
«SchedulableResource» (such as tasks, 
threads, etc...) and «gaCommChannel» if 
the element represents a piece of logical 
execution or a sending of a message, re-
spectively. Priorities of those software re-
sources are specified through the 
“schedParam” attribute. The value of a 
priority is in form of a VSL expression [2]. 
It is also possible to specify the name of 
the scheduler the resource is assigned to, 
through the attribute “host”. If no value is 
assigned to the attribute, it is assumed 
that the scheduler for this resource will be 
the scheduler assigned to the hardware 
resource (e.g. processor) where the soft-
ware resource will be allocated. The allo-
cation is done in the allocation model (see 
next section). 

• The elements composing the hardware 
platform need to be stereotyped as 
«saExecHost» (if they represent re-
sources with processing capacity) and 
«saCommHost» (if they are able to trans-
mit/receive messages). These stereo-
types let specify the scheduling 
parameters for the resource. For 
saExecHost is it possible to specify, for 
example, the scheduling policy (fixed pri-
ority, earliest deadline first, etc.) that is 
implemented by the scheduler assigned to 
the hardware resource, context switch 
overheads, the range of priorities ac-
cepted, the level of preemptability, clock 
overhead, etc... For saCommHost it is 



also possible to specify the transmission 
mode (simplex, duplex, half-duplex). 

 
4.5 Allocation 
 

Due to the specific tools targeted by schedul-
ing analysis, it is important to bind system model 
elements to a particular analysis scope, since 
automotive applications become more complex. 
MARTE supports this need via the concept of 
analysis context, which helps binding model ele-
ments to a particular evaluation scope. At the 
heart of this binding there is the allocation of func-
tional steps executed in the considered scenarios 
to software resources (software resource plat-
form) and the allocation of software resources to 
hardware resources (hardware resource platform). 
The allocation is carried out by specifying a com-
posite diagram stereotyped as «saAnalysisCon-
text». 
Even if the saAnalysisContext pertains to the set 
of end-to-end flows the designer want to analyze, 
the allocation is not done per-flow basis. The in-
tent, in fact, is to factorize the different steps to 
allocate in a unique view. As already said in the 
end-to-end flow section, each step is actually the 
call of a function operation owned by an applica-
tion component. This relationship allows the direct 
allocation of functions on software resources. This 
way, the composite diagram contains three main 
components representing respectively: the appli-
cation component views with functions to be allo-
cated, the software platform and the hardware 
platform. 
Each function of the application view (that has 
been called at least once in one of the end-to-end 
flows) will be associated to only one schedulable 
resource (e.g. OS task) and each connector in the 
application component view will be associated to a 
communication channel software resource. More-
over, each schedulable resource needs to be as-
sociated to a processing unit (SaExecHost) and 
each channel need to be associated to a bus (sa-
CommHost). To carry out this association the 
software resource will be stereotyped as <<allo-
cated>> and a dependency connector (type ab-
straction) between the function/connector and the 
resource will be drawn. The connector needs to 
be stereotyped as «allocate». 

The allocation stereotypes allow the allocation 
definition through the attribute: allocatedTo. It lists 
the resources the element is allocated to. The 
stereotype «allocate» lets also specify constraints 
on the allocation and the type of allocation. 
 
5. Illustration: the cruise control system 
 

In this section, we illustrate our methodology 
with a complete EAST-ADL2/MARTE model of the 
cruise control and the scheduling analysis per-
formed with MAST.  
When activated, the cruise control system allows 
maintaining the vehicle speed to a set point value 
specified by the driver. The cruise control system 
is connected to a switch sensor that acquires the 
driver inputs (activate cruise control, cancel cruise 
control, set vehicle speed, etc…). The input is 
then processed in order to decide about the action 
to be taken by the system (authorize cruise activa-
tion, set speed, etc…) 
 
5.1 The application component view 
 

The cruise control system is modeled as a 
composite diagram as shown in the figure 5: 

 

 
Figure 5: Component view of the cruise control 

system 
 

The cruise control is composed of five basic mod-
ules: the application condition, the basic function 
and the controller module that are responsible for 
the control (performed every 40ms). The diagno-
sis and the limp home module are responsible for 
the failure detection and management that is per-
formed each 10ms.  
As shown in the previous figure, the cruise control 
is modeled as an “ADLFunctionType”; Its sub-
functions are modeled as “ADLFunctionProto-
types”. Each sub-function is an instance of an 
ADLFunctionType for which we defined an opera-
tion. (For example for the controller sub-function, 
we define an operation called “call_controller”). 



This operation will be used after when defining the 
end-to-end flows with MARTE. 
 
5.2 The end-to-end flow view 
 

In figure 6, we show the end-to-end flows 
view. Here we have identified two end-to-end 
flows that we called control and failure manage-
ment. 

 
       Figure 6: Control end-to-end flow 
 

 
Figure 7: Failure management-end-to-end flow 
 
Figure 6 shows the control end-to-end flow: The 
PeriodicEvent that triggers this end-to-end flow is 
stereotyped as «GaWorkloadEvent» and the cor-
responding annotation specifies the arrival pattern 
(periodic) and the period value (40 ms). This end-
to-end flow then shows that the periodic event 
triggers a sequential flow of three steps which are 
operation calls, namely call_application_condition, 
call_basic_function and call_controller. These op-
eration calls represent the execution of the logic 
described in the previous section for the corre-
sponding functions application_condition, ba-
sic_function and controller (note that we did not 
specify the internal behavior of components; this 
is why we assume they have a unique operation 
whose semantic has been described in terms of 
functions in the previous section). 
The application_condition takes as input all the 
inputs described on input ports in Figure 5. At the 
end of each period, its output triggers the execu-
tion of basic_function whose output triggers in turn 

controller. For each operation of the end-to-end 
flows, we specified its execution time. For exam-
ple for the controller operation, we have specified 
(min=1.0,max=3.0,unit=ms).  

Let us remark how the end-to-end flow gives 
an immediate insight on the system behavior with 
respect to real-time constraints. The succes-
sor/predecessor relation and the activation event 
show that the deadline to be respected for each 
end-to-end flow is the cycle duration (event pe-
riod) and that the sum of all execution times in 
each end-to-end flow needs to be lower than or 
equal to the cycle duration in order to have a 
schedulable system. 
 
5.3 The allocation view 
 

Figure 8 shows the binding between the appli-
cation view and the software/ hardware platform of 
the cruise control. The diagram shows how the 
cruise control functions are allocated to two tasks 
(fourty_ms_task and ten_ms_task), which in turn 
are allocated on the ECU. Proper stereotypes are 
applied: «saAnalysisContext» for the whole dia-
gram, «ShedulableResource» for Tasks and 
«SaExecHost» for the ECU. 
Note that the allocation does not show tasks de-
pendencies, which are instead represented by the 
end-to-end flows. Those task dependencies will 
be taken into account by the MAST analysis tool. 
 

 
Figure 8: Allocation model for the cruise control 

 
5.4 Schedulability analysis for the cruise 

control 
 

As mentioned previously, in our framework, 
we propose to use MAST for schedulability analy-
sis. Each end-to end flow modeled with MARTE is 
converted to a transaction in MAST (a transaction 
represents interrelated activities that are executed 
in the system). 



Figure 9 shows the MAST result. This result tells 
that the system is schedulable with a null slack. 
This means that the system is just schedulable 
and any change in its operation execution times 
will affect its schedulability (a system slack in 
MAST is the percentage by which we can increase 
all the execution times of all the operations in the 
system without jeopardizing its schedulability).   
 

 
Figure 9: MAST analysis results 

 
The table below shows the timing results calcu-
lated by MAST for the control and the failure man-
agement flows: 
 

 Best 
response 
time (ms) 

Worst 
 response time 

(ms) 
control 4 39.5 
Failure man-
agement 

2 7 

Table 1: response times 
As the table shows, the worst response times are 
lower than the periods. That is why the system 
remains schedulable. 
 
 
6. Conclusion 
 

In this paper, we presented an approach for 
modeling and analyzing automotive systems at the 
early design phase by combining the EAST-ADL2 
and MARTE languages for modeling and the 
MAST tool for analysis. 
The originality of this approach consists in per-
forming scheduling analysis, usually used at the 
implementation phase, at a high abstraction level. 
This will allow designers to detect early unfeasible 
real-time architectures and hence prevent costly 
design mistakes that are currently detected later in 
the development process. 
To be efficient, such approach has to be coherent 
with the analysis that must be done along all the 

development process. For example, performing 
scheduling analysis at the design level will in-
crease the confidence degree in the architecture 
design and the allocation chosen. Hence, this will 
help him to move to the next design step. How-
ever, “design level analysis” must be coherent with 
“implementation level analysis”. This coherence 
requirement raises the question of which kind of 
implementation oriented information may be ab-
stracted at the design level to enable early timing 
analysis but without redundancy with the imple-
mentation level. 
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