
HAL Id: hal-02264387
https://hal.science/hal-02264387v1

Submitted on 6 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Completing EAST-ADL2 with MARTE for enabling
scheduling analysis for automotive applications

Saoussen Anssi, Sara Tucci-Pergiovanni, Chokri Mraidha, Arnaud Albinet,
François Terrier, Sébastien Gérard

To cite this version:
Saoussen Anssi, Sara Tucci-Pergiovanni, Chokri Mraidha, Arnaud Albinet, François Terrier, et al..
Completing EAST-ADL2 with MARTE for enabling scheduling analysis for automotive applications.
Embedded Real Time Software & Systems (ERTS2 2010), May 2010, Toulouse, France. �hal-02264387�

https://hal.science/hal-02264387v1
https://hal.archives-ouvertes.fr

Completing EAST-ADL2 with MARTE for enabling scheduling
analysis for automotive applications

Saoussen Anssi1, Sara Tucci-Pergiovanni2, Chokri Mraidha2, Arnaud Albinet1, François
Terrier2, Sébastien Gérard2,

1Continental Automotive France SAS, PowerTrain E IPP
1 Avenue Paul Ourliac - BP 83649, 31036 France

{saoussen.ansi, arnaud.albinet}@continental-corporation.com
2CEA LIST, Laboratory of model driven engineering for embedded systems,

Point Courrier 94, Gif-sur-Yvette, F-91191 France
{sara.tucci, chokri.mraidha, sebastien.gerard, françois.terrier}@cea.fr

Abstract: Automotive software systems become
more and more complex presenting tougher
safety requirements and tighter timing constraints.
On the other hand, today, timing verification of
automotive systems is considered late in the de-
velopment process, mainly at the implementation
stage. Consequently, this leads generally to late
detection of design mistakes involving extra costs.
In this paper, we propose a model driven ap-
proach to perform real-time analysis since the ear-
liest design phases. This approach is based on
the combination of two modeling languages for
system design (EAST-ADL2 and MARTE) and the
integration of an open source toolset for schedul-
ing analysis, MAST.* Benefits of the proposed ap-
proach are discussed through a practical
automotive case study.

Keywords: Modeling, Scheduling analysis, EAST-
ADL2, MARTE, Timing verification.

1. Introduction

Today, highly competitive industries develop-
ing real-time systems must face industry require-
ments both quickly and dependably. “Quickly”
refers to the time-to-market issue, where delays in
design or implementation incur penalties and
hence reduces market profits. “Dependably” refers
to the trustworthiness of the services provided by
developed systems. One of the key dependability
factors in real-time systems is related to system
failures. Hence, whenever fault tolerance cannot
be guaranteed, fault prevention is the only way to
catch possible remaining system failures. Particu-

* This work is performed with the support of the
EDONA project of the system@tic Paris region
cluster.

larly, timeliness, memory constraints and other
non-functional constraints belong to the set of
properties that must be assured for prevention of
real-time system failures.
In modern cars, more and more algorithms are
implemented as distributed systems. For example,
the development of an ACC-System (Adaptive
Cruise Control) involves today a minimum of five
ECUs (Electronic Control Units): Engine ECU,
Gearbox ECU, Breaking ECU, the MMI-Interface,
and an ECU operating the radar system. Handling
the overall timing behavior of such a distributed
system is a fundamental challenge during design.
For example, on of the key issue of this context is
verifying that the so-called end-to-end timing from
a sensor to an actuator must meet a given dead-
line. In order to fulfill such requirements, the tim-
ing properties on the bus, the ECU timing
properties, but also the timing properties of the
communication controller have to be taken into
account. These timing properties have to be opti-
mized across (potentially multiple) suppliers in-
volved in the system development, which is a
challenging task for a complex distributed system.

Automotive applications development cost is
particularly impacted by bad design choices made
at the early development stages but only detected
later, often after implementation. In particular, tim-
ing-related failures are mostly raised very late in
the development process, usually during the im-
plementation, or even later at the system integra-
tion phase. Timing behavior is mostly addressed
by means of measuring and testing, rather than
through formal and systematic analysis. For this
reason, innovative and complex functionalities are
used to be not implemented in a cost-efficient
manner.

Therefore, there is a strong need for an ap-
proach that would enable performing timing prop-

erties verification at very early design phases.
Thus, an early prediction of the system timing be-
havior can be done, resolving potential weak
points in the design as soon as possible. In this
context, quantitative analysis techniques [1] (such
as scheduling or performance analysis) are good
candidates for analyzing non-functional properties
at an early stage. They allow designers to detect
unfeasible real-time architectures, prevent costly
design mistakes, and provide an analytical basis
to assess design tradeoffs associated to resource
optimization.

Moreover, in order to master the system
complexity and assess system-level trade-offs
seeking higher quality and dependability, model-
based engineering (MBE) is gaining momentum in
the automotive domain [2]. One of the advantages
expected from this kind of approaches is their
specific ability to exploit correct-by-construction
and incremental design processes, thereby relying
extensively on automated, or at least assisted,
model transformations and synthesis, and formal-
izing computer-based correctness analysis.

In this paper, we propose a model driven ap-
proach to perform scheduling analysis for automo-
tive systems during the early design phases. Our
approach is based on the combination of two
modeling languages: EAST-ADL2 [3], an architec-
ture description language and MARTE, the OMG
language for modeling and analysis of real time
embedded systems [4]. This choice has particular
benefits for our framework: On one hand, EAST-
ADL2 is a domain specific language dedicated for
the development of automotive systems. There-
fore, it allows a good description of the elec-
tric/electronic architecture of automotive systems
with a variety of concepts supporting most of
structural features of automotive applications. On
the other hand, MARTE is known by its rich ex-
pressive power to model system real time proper-
ties and constraints. This capability has been
exploited to define a MARTE-based methodology
whose objective is to complete application models
with the information needed to perform scheduling
analysis [11]. Actually, the methodology presented
here, while inspired by the methodology in [11],
has the particular objective of completing EAST-
ADL models, to enable scheduling analysis at the
design level.

The scheduling analysis is actually performed
by the MAST tool [6] via an automatic transforma-
tion of MARTE models to MAST input models.
This latter transformation is supported by the Op-
timum tool chain developed by CEA LIST.

The proposed model driven approach has
been then successfully applied in the context of an
automotive use case.

The paper is organized as follows: In the first
section, we present the modeling process of
EAST-ADL2 with respect to timing analysis needs.
The second section shows how the MARTE mod-
eling approach could contribute to complete our
methodology. The third section introduces the
EAST-ADL2/MARTE based methodological
framework for modeling and analyzing automotive
systems. Finally, we illustrate this work with an
automotive use case in the fourth section.

2. EAST-ADL2 and Scheduling Analysis

EAST-ADL2 is an architecture description
language defined as a domain specific language
for the development of automotive electronic sys-
tems. It includes modeling entities to describe fea-
tures, requirements, variability, software and
hardware components.
As shown in Figure 1, the core concepts of the
structural organization of EAST-ADL2 are dedi-
cated to the description of the models at different
abstraction levels: vehicle level, analysis level,
design level and implementation level. The elec-
tronic functions/features are described at different
levels of abstraction, reflecting the details refine-
ment of the architecture. The different artifacts
drive the functional decomposition of the functions
from abstract models down to implementation in
software components and hardware elements of
the system architecture.
Let us notice that the implementation level is sup-
ported by AUTOSAR [8]

Figure1: EAST-ADL2 abstraction levels

Modeling of the electronic systems of a vehicle
with EAST-ADL2 starts with capturing the func-
tions at the Vehicle level providing this way the
product line organization and description.

These functions are then realized at the analysis
level by abstract entities describing models of
software functions and devices that interact with
the vehicle environment.
At the design level, models are refined including
more implementation-oriented details that allow a
subsequent software decomposition of the func-
tional architecture. Devices are split into elements
of the hardware architecture such as sensors or
actuators, and the software parts for signal trans-
formation (such as “LocalDeviceManager”). Mid-
dleware is modeled to project the platform specific
services and functionality to the functional level.
The hardware architecture that is introduced in
parallel, captures the hardware entities as abstract
elements (e.g. I/O, sensor, actuator, power, ECU,
electrical wiring including communication bus) to
describe the topology of the electronic architecture
of the system. The overall structure is such that
one or several entities can be later realized by
AUTOSAR entities at the implementation level.
More details about the modeling process of
EAST-ADL2 can be found in [3].

In our approach, we suggest to perform
scheduling analysis starting from the design level
of EAST-ADL2. We think that this is the highest
modeling level of EAST-ADL2 against which it will
be possible to perform a scheduling analysis be-
cause at the previous levels, the so-called vehicle
and analysis levels, there is no enough detailed
information to do it. For example, there is no
hardware description, no possibility to describe
allocation, etc…

For timing analysis, EAST-ADL2 defines con-
cepts in order to model timing and behavioral in-
formation of the system. All this concepts are
related to a core concept for modeling the system
architecture in EAST-ADL2 the "ADLFunction-
Type". This latter is used to describe system func-
tions at the design phase.
In EAST-ADL2, behavior modeling relies on the
definition of a set of elementary functions that are
executed based on the assumption of synchro-
nous run-to-completion execution (read inputs
from ports, compute, and write outputs on ports).
EAST-ADL2 gives also means to define the acti-
vation patterns of an ADLFunctionType: the trig-
gering of such function is defined either by time or
by an event on one of its input ports. This is done
through the concept “trigger” that defines the trig-
gering parameters of ADL Functions.

As mentioned previously, the design level of
EAST-ADL2 includes concepts for hardware and
middleware modeling. For scheduling analysis in
particular, the relative speed of the ECU and the

data transmission rates of the bus are necessary
to obtain absolute execution times and communi-
cation delays.

Nevertheless, many modeling features re-
quired for scheduling analysis of automotive appli-
cations are not supported by EAST-ADL2. A
comprehensive summary of those features is pro-
vided in [5].
For example, EAST-ADL2 does not model explic-
itly OS tasks or the allocation of functions to these
tasks. On the other hand, scheduling analysis
methods are typically scenarios-based. This leads
to a behavior model supported by the notion of
end-to-end flows. This notion is not supported in
EAST-ADL2.

In conclusion, EAST-ADL2 abstracts away
many timing features and relies on AUTOSAR.
That is why it is necessary to complete it with
more scheduling oriented concepts in order to be
able to perform scheduling analysis at the design
level.
For this purpose, we suggest to use MARTE, as it
provides a dedicated specific framework for per-
forming scheduling analysis aware modeling. In
the next section, we describe a set of UML exten-
sions for supporting model-based schedulability
analysis as supported by MARTE. Firstly, we cata-
log some essential modeling features to support
state-of-the-art scheduling analysis of automotive
architecture description. These features suffice for
the purpose of this section, which is to provide an
informal review of the expressive power provided
by MARTE. A more detailed description of
MARTE can be found in the MARTE specification
(version 1.0 [4]) and in [2].

In our approach, we propose to use MAST
(Modeling and analysis Set for Real Time Applica-
tions) to perform scheduling analysis. An interest-
ing feature in MAST is its open source aspect; this
aspect is important for us, it indicates that there is
potential for enriching it to support more automo-
tive-oriented features (e.g. implementing new
automotive scheduling algorithms). Due to space
limitation, a detailed description of this tool is not
provided here, further information on MAST can
be found via its website: [6].

3. MARTE and scheduling analysis modeling

We organize the features considered in two
categories, system-oriented and design-oriented
modeling features.

3.1 System-oriented features

These modeling features are related to the at-
tributes and constraints of the targeted system
itself (i.e., information completeness). Figure 3
shows a simplified canonical model of the model-
ing features required for scheduling analysis,
which is discussed in this section.

Figure 3: Simplified canonical model for schedul-

ing analysis

Timing constraints: MARTE provides mechanisms
to annotate timing requirements and constraints in
models. Basic timing constraints include deadlines
and maximum jitters. One key modeling feature is
the concept of observation. This concept enables
to mark specific points in models to anchor real-
time assertions. Some common assertions have
been predefined in ready-to-use patterns, such as
jitters or conditional time constraints. These con-
straints can be for instance applied to the comple-
tion of a control/data flows of a functional chain or
to arbitrary events within computation and com-
munication chains.

End-to-end flows: Scheduling analysis methods
are typically scenario-based, and consequently
underlying behavior models rely mainly on the no-
tion of end-to-end flows that one defines as follow:
An end-to-end flow refers to a unique causal set of
execution/communication functions triggered by
an activation event (or logical combination of
events).
In MARTE, end-to-end flows describe logical units
of processing work in the system, which contend
for the use of processing resources (e.g., proces-
sors and buses) [2]. Let us also notice that firstly,
data and control can be part of the processing,
and secondly, different kind of timing constraints
can be attached to end-to-end flows (e.g., dead-
lines or output jitters).
One important feature in MARTE is that end-to-
end flows can be represented in behavioral views

(e.g., Sequence or Activity diagrams) comple-
menting structural models. This approach allows
modelers to specify multiple end-to-end flow con-
figurations that could be likely related to (a) spe-
cific operational modes, (b) alternative execution
chains, or (c) different quantitative scenarios of
activation parameters or other non-functional an-
notations.

Activation events: Both event-triggered and time-
triggered architectural patterns are involved in
automotive applications. Event-triggered means
that tasks are started, or messages are transmit-
ted, following the occurrence of one (or a conjunc-
tion of) significant event(s): e.g., "a door has been
opened"). Time-triggered architectures consist of
tasks started, or messages transmitted, at prede-
termined points in time, usually periodically.
Whatever the architectural style used for specify-
ing an application (often, mix approaches are ap-
plied), the activation models need to be formally
specified to enable further timing analysis. In
MARTE, activation models are denoted by means
of workload events. It can be modeled under dif-
ferent forms: by known patterns (e.g., periodic,
aperiodic, sporadic or burst), by irregular time in-
tervals, by trace files, or by workload generator
models (e.g., state machine models). Workload
events also enable specifying additional parame-
ters for periodic and aperiodic patterns such as
jitters, burst parameters, and distribution probabili-
ties.

SW and HW resources: What is needed for sched-
uling analyses is to take into account the impact of
the computing platform of the embedded system,
i.e. the operating system (OS) and the hardware
resources on the software applications. For ex-
ample, some scheduling analyses need to con-
sider the overheads due to the OS and the stack
of communication layers or throughputs and band-
widths of underlying networks. Among these as-
pects, access protocols to mutual exclusive
resources are of paramount importance in sched-
uling analysis of modern multiprocessor architec-
tures.
The MARTE analysis model distinguishes two
kinds of processing resources: execution hosts,
which include for example processors, coproces-
sors and controllers, and communication hosts,
which include networks and buses.
Processing resources can be characterized by
throughput properties such as processing rate,
efficiency properties such as utilization, and over-

head properties such as blocking times and clock
overheads.
The system model shown in Figure 3 thereby cap-
tures information about the applications and the
available resources provided by the platform of
the system. It defines also the mapping of applica-
tion functions to OS resources, ECUs and buses.

3.2 Design-oriented features

The design-oriented features category relates
to the modeling constructs and styles that serve to
organize models and to improve the designer de-
cision-making capability.

Application vs. Platform: In a typical automotive
development process, application and platform
descriptions evolve separately. Application arti-
facts center on functionality and control logic,
while platform artifacts focus on ECU/bus selec-
tion, middleware layers, and OS services.
 MARTE supports this separation of views at dif-
ferent abstraction levels. For the particular case of
scheduling analysis as denoted in Figure 4, the
modeling concepts are organized into a workload
behavior model and a resources platform model.
The former is dealing with application-specific an-
notations, whereas the second is dedicated to
computing and communication annotations.

Figure 4. Expected organization of analysis-
specific model elements in MARTE

Analysis scope: Due to the specific tools targeted
by scheduling analysis, it is important to bind sys-
tem model elements to a particular analysis or
evaluation scope that represents a real time situa-
tion to be analyzed and for which the system tim-
ing constraints or properties are valid. As
automotive electronic functions become more and
more complex, there is often the need to repre-
sent a system by multiple analysis models, corre-
sponding to different application-platform
allocations, abstraction levels, operational modes,
or different quantitative values of non-functional
parameters.

For that purpose, MARTE defined the notion of
analysis context (see Figure 4). An analysis con-
text stands for the root concept used to collect
relevant quantitative information for performing a
specific analysis scenario. Starting with the analy-
sis context and its parameters, a tool can follow
the links of the model to extract the information
that it needs to perform scheduling analysis. Ana-
lysis results can also be annotated back in appli-
cation models to be taken into account, for
instance, for architecture optimization or refine-
ment.

Allocation: Performing system-level analysis re-
quires taking into account the influence of underly-
ing platforms in order to provide accurate results.
To enable that, we will build an integrated global
model where application and platform models are
associated.
In MARTE, the allocation profile must be used for
supporting this activity. By using this profile, it is
then possible to denote a so-called allocation
model that will define how the application model is
mapped to the platform model. The allocation
model is built orthogonally to the mapped models
(the application and the platform models) and al-
lows describing several possible mappings in or-
der to explore different architecture options with
respect to a set of functionalities and thereby re-
using an architecture platform with different func-
tions.
This allocation model may also include the asso-
ciated timing attributes resulting from the alloca-
tion. For example, when allocating a runnable to a
given OS task and ECU, one needs to specify its
execution time (e.g. by calculated or measured).
In MARTE, it is achieved by specifying non-
functional constraints attached to allocations.

4. EAST-ADL2/MARTE based methodology

for scheduling analysis aware modeling

In this section, we describe the EAST-
ADL2/MARTE modeling framework for scheduling
analysis aware modeling with respect to the
abovementioned requirements.

4.1 General overview

UML2 encompasses many concepts of non-
object-oriented design. For instance, activity and
composite structure diagrams strive to support
procedural and component-based design ap-
proaches. In particular, the UML capability for
modeling component-based architectures is very

convenient since the automotive domain follows
this approach.
System models, as described by component-
based approaches, often do not fully match the
models used as input in the state-of-the-art of
scheduling analyses. Beyond syntactical mis-
matches (which can be solved by model transfor-
mation techniques), semantics shall be preserved
in order to enable reliable and consistent analysis
with respect to other activities of the development
process such as code generation or simulation. In
particular, the semantics of port communication
and internal behavior of software components
need to be conciliated with the causal model sup-
ported by scheduling analysis techniques. The
modeling framework defined in this section aims
at answering to this issue.
Our modeling architectural framework [9] is organ-
ized into a set of views, each providing a modeling
concern of the system under study:
• Application Components View: This view de-

scribes the application structure organized in
components, ports, interfaces and connec-
tors.

• System End-to-end Flow View: In this view,
we highlight the system-level behavior as or-
ganized in end-to-end data and control flows.

• Platform View (SW & HW). It describes the
software (which includes an OS task model)
and hardware resources (which includes the
processors, buses, devices, etc.), into specific
configurations of allocation.

• Allocation view. This view describes the allo-
cation of functions to software resources and
the allocation of software resources to hard-
ware resources.

The first view, application component view, de-
scribes the application logic. Although this model
view is important for the initial design scope, sys-
tem-level behavior, platform models and allocation
are the most important for scheduling analysis.

4.2 Application component view

In this view, components and data/event flows
between components are described with UML
composite structure diagrams using EAST-ADL2
concepts for structure modeling. In this view, a
component defines a self-contained entity of a
system, which may encapsulate structured data
and behaviors. The composite structure diagram
consists of a main component (called “ADLFunc-
tionType”) that is internally structured as a set of
components (UML parts) communicating between
them (called “ADLFunctionPrototypes”). The con-

cept of “ADLPort” defines an explicit interaction
point through which components may be con-
nected through a connector (“ADLConnectorPro-
totype”), and through which they can
communicate.
In this view, both data-based and service-based
communication are supported. This is done
through “ADLFlowPort” and “ADL-
Clien/ServerPort” of EAST-ADL2.

4.3 System end-to-end flows view

Starting with the application components view,
we should be able to model explicitly component
interaction, event/data flow, and activation events.
The granularity of the entities involved in a model
for scheduling analysis is often related to the
choice of black or gray-box component modeling.
For the first case, port-to-port delays should be
considered, while for the second scenario internal
“functions” may be considered. Whatever the
granularity, scheduling analysis require to model
the ordering of these functions. For that purpose,
on applies the predecessor-successor patterns,
with the possibility of multiple concurrent succes-
sors and predecessors, stemming from concur-
rent function joins and forks respectively.
To model this behavior information, we use the
end-to-end flows of MARTE. However, design
models are not always constructed to show end-
to-end flows explicitly. Instead, they are implied by
the presence of component interactions and inter-
nal behavior models. Therefore, there is a need to
derive the end-to-end flow models from design
models used e.g. for code generation.
All possible end-to-end flows in a given system
can be generated by starting from the activation
events, and then forming event sequences by re-
cursively considering the output event set for the
functions producing the events. Of course, many
of the possible end-to-end flows may be meaning-
less since the appropriate triggering conditions
may not hold.
As mentioned previously, MARTE end-end-flows
can be represented in behavioral views comple-
menting component models. According to the
UML 2.0 specification [7], seven UML diagrams
can be used to specify the behavior of a system:
Activity, Sequence, Communication, Interaction
Overview, Timing, Use Case and State Machine
diagrams. In this modeling framework, we pro-
pose to use activity diagrams as modeling views
for behavior scenarios. This choice has some par-
ticular benefits for our method:

• Activity diagrams are very intuitive representa-
tions of processing chains. They give a full
support of the different precedence relation-
ships between actions (joins, forks, etc.), that
are not easily represented in sequence dia-
grams for example. In addition, activity dia-
grams allow modeling both service-based and
data based communication while sequence
diagrams allow only modeling service-base
communication. Furthermore, unlike state
machine, activity diagrams can explicitly rep-
resent end-to-end processing scenarios.
These aspects qualify activity diagrams as the
more suitable UML behavioral diagrams for
developing scheduling analysis aware models.

• Structural elements, such as objects, compo-
nents and actors, can be consistently mod-
eled with UML::ActivityPartition in an activity
diagram.

• Activity diagrams are also good candidates to
model workload behavior annotations. An
UML::AcceptEventAction can define a work-
load with the corresponding arrival pattern and
related parameters (period, jitter, etc.).

In order to avoid ambiguities in the use of activity
diagrams, we adopted a set of well-formed inter-
pretations for MARTE annotations, which are de-
scribed below. We will limit our description to the
set of annotations that makes the model complete
and consistent from the point of view of the
schedulability analysis performed by MAST. Fur-
ther details on the MAST system model may be
found in [10]

• The activity diagram for representing a
single system end-to-end flow is stereo-
typed as «saEndtoEndFlow». Deadlines
on the end-to-end flow can be specified
through the attribute “end2endD”.

• The activation event that triggers the be-
havior of the system in the considered
scenario needs to be specified and
stereotyped as «gaWorkloadEvent». This
way the arrival pattern of the event can be
specified thanks to the attribute “Arrival-
Pattern”. The value of this attribute priority
is in form of a VSL expression (Value
Specification Language [2]). For instance,
a periodic event with inter-arrival period of
100ms will be annotated with an attribute
arrivalPattern whose value is equal to pe-
riodic (value=100, unit=ms).

Each activity representing the execution of an op-
eration will be stereotyped as a «saStep» Each
step is indeed an operation call described in the
application component view. If the activity repre-

sents the sending of a message, it will be stereo-
typed as «saCommunicationStep». For both types

of steps, it is required to specify the execution
time of each step through the attribute “exec-

Time”. This execution time represents the host
demand for executing the called function. Dead-

lines can be applied at the step level by assigning
values to the deadline attribute. The execTime

attribute value should be specified with the follow-
ing syntax: (min=value1,max=value2,unit=ms).

4.4 Platform view

As mentioned previously, MARTE allows for
separating application and platform views, as well
as describing a separated view for system alloca-
tions.
In order to comply with the MAST model, we pro-
pose to use the following set of annotations:

• The elements composing the software
platform need to be stereotyped as
«SchedulableResource» (such as tasks,
threads, etc...) and «gaCommChannel» if
the element represents a piece of logical
execution or a sending of a message, re-
spectively. Priorities of those software re-
sources are specified through the
“schedParam” attribute. The value of a
priority is in form of a VSL expression [2].
It is also possible to specify the name of
the scheduler the resource is assigned to,
through the attribute “host”. If no value is
assigned to the attribute, it is assumed
that the scheduler for this resource will be
the scheduler assigned to the hardware
resource (e.g. processor) where the soft-
ware resource will be allocated. The allo-
cation is done in the allocation model (see
next section).

• The elements composing the hardware
platform need to be stereotyped as
«saExecHost» (if they represent re-
sources with processing capacity) and
«saCommHost» (if they are able to trans-
mit/receive messages). These stereo-
types let specify the scheduling
parameters for the resource. For
saExecHost is it possible to specify, for
example, the scheduling policy (fixed pri-
ority, earliest deadline first, etc.) that is
implemented by the scheduler assigned to
the hardware resource, context switch
overheads, the range of priorities ac-
cepted, the level of preemptability, clock
overhead, etc... For saCommHost it is

also possible to specify the transmission
mode (simplex, duplex, half-duplex).

4.5 Allocation

Due to the specific tools targeted by schedul-
ing analysis, it is important to bind system model
elements to a particular analysis scope, since
automotive applications become more complex.
MARTE supports this need via the concept of
analysis context, which helps binding model ele-
ments to a particular evaluation scope. At the
heart of this binding there is the allocation of func-
tional steps executed in the considered scenarios
to software resources (software resource plat-
form) and the allocation of software resources to
hardware resources (hardware resource platform).
The allocation is carried out by specifying a com-
posite diagram stereotyped as «saAnalysisCon-
text».
Even if the saAnalysisContext pertains to the set
of end-to-end flows the designer want to analyze,
the allocation is not done per-flow basis. The in-
tent, in fact, is to factorize the different steps to
allocate in a unique view. As already said in the
end-to-end flow section, each step is actually the
call of a function operation owned by an applica-
tion component. This relationship allows the direct
allocation of functions on software resources. This
way, the composite diagram contains three main
components representing respectively: the appli-
cation component views with functions to be allo-
cated, the software platform and the hardware
platform.
Each function of the application view (that has
been called at least once in one of the end-to-end
flows) will be associated to only one schedulable
resource (e.g. OS task) and each connector in the
application component view will be associated to a
communication channel software resource. More-
over, each schedulable resource needs to be as-
sociated to a processing unit (SaExecHost) and
each channel need to be associated to a bus (sa-
CommHost). To carry out this association the
software resource will be stereotyped as <<allo-
cated>> and a dependency connector (type ab-
straction) between the function/connector and the
resource will be drawn. The connector needs to
be stereotyped as «allocate».

The allocation stereotypes allow the allocation
definition through the attribute: allocatedTo. It lists
the resources the element is allocated to. The
stereotype «allocate» lets also specify constraints
on the allocation and the type of allocation.

5. Illustration: the cruise control system

In this section, we illustrate our methodology
with a complete EAST-ADL2/MARTE model of the
cruise control and the scheduling analysis per-
formed with MAST.
When activated, the cruise control system allows
maintaining the vehicle speed to a set point value
specified by the driver. The cruise control system
is connected to a switch sensor that acquires the
driver inputs (activate cruise control, cancel cruise
control, set vehicle speed, etc…). The input is
then processed in order to decide about the action
to be taken by the system (authorize cruise activa-
tion, set speed, etc…)

5.1 The application component view

The cruise control system is modeled as a
composite diagram as shown in the figure 5:

Figure 5: Component view of the cruise control

system

The cruise control is composed of five basic mod-
ules: the application condition, the basic function
and the controller module that are responsible for
the control (performed every 40ms). The diagno-
sis and the limp home module are responsible for
the failure detection and management that is per-
formed each 10ms.
As shown in the previous figure, the cruise control
is modeled as an “ADLFunctionType”; Its sub-
functions are modeled as “ADLFunctionProto-
types”. Each sub-function is an instance of an
ADLFunctionType for which we defined an opera-
tion. (For example for the controller sub-function,
we define an operation called “call_controller”).

This operation will be used after when defining the
end-to-end flows with MARTE.

5.2 The end-to-end flow view

In figure 6, we show the end-to-end flows
view. Here we have identified two end-to-end
flows that we called control and failure manage-
ment.

 Figure 6: Control end-to-end flow

Figure 7: Failure management-end-to-end flow

Figure 6 shows the control end-to-end flow: The
PeriodicEvent that triggers this end-to-end flow is
stereotyped as «GaWorkloadEvent» and the cor-
responding annotation specifies the arrival pattern
(periodic) and the period value (40 ms). This end-
to-end flow then shows that the periodic event
triggers a sequential flow of three steps which are
operation calls, namely call_application_condition,
call_basic_function and call_controller. These op-
eration calls represent the execution of the logic
described in the previous section for the corre-
sponding functions application_condition, ba-
sic_function and controller (note that we did not
specify the internal behavior of components; this
is why we assume they have a unique operation
whose semantic has been described in terms of
functions in the previous section).
The application_condition takes as input all the
inputs described on input ports in Figure 5. At the
end of each period, its output triggers the execu-
tion of basic_function whose output triggers in turn

controller. For each operation of the end-to-end
flows, we specified its execution time. For exam-
ple for the controller operation, we have specified
(min=1.0,max=3.0,unit=ms).

Let us remark how the end-to-end flow gives
an immediate insight on the system behavior with
respect to real-time constraints. The succes-
sor/predecessor relation and the activation event
show that the deadline to be respected for each
end-to-end flow is the cycle duration (event pe-
riod) and that the sum of all execution times in
each end-to-end flow needs to be lower than or
equal to the cycle duration in order to have a
schedulable system.

5.3 The allocation view

Figure 8 shows the binding between the appli-
cation view and the software/ hardware platform of
the cruise control. The diagram shows how the
cruise control functions are allocated to two tasks
(fourty_ms_task and ten_ms_task), which in turn
are allocated on the ECU. Proper stereotypes are
applied: «saAnalysisContext» for the whole dia-
gram, «ShedulableResource» for Tasks and
«SaExecHost» for the ECU.
Note that the allocation does not show tasks de-
pendencies, which are instead represented by the
end-to-end flows. Those task dependencies will
be taken into account by the MAST analysis tool.

Figure 8: Allocation model for the cruise control

5.4 Schedulability analysis for the cruise

control

As mentioned previously, in our framework,
we propose to use MAST for schedulability analy-
sis. Each end-to end flow modeled with MARTE is
converted to a transaction in MAST (a transaction
represents interrelated activities that are executed
in the system).

Figure 9 shows the MAST result. This result tells
that the system is schedulable with a null slack.
This means that the system is just schedulable
and any change in its operation execution times
will affect its schedulability (a system slack in
MAST is the percentage by which we can increase
all the execution times of all the operations in the
system without jeopardizing its schedulability).

Figure 9: MAST analysis results

The table below shows the timing results calcu-
lated by MAST for the control and the failure man-
agement flows:

 Best
response
time (ms)

Worst
 response time

(ms)
control 4 39.5
Failure man-
agement

2 7

Table 1: response times
As the table shows, the worst response times are
lower than the periods. That is why the system
remains schedulable.

6. Conclusion

In this paper, we presented an approach for
modeling and analyzing automotive systems at the
early design phase by combining the EAST-ADL2
and MARTE languages for modeling and the
MAST tool for analysis.
The originality of this approach consists in per-
forming scheduling analysis, usually used at the
implementation phase, at a high abstraction level.
This will allow designers to detect early unfeasible
real-time architectures and hence prevent costly
design mistakes that are currently detected later in
the development process.
To be efficient, such approach has to be coherent
with the analysis that must be done along all the

development process. For example, performing
scheduling analysis at the design level will in-
crease the confidence degree in the architecture
design and the allocation chosen. Hence, this will
help him to move to the next design step. How-
ever, “design level analysis” must be coherent with
“implementation level analysis”. This coherence
requirement raises the question of which kind of
implementation oriented information may be ab-
stracted at the design level to enable early timing
analysis but without redundancy with the imple-
mentation level.

7. References

[1] B. Selic, A Generic Framework for Modeling Re-

sources with UML, IEEE Computer vol. 33 no.6,
pp.64-69, June 2000.

[2] H. Espinoza. An Integrated Model-Driven Frame-
work for Specifying and Analyzing Non-Functional
Properties of Real-Time Systems. Ph.D. Thesis,
University of Evry; 2007.

[3] P. Cuenot, P. Frey, R. Johansson, H. Lonn, M. –O.
Reiser, D. Servat, R. Tavakoli Kolagari, D. J.
Chen. Developing Automotive Products Using the
EAST-ADL2, an AUTOSAR Compliant Architecture
Description Language.

[4] Object Management Group, UML Profile for
MARTE: Modelling and Analysis of Real-Time and
Embedded systems, June 2008. OMG document:
ptc/08-06-09

[5] S. Anssi, H. Espinoza, A. Albinet, S. Gérard, F.
Terrier. On the Expressive Power of Modelling
Languages for Enabling Scheduling Analysis of
Automotive Applications.

[6] MAST website (http://mast.unican.es).
[7] Object Management Group. Unified Modeling Lan-

guage: Superstructure Version 2.1.1 formal/2007-
02-03.

[8] AUTOSAR Partnership (www.autosar.org).
[9] System and software engineering- architecture

description. ISO/IEC WD4 42010. IEEE
P42010/D6

[10] J. M. Drake, M. G. Harbour, J. J. Gutiérrez, P. L.
Martinez, J. L. Medina, J. C. Palencia. “Modeling
and Analysis Suite for Real Time Applications
(MAST 1.3.7), Description of the MAST Model,”
Report, Universidad De Cantabria, SPAIN, 2008

[11] H. Espinoza, S. Tucci-Piergiovanni, C. Mraidha, S.
Gerard, "MARTE-Based Modeling Framework for
Scheduling Analysis of Automotive Applications –
Bridge to MAST Schedulability Analysis Tool –",
DRT.LIST/SOL/09-280/CM, CEA LIST, December
2009.

