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Abstract: This article deals with performance 
verifications of architecture models of real-time 
embedded systems. We focus on models expressed 
with the AADL language and verified with the real-
time scheduling theory. To perform verifications with 
the real-time scheduling theory, the architecture 
designers must check that their models are 
compliant with the assumptions of this theory. 
Unfortunately, this task is difficult since it requires 
that designers have a deep understanding of the 
real-time scheduling theory. In this article, we 
investigate how to automatically check that an AADL 
architecture is compliant to this theory. We show 
how to explicitly model the relationships between an 
AADL architectural model and the analytical 
methods proposed by the real-time scheduling 
theory. From these models, we apply a model-based 
engineering process to generate a decision tool 
which is able to decide from an AADL architecture 
model what are the feasibility tests that the designer 
can apply.  
 

Keywords: AADL, Real-Time, Performance 
analysis, Design-patterns 

 

1. Introduction 
 
In [6], we have proposed a set of architecture 
design-patterns that allows early performance 
verifications of architecture models. Architecture 
models are expressed with AADL, a textual and 
graphical language support for model-based 
engineering of embedded real-time systems that has 
been approved and published as SAE Standard AS-
5506 [1].  
 
Performance verifications of embedded real-time 
architectures can be performed with the real-time 
scheduling theory. Real-time scheduling theory 
provides analytical methods, called feasibility tests 
which make possible timing constraints verifications. 
Real-time scheduling theory foundations were 
proposed in 1970 [2] and have led to extensive 
researches. However, it appears that in many 
practical cases no such analysis is performed with 

this theory although experience shows that it could 
be profitable. 
 
Indeed this theory is not easy to understand and to 
apply for many engineers. Most of the known 
feasibility tests have been elaborated during the last 
30 years. Feasibility tests provide a way to compute 
different performance criteria such as worst case 
thread response time. But each criterion requires 
that the target system fulfills a set of specific 
assumptions that are applicability constraints. Thus, 
due to the large number of feasibility tests and due 
to the large number of applicability constraints, it 
may be difficult for a designer to choose the relevant 
feasibility test for a given architecture to analyze. 
 
In [6], we have proposed an approach based on 
design-patterns in order to ease usability of the real-
time scheduling theory. We have defined four 
design-patterns called «Synchronous data flow», 
«Ravenscar», «Blackboard» and «Queued buffer». 
These design-patterns model usual communication 
paradigms of multitasked real-time software. For 
each design-pattern, we have identified which 
feasibility tests the designer can compute to perform 
the verification of his AADL architecture. This 
approach had two weaknesses. First, we have 
assumed that the designer is able to check that his 
AADL architecture is compliant with the design-
pattern he has chosen. Second, for a given AADL 
design-pattern, many feasibility tests may exist. For 
example, in the case of the «Synchronous data 
flow» design-pattern, we have listed 126 possible 
cases in which several feasibility tests can be 
applied. It implies that only defining a set of design-
patterns may not be enough to really help the 
designer. 
 
In this article, we investigate how to automatically 
check that an AADL architecture is compliant to a 
design-pattern and a set of feasibility tests. We show 
how to explicitly model the relationships between an 
architectural design-pattern and the compliant 
feasibility tests. From these models, we apply a 
model-based engineering process to generate a  
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Fig 1. From object oriented modeling to design-patterns
 
decision tool which is able to identify, from an AADL 
architecture model, the feasibility tests the designer 
is allowed to compute. Then, this decision tool helps 
the designer to choose the feasibility tests that he is 
allowed to apply to his AADL architecture models.  
 
This article is organized as follows. In section 2, we 
describe the set of design-patterns we consider. We 
also introduce AADL, the architecture language we 
promote for the modeling of both the architecture to 
analyze and our set of design-patterns. Section 3 
presents Platypus, the model-based engineering tool 
we use to generate the decision tool. In section 4, 
we show an example of the use of this tool with one 
of our design-patterns: the «Synchronous data flow» 
design-pattern. Then, section 5 is devoted to related 
works and we conclude and present future works in 
section 6. 

 

2. AADL Real Time design-patterns 

During the last decades, a lot of emphasis has been 
given to software modeling techniques, in a 
continuous move from traditional coding activities to 
higher level of abstractions.  
 
First step in this advancement has been the 
generalized usage of Object Oriented paradigms in 
modeling languages, especially through class 
diagrams. Such a representation is perfect for static 
data modeling and meta-modeling activities, but is 
not usually appropriate to highlight dynamic 
interactions of system and software architectures.  
 
That's why components appeared in a second step, 
which extend the OO model with concepts of 
provided and required interfaces (black box view) 
and internal composition (white box view). With 
components, it becomes easier to describe 
functional interactions between well identified 
subsystems and to manage complex system and 
software architectures in a modular way.  
 
 

 
However, as far as real-time systems are concerned, 
not only the applicative architecture must be 
described, but also its interaction with the underlying 
executive. This aspect is not supported by simple 
component based models, thus a third step can be 
identified by the availability of categorized 
components. This categorization aims at providing a 
stronger semantics to enrich the basic concept of 
component. As an example, a thread is a component 
which can be scheduled by the run-time executive. 
Several standardized languages such as the MARTE 
profile for UML [7] or the AADL provide a set of 
categorized components that are appropriate for 
real-time system and software modeling activities.  
 
Nevertheless, although it becomes now easier to 
describe real-time architectures, their validation still 
remains a subject of investigation. For instance, the 
lack of a single property may sometimes prevent a 
"correct" real-time architecture from being properly 
processed by a schedulability analysis tool.  
 
That is why, the next step in the improvement of the 
development process of real-time systems consists 
in providing to the end user a set of predefined 
composite constructs that match known real-time 
analysis solutions. The composite constructs we 
have studied correspond to the various inter-thread 
communication paradigms that can be applied in an 
AADL architecture and can be seen as real-time 
design-patterns. 
 
AADL is used to design and analyse software and 
hardware architecture of embedded real-time 
systems. Many tools provide support for the 
modelling and the analysis of AADL models. Ocarina 
implements Ada and C code generators for 
distributed systems [16]. TOPCASED, OSATE and 
Stood provide AADL modelling features [22,19,20]. 
The Fremont toolset and Cheddar implement AADL 
performance analysis methods [21,13]. An updated 
list of supporting tools can be found on the official 
AADL web site: http://www.aadl.info. 
 
We proposed four AADL architecture design-patterns 
called “Synchronous data flow”, “Ravenscar”, 
“BlackBoard” and “Queued Buffer”. A detailed 
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description of them is given in [6]. The next section 
will give a short description of them. 
 

2.1 Synchronous data flow design-pattern 
 

With this design-pattern, threads are periodic and 
communication is achieved with AADL data ports. 
This architectural pattern is inherited from Meta-H 
[1]. 
 
In this synchronization schema, the thread dispatch 
is not affected by the inter-thread communications 
that are expressed by pure data flows. Each thread 
reads input data ports at dispatch time and writes 
output data ports at completion time. In this simple 
case, the execution platform consists in one 
processor running a scheduler such as Rate Mono-
tonic [2]. 
 

2.2 Ravenscar design-pattern 
 
The main drawback of the previous design-pattern is 
its lack of flexibility at run-time. Each thread will 
always execute, read and write data at pre-defined 
times, even if useless. In order to introduce more 
flexibility, asynchronous inter-thread communi-
cations can be proposed. 
 
An example of such a run-time environment is given 
by the Ravenscar profile. Ravenscar is a part of the 
Ada 2005 standard [17]. It is a set of Ada program 
restrictions usually enforced at compilation time, 
which guarantee that the software architecture is 
real-time scheduling theory compliant. Ravenscar is 
an Ada subset where real-time applications are 
composed of a set of threads and shared data. 
 
Ravenscar assumes that threads are scheduled with 
a fixed priority scheduler and that data components 
are accessed with ICPP (Inheritance Ceiling Priority 
Protocol) [18]. 
 
In this second design-pattern data component 
access may occur at any time. 
 

2.3 Blackboard design-pattern 
 
Ravenscar allows a thread to allocate/release 
several AADL data components. Real-time 
scheduling theory usually models such a shared 
resource as a semaphore to handle concurrent 
access. In classical operating systems, many 
synchronization design-patterns exist such as critical 
sections, barriers, readers-writers, private 
semaphores and various producers-consumers 
synchronizations [23]. 
 
The blackboard design-pattern implements a 
readers-writers synchronization protocol. At a given 
time, only one writer can get the access to the 

blackboard in order to update the data component, 
as opposed to the readers which are allowed to read 
the data component simultaneously. The usual 
implementation of this protocol implies that readers 
and writers do not perform the same semaphore 
access, thus, it requires extra analysis. 
 

2.4 Queued buffer design-pattern 
 

In the blackboard design-pattern, at any time, only 
the last written message is made available to the 
threads. 
 

Some real-time execution platforms provide 
communication features which allow all written 
messages to be stored in a buffer. AADL also 
proposes such a feature with event data ports. The 
Queued buffer design-pattern models such a 
communication. For this design-pattern, an analysis 
tool should provide some means to perform buffer 
dimensioning verifications. 

2.5 Pattern notation 
Each design-pattern presented above is always 
composed of the same items, according to the 
design-pattern language we are using. These items 
are described as follow: 

• Name: the design-pattern name is a unique 
and representative name; the only use of the 
name should immediately recall the what 
and the how covered by the design-pattern; 

• Synoptic: gives a very general description 
of what is covered by the design-pattern and 
of how it is covered; 

• Context: the context is one or several 
situations in which the design-pattern may 
apply. The context may include the kind of 
problem for which the design-pattern is 
supposed to give a well accepted and tested 
solution. 

• Keywords: a list of representative words 
which may be used as representative keys 
to help determine the application of the 
design-pattern and help finding design-
patterns that apply to a specific project, 
especially on-line. 

• Predecessors: more general design-
patterns. 

• Solution: the description of the technical 
solution illustrated with an AADL model. 

• Successors: may give some other design-
pattern names which are applicable in a 
more specific context. 

• References:  A set of reference to other 
design-patterns or information relevant to 
the context and solution. 

 
In this section, we have presented four AADL 
design-patterns that are compliant with the real-time 
scheduling theory. In the next section, we present 
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the engineering environment that we use to model 
the design-patterns and the real-time scheduling 
theory feasibility tests: the Platypus environment and 
the STEP/EXPRESS framework. 
 

3. The STEP/EXPRESS Data exchange 
Framework 

ISO 10303 provides a neutral mechanism for 
describing product data throughout the life cycle of a 
product, independent of any particular computer-
aided system. ISO 10303 is suitable for file 
exchange and for implementing, sharing, and 
archiving product databases. 
 

3.1 Modelling with EXPRESS 
 

For the building of a STEP data exchange 
component, the EXPRESS data modeling language 
is used in order to describe data which are to be 
exchanged. For such a purpose, data schemas are 
specified with entity descriptions and constraints. 
The possibility to add constraints allows the 
specification of domain rules.  Constraints can be 
either local or global. From a dynamic point of view, 
a data set is considered as conform to an EXPRESS 
schema if all local and global constraints specified 
within the schema are satisfied.  
 
As an example, consider the simple EXPRESS 
model given in figure 2. This model is made of two 
schemas. The first schema, named Architecture, 
specifies a periodic thread concept with a deadline 
and a period. Each instance of Periodic_Task is 
constrained to have a period greater than its 
deadline. The second schema, named 
Deadline_On_Request_System, contains a global 
rule which constraints further each instance of 
Periodic_Task: given that a system is modeled with 
a set of Periodic_Task instances, the constraint 
ensures that such a system is made of at least two 
threads and that for each thread, its period is equal 
to its deadline. 

 
3.2 Working with the Platypus environment 

 
Platypus [http://cassoulet.univ-brest.fr/mme] is a 
software engineering tool which embeds a modeling 
environment based on the STEP standard. 
 
First of all, Platypus is a STEP environment, allowing 
data modeling with the EXPRESS language and the 
implementation of STEP exchange components 
automatically generated from EXPRESS models. 
From this point of view, Platypus is a typical STEP 
based tool with an EXPRESS editor and checker, 
and a STEP file reader, writer and checker. 
 
SCHEMA Architecture; 
 

 ENTITY Periodic_Task; 
    Deadline : Natural_Type; 
    Period : Natural_Type; 
  WHERE 
    wr1 : Deadline <= Period; 
  END_ENTITY; 
END_SCHEMA; 
 
SCHEMA Deadline_On_Request_System; 
  USE FROM Architecture; 
 
  (* all tasks must have period = deadline *) 
  RULE Period_Equal_Deadline_Rule 
  FOR ( Periodic_Task ); 
  WHERE 
    at_least_two_tasks :  
      SIZEOF ( Periodic_Task ) > 1; 
    period_equal_deadline :  
      SIZEOF ( QUERY ( p <* Periodic_Task | 
        p.Period <> p.Deadline ) ) = 0; 
  END_RULE; 
END_SCHEMA; 

Fig 2. Modelling of a thread constraint 
 

Platypus is also an object oriented development tool. 
It is implemented inside Pharo [http://www.pharo-
project.org], a free Smalltalk environment. Thanks to 
Pharo, Platypus is an hybrid tool. On one hand, it 
allows very precise data specification and 
manipulation of statically typed objects. On the other 
hand, associated with code generators, it allows 
rapid system prototyping and efficient code 
maintenance. Platypus is developed to be a schema  
mapping tool allowing the specification of mapping 
rules between source and target schemas. Mapping 
rules are designed with EXPRESS and can be 
interpreted or translated to Smalltalk. 

 

Fig 3. AADL model analyser overview 

  

4. EXPRESS modeling of feasibility tests 
and architecture 

Let see now how to model both feasibility tests and 
architectural design-pattern with EXPRESS. Given a 
feasibility test FT, it is possible to formally specify 
which applicability constraints the architecture model 
has to satisfy for the feasibility test FT to be 
applicable. This set of constraints can be specified in 
a FT specific meta-model. 
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Thus, a set of meta-models can be designed, one 
per feasibility test and used in order to help 
designers for the checking of their real-time system 
models. The figure 3 depicts a global view of our 
model analyzing tool which is using these meta-
models in order to find which feasibility tests are to 
be performed for AADL model. 
 

4.1 The design of the model analyzer 

 
Fig 4. The model analyzer conceptual 

components 
 
As shown by the figure 4, the analyzer is designed 
from two main conceptual parts:  

• The first part (left side of the figure 4) 
consists in an AADL meta-model named 
Architectures meta-model. This meta-model 
specifies the AADL concepts, their 
associations and constraints. The important 
point is that this meta-model specifies all the 
concepts needed in order to build a 
simplified AADL parser and to check AADL 
models. In other words, from an AADL 
model, it is possible to instantiate the 
Architectures meta-model and use this 
instance for an analysis. 
 

• The second part (right side of the figure 4) is 
made of a set of meta-models. Each of them 
is a specialization of the Architectures meta-
model and is specific to a particular 
feasibility test. Such a feasibility test meta-
model specifies the constraints which are to 
be satisfied for the related feasibility test to 
be applicable. In other words, if an 
Architectures meta-model instance built from 
an AADL model satisfies all constraints 
specified by a feasibility test meta-model, it 
means that the related feasibility test is 
applicable to the AADL model. 

 

 

4.2 The prototype  implementation 

 Fig 5. The model checker implementation 

 
The prototype is made of an AADL parser and of 
feasibility test checkers. The AADL parser is 
classically implemented from an ADDL grammar and 
is made to build instances of the Architecture meta-
model. This AADL parser is dedicated to our design-
patterns: it is only able to parse AADL models that 
are composed of the AADL component categories of 
our design-patterns. Each test checker is 
automatically built from the corresponding feasibility 
test meta-model. 

From a particular AADL model (see figure 4), an 
AADL meta-model instance is built by the parser, 
then, each test checker evaluates it. As an example, 
if all constraints of the C1 meta-model are satisfied, 
then, the C1 test checker result is true. It means that 
the designer can use the C1 feasibility test in order 
to evaluate the performance of its architecture 
model. 

4.3 Example of the Synchronous data flow 
design-pattern 

In the previous section, we have presented the 
overall approach which allows a designer to decide 
which feasibility tests he can apply on a given AADL 
model compliant to one of the design-patterns 
presented in section 2. In the sequel, we illustrate 
the approach with the simplest design-pattern: the 
Synchronous data flow design-pattern. First, we 
present an example of feasibility test that can be 
applied on the Synchronous data flow. Then, we 
present the EXPRESS models which allow Platypus 
to check an AADL model. Finally, we present a 
screenshot of the Platypus output. 

 

4.3.1 Performance analysis of the Synchronous 
data flow design-pattern 

 
From an AADL model compliant to the Synchronous 
data flow design-pattern, we can perform 
performance analysis based on real-time scheduling 
theory. 
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The thread components of the Synchronous data 
flow design-pattern are periodic threads [2] defined 
by three parameters: its deadline (Di), its period (Pi) 
and its capacity (Ci). Pi is a fixed delay between two 
release times of the thread i. Each time the thread i 
is released, it has to do a job whose execution time 
is bounded by Ci units of time. This job has to be 
ended before Di units of time after the thread wake 
up time. 
 
Some algebraic methods can provide a proof that a 
model compliant to the Synchronous data flow 
design-pattern will meet its periodic thread 
performance requirements. Scheduling algorithms 
allow the designer to compute scheduling 
simulations of the architecture to analyze. Usually, 
simulations can not lead to a proof. However, in 
some cases (with deterministic schedulers and with 
periodic threads for example), scheduling simulation 
may lead to a schedulability proof if the designer is 
able to compute a scheduling during the base period 
[3]. 
 
Different kinds of feasibility tests exist for the 
Synchronous data flow design-pattern [4]: tests 
based on processor utilization factor (noted 
C1,C2,..,Cn tests in the figure 4) and tests based on 
worst case thread response time (noted R1, R2, …, 
Rn tests in the figure 4). 
 
The worst case response time feasibility test 
consists in comparing the worst case response time 
of each thread with its deadline. Joseph, Pandia, 
Audsley et al. have proposed a way to compute the 
worst case response time of a thread with pre-
emptive fixed priority scheduling by: 
 
 
 

 
 

Eq. 1: compute worst case response time of a 
periodic thread i 

 
Where Ri is the worst case response time of the 
thread i. 

4.3.2 EXPRESS modeling of the Synchronous 
data flow design-pattern and its feasibility tests  

Let see now the EXPRESS models for the 
Synchronous data flow design-pattern. Figures 6, 7 
and 8 present the three EXPRESS models 
(schemas) that are required to produce the decision 
tool able to check if a given AADL model is compliant 
to the Synchronous data flow design-pattern. 
 
SCHEMA Architecture; 
  ENTITY Generic_Scheduler; 
    Quantum : Natural_type; 

    Preemptive_Type : BOOLEAN; 
  END_ENTITY; 
 
  ENTITY Rate_Monotonic_Protocol  
    SUBTYPE OF (Generic_Scheduler); 
  END_ENTITY; 
 
 ENTITY Periodic_Task; 
    Capacity : Natural_Type; 
    Deadline : Natural_Type; 
    Period : Natural_Type; 
    Release_Time : Natural_Type; 
    Priority : Priority_Type; 
    Blocking_Time : Natural_Type; 
  WHERE 
    wr1 : Deadline <= Period; 
  END_ENTITY; 
END_SCHEMA; 

Fig 6. EXPRESS modeling of the architecture 
 
A first EXPRESS schema (figure 6), called 
Architecture,  depicts the architecture point of 
view of the design-pattern. From section 2.1, we 
know that only one type of component is used in this 
design-pattern: AADL thread components. Schema 
Architecture  defines all thread component 
attributes that are required by the feasibility tests 
(e.g. priority, deadline, period, …). The 
Architecture  schema also defines the 
components that are part of the execution 
environment (e.g. scheduler) and that required for 
the analysis. 
 
The third EXPRESS schema (figure 8), called Fea-
sibility_Tests,  specifies the different feasibility 
tests which can be applied to the Synchronous data 
flow design-pattern. This schema also includes a 
model of the applicability constraints of the feasibility 
tests. Remember that these constraints must be met 
by the AADL architecture to analyze. These 
feasibility test constraints are stored in separate 
schemas. For example, schema Simulta-
neous_Release_Time_Constraint and Pe-
riod_Equal_Deadline_Constraint 
respectively specify that the threads of the 
Synchronous data flow design-pattern are released 
at the same time and that the thread deadlines are 
equal to their periods. Figure 7 shows a part of these 
schemas. 
 
 

SCHEMA Simultaneous_Release_Time_Constraint; 
  USE FROM Architectures; 
 
  RULE Simultaneous_Release_Time  
   FOR (Periodic_Task); 
   LOCAL  
     nbpt : INTEGER := SIZEOF (Periodic_Task); 
     p1 : Periodic_Task := Periodic_Task [1];   
   END_LOCAL; 
   WHERE 
   (* All tasks share the same release time *) 
   r1 : ( nbpt < 2 ) OR  
    (SIZEOF (QUERY(p <* Periodic_Task | 
       p.Release_Time <> p1.Release_Time))= 0); 
  END_RULE; 
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END_SCHEMA; 
 
SCHEMA Period_Equal_Deadline_Constraint; … 

Fig 7. EXPRESS modeling of the feasibility tests 
constraints 

 
 

SCHEMA Feasibility_tests; 
 ENTITY Response_Time  … 
 
SCHEMA Simultaneous_And_Deadline_Equal_Period; 
 USE FROM Architecture; 
 USE FROM Feasibility_Tests; 
 USE FROM Simultaneous_Release_Time_Constraint; 
 USE FROM Period_Equal_Deadline_Constraint; 
 
 ENTITY Test_C1 SUBTYPE OF … 
 END_ENTITY; 
 
 ENTITY Test_C7 SUBTYPE OF … 
 END_ENTITY; 
 
 ENTITY Test_S1 SUBTYPE OF … 
 END_ENTITY; 
 
 ENTITY Test_R1 SUBTYPE OF … 
 END_ENTITY; 
 
 ENTITY Test_R2 SUBTYPE OF … 
 END_ENTITY; 
 
END_SCHEMA; 

Fig 8. EXPRESS modeling of the feasibility tests 
 

4.3.3 Example of use of the decision tool 
 
The figure 9, shows the Platypus environment 
checking feasibility test applicability constraints of an 
architecture. Two opened panes are presented in 
this figure. The top pane shows the schema instance 
editor containing three periodic threads. These three 
instances are extracted from the AADL model and 
constitute the current architecture. Note that the 
current prototype does not handle AADL files: the 
architecture model is loaded from STEP files. The 
bottom pane shows the Simultaneous_Relea-
se_Time constraint and the result of its evaluation 
which is true (see the .T. pointed out by the arrow). 
 

 
Fig 9. A Platypus screenshot showing an Architecture 
schema instance together with a constraint and the 
result of its evaluation 

5. Related works 

This article has shown an approach to check that an 
architectural model of a real-time system is 
compliant to a set of constraints. Many other 
approaches also investigated how to perform such 
verifications. 
 
UML together with its standard constraint language 
OCL could be used for the purpose of designing and 
building feasibility test checkers. But as far as we 
know, our approach has not been investigated with 
UML tools. 
 
In [12], Gilles and al. have proposed a similar 
constraint language for AADL. The proposed 
language is called REAL (REAL stands for 
Requirement Enforcement Analysis Language). 
REAL is developed by Télécom-Paris-Tech and 
ISAE. It is an annex of the AADL standard. This 
language is then specifically designed for the 
modeling of real-time architectures. REAL allows to 
express various type of constraints on AADL 
architecture and their authors have shown that it can 
express some of the applicability constraints of the 
real-time scheduling theory. 
 
Another example of a similar move towards more 
analyzable constructs built on top of a modelling 
language can be found in the history of the HOOD 
method [8]. The first versions of this modelling 
approach defined a quite basic concept of 
component (called HOOD objects) which aimed at 
representing more or less an Ada 83 package. In 
1995, two specializations of HOOD were specified: 
HOOD 4 [9] which targets Object-Oriented 
programming languages and especially Ada 95, and 
HRT-HOOD [10] which goal is to comply with the 
Ada Ravenscar model (now included into Ada 2005). 
In both cases, the original concepts and principles of 
the HOOD methodology have been kept, and 
specific composite constructs have been identified in 
order to support properly Ada 95 tagged types or 
Ravenscar cyclic, sporadic and protected objects. 
 
More recently, in the context of the IST-ASSERT 
project, Panunzio and al proposed to integrate some 
HRT-HOOD components with UML models [11]. For 
such a purpose, they have proposed an engineering 
process based on a meta-model called RCM (RCM 
stands for Ravenscar Computational Model). In this 
process, performance verifications are performed 
with the MAST framework [14]. 
 
 

 6. Conclusion 
 
In this article, we have presented an approach that 
allows an architecture designer to automatically 
check that his models are compliant with the 
assumptions of the real-time scheduling theory. This 
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theory provides analytical methods, called feasibility 
tests, which allow designers to perform verifications 
on architecture models. 
 
We showed how to explicitly model the relationships 
between an architectural model and the feasibility 
tests with EXPRESS. From these EXPRESS 
models, we apply a model-based engineering 
process to generate a decision tool which is able to 
identify the compliant feasibility tests the designer is 
allowed to compute.  
 
The current decision tool is a prototype inside the 
Platypus environment. In the next months, we plan 
to write a new version of this decision tool that can 
be embed into Cheddar [13]. 
 
Cheddar is an Ada tool which aims at performance 
analysis of real-time architectures. It includes 
numerous feasibility tests and most of the most 
classical scheduling algorithms of the real-time 
scheduling theory. Cheddar is already able to 
perform verifications of AADL models but today, 
Cheddar’s users have to choose which feasibility 
tests to apply to their AADL models. The integration 
of the decision tool proposed in this article will 
increase Cheddar’s usability. 
 
A second possible extension of the work presented 
in this article would address the type of analysis the 
decision tool is able to produce. Indeed, in the 
current approach, we only check that a given 
architecture model is conform to a given design-
pattern. If the architectural model is conforming to 
the design-pattern, the tool is able to list the 
compliant feasibility tests. But if not, such a decision 
tool should provide model metrics [15] to designers 
in order to increase their model compliance to the 
real-time scheduling theory. In a second step, we 
plan to investigate the relevant metrics for our 
different AADL design-patterns. 
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