
 Page 1/8

An Advanced Engineering Framework experimented on a
R&AE Electric Vehicle case

F. Colet (Renault), S. Chabroux, J. Matta (Knowledge Inside)

Abstract

This article describes modeling activity experimented on an Advanced engineering case
of Zero Emission Vehicles at Renault. A key advantage of our approach is that system
architecture and requirements management at all the stages of the system life cycle are
managed in a unique data model and unique database. It reviews conceptualization and
production process of a complex system. It presents a spectrum of activity modeling
techniques, ranging from a widely used systems engineering diagram, to continuous
flow modeling. The techniques include use case definition, requirements elicitation,
system architecture definition and finally Electric and Electronic architecture. The article
also describes refinements of modeling activity using arKItect© tool.

Keywords: system modeling, project process, use case, requirement and architecture
modeling, model in the loop, fault injection

1. Introduction

Mastering complex systems design remains difficult.
This is due to many issues including language,
methods, tools diversity. Indeed, modeling systems
for the purpose of setting a description, an
explanation or a rational meets the same problems.

In fact, many complex systems descriptions in the
industry are spread over many models, formats and
documents (consider the 100 000 documents related
to a Nuclear Plant according to Anne Lauvergeon –
Le Monde 02/09/2009). Resulting heterogeneous
system descriptions are aggregated in normative
frameworks that overlook many important aspects of
project, process and product management.

Normative language constraints may even be a
hindrance to modeling properly complex systems.
They most likely follow specific objectives and need
long learning curves (e.g. UML, SysML or more
recently BPMN / BPML).

Conversely, non normative frameworks (e.g.
Microsoft Visio) allow a representation of domain
and company specific idiosyncrasies whatever they
relate to functional, technical or organizational items.
However, system integrity checks clearly miss in
such frameworks and more generally the ability to
manage the links between objects and processes
constituting a system.

However, complex systems are characterized by a
significant number of relations of different kinds.
Their management compels a very important
investment during their design (requirement

management, risk management, verification &
validation …) but also during their whole life cycle.

So there is a need for a common framework that
would be sufficiently flexible to be used by a variety
of teams and competencies and at the same time
sufficiently structured to support different stages of
system life cycle, providing a numerical continuity.
This has been the main topic of investigation for
Samuel Boutin in his team during 10 years in the
context of the automobile industry. arKItect©, a
software edited by Knowledge Inside, is the result of
this work.

This technology is applied today in an advanced
engineering project of Zero Emission Vehicles at
Renault. In the sequel, we shall call it “the AE-EV
project”. The project team has set up a process and
system description framework inherited from Renault
engineering best practices and also from standard
methods, e.g. functional analysis. The main
advantage of such an approach resides in the
integration of knowledge provided by a variety of
teams and competences in a structured manner.
This knowledge is extracted from various existing
documents (design documents, meeting minutes,
test results, analysis …) and also directly entered by
arKItect© users.

Following our approach, system architecture
description becomes the backbone for the system
knowledge and a reference for capitalization, further
reuse, and system design and integration. In this
paper, we present the implementation and return on
experience of this program.

 Page 2/8

This article will first expose the arKItect© concept
before presenting the AE-EV project
conceptualization process and associated use
cases. Then, our Model Based System Engineering
approach will be introduced with requirements and
architecture definitions. Finally, we give an example
of future improvement on how the system modeling
activity can be an input to Electric and Electronic
architecture and embedded software architecture,
including real-time aspects.

2. arKItect© concept

arKItect© is a tool for defining Diagram Domains
Specific Languages (DSL) and using them in
different applicative domains. At the time three,
major DSL have been successfully defined and used
within arKItect©: embedded systems, information
systems, infrastructure. The definition of a DSL is
established in [6]. A Diagram Domain Specific
Language is made up of three layers: D2, D1 and D0
layer.

At the D2 level, the Diagram DSL represents the
language for describing any type of diagrams. It is
solution - and platform - independent and contains
all criteria understandable by a user who wants to
specify diagrams. This level is problem-oriented for
specifying diagrams.

At the D1 level, a Diagram DSL instance describes a
type of diagram. It contains the view model
description for producing a type of diagram that is
model elements to be displayed with their layout
properties. This description respects the language
defined by the Diagram DSL. This level contains all
data for generating tools producing diagrams.

At the D0 level, we have diagrams expected by end-
users in their modeler.

So arKItect© is a framework to develop system
development tools and the three levels, D2, D1 and
D0 are supported by the framework together with a
user administration tool allowing granting a variety of
access rights to the different users. arKItect© is
funded on an evolution of the object model
supporting a different approach to flows
representation and handling. We call it a relational
object model because flows between objects are first
class citizens. The very nice theoretical added value
of our object model is that all the DSL are built upon
6 features, in comparison to more than 20 for UML
or other derived languages. This allows a very short
learning cycle for the tool, no more than one day is
necessary to understand the framework and work on
a simple model. Of course, the more diagrams are
added, the more difficult it is to master a DSL.

A very important feature is that arKItect© is a visual
tool. It is commonly said that a picture stands for
thousand words. We believe so. arKItect© can

communicate with Doors. It is also interfaced with
Simulink© from Mathworks for the purpose of
generating models for simulation. W.r.t SysML and
similar languages based upon the OMG standard, it
is possible to define the SysML diagrams in
arKItect© although in most of our projects, only a
few UML/SysML like diagrams (e.g. activity diagram)
may be needed. Conversely, the user can add many
diagrams that are not already standardized and that
prove to be useful for each project. Building new
diagrams in arKIitect© is very easy. Indeed, no
diagram is predefined in the tool if you start a model
from scratch without reusing a predefined meta-
model. Rebuilding UML like diagrams is quite easy,
but many new diagrams can be useful, e.g. dynamic
architecture diagrams as described below in the
paper.

Our experience is that given the application domain
and the size of the project, the environment needed
for development and the way people will work can
change a lot.

Last but not least, the tool is open, a python script is
available and can be executed on each object or a
diagram. This feature is used to import/export
Microsoft Office documents and is typically used for
documents generation.

So arKIitect© is a meta language definition system,
a diagram definition system and modeling tool. The
language is formed of a very compact syntax
allowing to specify UML SysML diagrams and many
others as needed for DSL design.

3. The AE-EV project process

Many systems engineering standards were produced
over the last few decades. These standards have
been increasingly harmonized in the past few years
and have evolved into more widely accepted
international standards. The ISO IEC 15288:2002
standard “Systems Engineering – System Life Cycle
Processes” (see figure 1) is the reference standard
at Renault for the development and the deployment
of systems engineering. A review of the ISO 15288
standard leads to the conclusion that systems
engineering is very broadly defined. Most systems
engineering handbooks only describe the
engineering process(es), while the ISO 15288
describes the processes of the entire system life
cycle, including Agreement, Entreprise and Project
processes. This standard overlaps with the better
known standard ISO 9001:2000 for Quality
Management.

Figure 1: Product life cycle

 Page 3/8

A major feature of our approach is that the tool
allows to design at the same time the product
lifecycle and engineering process specifications
(Figure 1 to 4) and to link the process steps with the
modeling activity for the system.

The Engineering process of system
conceptualization step is composed of three
subprocesses: requirements elicitation, functional
analysis and design see figure 2 below.

Figure 2: Conceptualization process

The AE-EV project starts off with a problem - Zero
Emission Vehicles - that requires a solution. This is
one of the stakeholder requirements and at the same
time it’s already a performance requirement attached
to the vehicle function. To be able to properly
manage the complexity of the ZE Vehicle, a top-
down approach to the engineering process is
essential. The conceptualization process is repeated
at the different levels of the system structure, till the
refinement of the requirements leads to ready for
use components or adaptations of such components.
This approach is extensively described in the
INCOSE guideline [2].

The engineering process whereby the design to be
produced is defined, is followed by the production
process. During this phase, the system is physically
produced and validated.

As for the conceptualization process, the production
of complex systems is carried out through the
integration of the different system layers. That’s why
we rather call this step the integration step, see
Figure 3. In contrast to the previous step, the
integration process is carried out bottom-up. It
consists of system or subsystems implementation
and validation to determine whether the system or
subsystems behave as designed and as required
meeting the expected performance requirements.

Figure 3: Integration process

Below Figure 4 presents the AE-EV project main
step process inherited from Renault engineering best
practices and also from standard system engineering
approach as described above.

Figure 4: System engineering data management process

In this graphical project view, green boxes represent
the project main process step. The sequence of
those steps is schematized by blue arrows. On some
steps, parallel activities (red boxes) come in and
allow us to produce artifacts (pink boxes) and to
generate associated documents (blue boxes) for
example System Technical Requirements (STR) and
Data Architecture System (DAS) in Renault project
process.

4. Use case

A commonly admitted idea about the design of
Electric Vehicles is that it could be seen as just the
electrification of a traditional vehicle equipped with a
thermal engine. From the outside of the vehicle this
is not completely false; the car will have wheels, a
body… But the Electric Vehicle has to reconsider
one of its life cycle phases from a different point of
view: the energy refuelling. Until now this phase was
not completely described with the exception of GPL /
GNV due to safety issues mainly.

For the energy recharge, the electric vehicle has to
comply with several standards like IEC 61851 (under
revision) describing the different charge modes, IEC
62196 for the physical interface and new
communication requirements.

The main interest of this study of the charge is that it
considers the vehicle as a sub system as well as the
charge spot and therefore it implies that a main
system exists that includes the spot, the vehicle and
all the necessary means to fulfil the charge like
cable, plugs and communication.

 Page 4/8

Several use cases have to be taken into account.
For each case, the system will not have the same
behaviour and the customer will not interact in the
same way.

The Use case diagram Fig. 5 provides a high-level
description of the usage requirements for the EV
system. This diagram is composed of four object
types. The grey boxes are subsystems. Each
subsystem of the complete system includes use
cases (ellipse boxes). Use cases are linked between
them by actions (black arrows). The actor (white
box) executes first level actions leading to
subsequent behavior in other subsystems.

Figure 5: EV use case diagram

For example, in the use case of charge at home, the
customer will plug the cable into his car on one hand
and into the wall socket on the other hand, and the
charge will start at a low power (typically 3 to 6kW)
or eventually a clock will manage the start of the
charge and its end. But the customer will not stay
nearby its car during the whole charging process. At
the opposite, the quick A.C. charge at 43kW will
mainly be used to partially recharge the battery and
provide the autonomy needed by the customer to
finish his trip. The customer will for this case only
plug the cable which is attached to the spot into the
socket of his car and will stay the several minutes
requested to fill the battery.

5. System requirement modeling

The objective of the requirements analysis process
is to translate the stakeholders’ requirements into
measurable system requirements and functions. The
requirements for the functions of the systems to be
designed determine what the system must be able to
do and must be functionally specified. At the same
time the limitations, such as environmental factors
and regulations, are also addressed.

Requirement diagram captures requirements
hierarchies and requirements derivation, and the
“satisfy” and “verify” relationships allow relating a

requirement to a model element that satisfies or
verifies the requirements.

Let's consider the specific case of IEC 61851 (Fig. 6)
where we have design specification and systems
requirements on the charging mode. For example,
the Mode 3 charging definition in this standard is:
connection of the EV to the A.C. supply network
(mains) utilizing dedicated EVSE where the control
pilot function extends to control equipment in the
EVSE, permanently connected to the A.C. supply
network (mains).

Each green box represents a requirement applied to
a system or a subsystem (white or grey boxes). The
requirement object includes attributes: identifier,
description, source, requirements availability,
performance,

Figure 6: IEC 61851 requirements

In addition to requirements diagram, for complex
system study, we may need to define in details some
behavior. In some instance, the sequence diagram
may be used to show the interactions between
objects in the sequential order that those interactions
occur. The Fig. 7 illustrates the charging sequence in
a station.

 Page 5/8

Figure 7: Charge sequence diagram

The sequence number three gives an exclusive
choice between two sequences referenced “3.a” and
“3.b”. arKItect© allows us to characterized sequence
flow by various colors. The result is better readability
of the two alternatives which converge to the
sequence number four “Battery full charge, Stop
charging” or interrupt by the sequence “Unplug
vehicle during charge”.

arKItect© allows us to generate a compact view of
this sequence diagram, Figure 8. This new view,
activity diagram, is obtained automatically by
collapsing the three package objects (grey boxes).
The numbering sequence allows us to keep the
sequential order.

Figure 8: Charge activity diagram compact view

6. System architecture modeling

6.1. Functional architecture

The objective of the functional analysis and
allocation process is to transform the functions of a
system into subsystems. Internal block diagrams

provide a simple overview of the internal functionality
and signal flow of a device. It allows us to model
functional architecture.

Figure 9: EV Functional architecture

Above, the figure 9 represents the architecture of
energy management function. This function is
decomposed in five macro functions (white
parallelogram boxes). In this view, the macro
function “Charge” is expanded to highlight internal
subfunctions (green parallelogram boxes). So
arKItect© allows us to represent graphically a
hierarchical system architecture. The signal flows
exchanged between functions and subfunctions are
of two types in this example. The red one represents
high voltage signal charge and green one represents
low voltage signal command.

To conclude on the conceptualization process, we
have all system definition data, requirements, use
case, and the system architecture, in only one
model. We do not have to support links between
several tools during this project step.

6.2. System architecture

The last step of conceptualization process is the
design. During this phase, the subsystems are
actually developed in accordance with the functional
analysis. In other words: a solution-independent
subsystem is transformed into a physical solution-
based subsystem.

In parallel of functional architecture, we use one
more time internal block diagram to define an
organic architecture.

 Page 6/8

Figure 10: Charging spot organic architecture

The example of charging spot organic architecture
Figure 10 has the same properties that EV functional
architecture Fig. 9: hierarchical architecture definition
and flow characterisation. In this view, boxes
schematized system, red arrows represent high
voltage flow and black arrows are data flows.

7 Future improvements of the Renault model

7.1. Electric and Electronic (EE) architecture

In the system architecture, we eventually can find
components and functions corresponding to software
components. However, supporting systems like
ECUs, Electrical distribution, data bus don’t need to
be specified at this stage as they do not participate
to the functional objective of the system.

So the next step in system design is the definition of
the EE architectures and 3D integration. EE
architecture includes ECUs definition, networks
definition (including electrical distribution). The ECU
definition includes allocation of signal conditioning
and of software (Autosar) components.

This step description is based on other experiences
than the EV project. It corresponds to further works
that can be addressed once the system analysis will
be completed.

In the next sections, we will use vehicle air
conditioning system to illustrate this modeling phase.

The figure 11 represents the four ECUs (red border
boxes) use for a vehicle air conditioning system.
They make low voltage sensor signals acquisition
and controls low voltage actuators signals. Those
signals are representing by red arrows. ECUs
communicate between them by network frames
(yellow arrows).

Figure 11: EE architecture view

This view is created within arKItect© and
corresponds to a stage where software functions and
signal conditioning drivers have already been
allocated. Such a step can be completed only after
static software and dynamic software architecture
are completed.

7.2. Static software architecture

In the previous diagram, we have identified ECUs
that host software functionalities. In this subsection
and the following we explain activities prior to
allocation: static and dynamic software architecture
design.

The main step of the software static architecture
definition is the modeling the interface between
functions and their organisation in layers. The figure
12 shows details of the intereaction between
applicative software components for a simplified
climate control system. Each control (grey boxes) of
this layer consumes and products data flow from/to
the others controls of this layer or other
one.

Figure 12: Applicative software architecture

Of course data flow must be specified with a physical
type (e.g. meter), a software type, a range and step
and a conversion function between software and
physical type.

The advantage of a display of the static architecture
is to verify that all consumed flows are produced and
conversely that all produced flows are consumed. It’s
also efficient to see quickly the interaction between

 Page 7/8

functions and document impact analysis and failure
propagation or analysis.

7.3. Dynamic software architecture

The dynamic architecture specifies what is executed
and when. The figure 13 illustrates this modeling.
The events (white boxes) activate the execution of
software components (grey boxes). The controls
have been indentifying in the previous static
diagrams.

Figure 13: Dynamic software architecture

First functions could be a task as well as Second
Functions and Third Functions. Each task contains a
few function calls. Function calls are represented as
red arrows in the diagram.

Diagram should be read from right to left
corresponding to the order of calls.

All the functions in this diagram are executed at the
same rate.

It is useful to represent the flows between functions
in parallel with the call diagrams in order to avoir
wrong schedule. Such diagrams are of course
supported in our approach.

7.4. ECU design

As part of static architecture, the designer shall
identify the basic and applicative software functions.
The Basic software shall also be split into electrical
layer (converting words in micro controller registers
into current or voltage measure) and physical layer
(converting said current or voltage into a physical
measure). Then drivers and signal conditioners
implement the interaction between basic software
and hardware.

Below, the Figure 14 represents this software
decomposition in several layers. Each layer (white
boxes) exchange data flow (black arrows) with the
other layer. The driver software layer makes sensor

low electrical signal (red arrows) adaption to data
flow and in the other way use data flow to drive
actuator low electrical signal. The network software
layer received and transmitted frame messages
(yellow arrows).

Figure 14: Software layers architecture

This completes the explanation of diagrams
supporting the EE architecture design.

8. Conclusion

One of the most powerful features offered by this
type of tool is to have all the life cycle phases of the
System Engineering process on one single model
offering therefore traceability from the early
requirements to the system architecture whereas
most commercial tools are only focussing on one or
two phases.

While evaluating SysML, Renault also looks at other
approaches that share the same type of data model
but provide simplified and specialized views.

The interest of a tool like arKItect© is that it offers an
intuitive interface and more flexible views that most
SysML editors do.

Renault is currently working on the definition of so
called "architecture frameworks" that define all
necessary and indispensable views that a project
team must produce. This will be the subject of
another publication.

In the paper we have presented the design activities
at the concept and development stage of the
Renault AE-EV project. In fact, it is also possible to
address simulation, validation and safety related
issues in arKItect but this is clearly out of the scope

 Page 8/8

of the present paper. We relate to the SASHA paper
in the same conference for a short explanation of
related activities with arKItect.

9. References

[1] ISO/IEC 15288. Systems and software engineering
[2] Guideline Systems Engineering for Public Works and

Water Management, Ministery of Water Management,
The Nederlands, May 2008 Second edition

[3] ISO 61851 Electric vehicle conductive charging
system

[4] ISO 62196 Plugs, socket-outlets, vehicle couplers and
vehicule inlets – Conductive charging of electric
vehicles

[5] ISO 26262. International Organization for
Standardization. Road Vehicles functional Safety.
Standard under development

[6] Toward Families of QVT DSL and Tools, Benoît
Langlois, Danierl Exertier, Ghanshyamsinh Devda,
Thales Research & Technology, DSM forum, 2005

[7] System architecture, tools and modeling for safety critical
automotive applications – the R&D project SASHA,
publication, ERTS 2010

10. Glossary

AE-EV: Advanced engineering Electric Vehicle

BPML: Business Process Modeling Language

BPMN: Business Process Modeling Notation

DSL: Domains Specific Languages

ECU: Electronic Control Unit

EE: Electric and Electronic

EV: Electric Vehicle

EVSE: Electric Vehicle Supply Equipment

SysML: System Modeling Language

UML: Unified Modeling Language

