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of Perugia, Perugia, Italy

Truffle fungi are well known for their enticing aromas partially emitted by microbes
colonizing truffle fruiting bodies. The identity and diversity of these microbes remain
poorly investigated, because few studies have determined truffle-associated bacterial
communities while considering only a small number of fruiting bodies. Hence, the
factors driving the assembly of truffle microbiomes are yet to be elucidated. Here
we investigated the bacterial community structure of more than 50 fruiting bodies
of the black truffle Tuber aestivum in one French and one Swiss orchard using 16S
rRNA gene amplicon high-throughput sequencing. Bacterial communities from truffles
collected in both orchards shared their main dominant taxa: while 60% of fruiting
bodies were dominated by α-Proteobacteria, in some cases the β-Proteobacteria or the
Sphingobacteriia classes were the most abundant, suggesting that specific factors (i.e.,
truffle maturation and soil properties) shape differently truffle-associated microbiomes.
We further attempted to assess the influence in truffle microbiome variation of factors
related to collection season, truffle mating type, degree of maturation, and location
within the truffle orchards. These factors had differential effects between the two truffle
orchards, with season being the strongest predictor of community variation in the French
orchard, and spatial location in the Swiss one. Surprisingly, genotype and fruiting body
maturation did not have a significant effect on microbial community composition. In
summary, our results show, regardless of the geographical location considered, the
existence of heterogeneous bacterial communities within T. aestivum fruiting bodies
that are dominated by three bacterial classes. They also indicate that factors shaping
microbial communities within truffle fruiting bodies differ across local conditions.

Keywords: Tuber aestivum, amplicon sequencing, bacterial communities, microbiome, multilocus genotype,
mating type
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INTRODUCTION

Truffles are ascomycete ectomycorrhizal fungi that associate
with the roots of a large number of trees and shrubs and that
produce hypogeous fruiting bodies. Some truffle species such as
Tuber melanosporum (Périgord black truffle) and T. aestivum
(Burgundy truffle) are renowned worldwide for their delicate
aroma and are considered as culinary delicacies. Although these
truffles can be harvested in wild forests, over 80% of the truffles
harvested in France are nowadays originating from artificially
inoculated orchards (Murat, 2015). In this context, the controlled
production of truffles is an economically important goal of
research. Major progress has been made over the past 30 years to
improve methods of truffle cultivation and to better understand
the life cycle of these peculiar fungi (Paolocci et al., 2006; Rubini
et al., 2007, 2011a,b; Murat, 2015; Molinier et al., 2016). The
most comprehensive knowledge about truffle biology exist about
T. melanosporum (Rubini et al., 2014; Le Tacon et al., 2016;
Selosse et al., 2017) which was the first Tuber genome to be
sequenced (Martin et al., 2010). However, mounting evidence
based on genetics of T. aestivum (Molinier et al., 2013a,b, 2016)
and the genomics of T. aestivum and T. magnatum suggests high
similarities in terms of life cycle to T. melanosporum (Murat
et al., 2018). In truffles, the life cycle starts with the germination
of haploid spores. Hyphae produced from germinated spores
colonize the fine roots of host plants and form ectomycorrhizae.
This symbiotic mixed organ is the place of nutrients exchange
between the two mutualistic partners (Smith and Read, 2008).
Ectomycorrhizae also provide the maternal mycelium that will
give birth to the fruiting body (or ascocarp) after mating with
a paternal gamete of opposite mating type (Rubini et al., 2014;
Selosse et al., 2017; Murat et al., 2018). In contrast to many
other ectomycorrhizal fungi that produce fruiting bodies within
a few days, the development of truffle fruiting bodies generally
takes several months and occurs entirely belowground. In the
case of T. melanosporum, it has been demonstrated that nutrients
required for the development of the fruiting bodies are provided
by the host plant all along fruiting body genesis (Le Tacon et al.,
2013, 2015) and a similar process likely occurs for T. aestivum
(Deveau et al., 2019). The production of fruiting bodies in
all Tuber species varies greatly from year to year, ranging
from none to several per tree. Additionally, considering trees
with a sufficient degree of mycorrhization with T. aestivum or
T. melanosporum, the yield of harvested truffles was shown to be
unrelated to the host tree mycorrhization degree (Molinier et al.,
2013a; De la Varga et al., 2017).

Beside the symbiotic association between the fungus and its
host, it is now clear that complex microbial communities interact
with truffle fungi both in the ectomycorrhizosphere and in the
ascocarp. Based on a number of studies on truffle-associated
bacterial communities, we know that the surface (peridium) and
the inner tissues (gleba) of truffle fruiting bodies are colonized
by complex bacterial communities composed of a few hundreds
of species that can reach up to 107–108 cells per gram of truffle
(Barbieri et al., 2007; Antony-Babu et al., 2014; Vahdatzadeh
et al., 2015). The effects of these bacteria and of their interactions
on the biology of truffles are still poorly understood. Yet, some

bacteria have been shown to participate in the elaboration of
some of the volatile organic compounds produced by the whitish
truffle Tuber borchii (Splivallo et al., 2015), and it has been
hypothesized that bacteria could be involved in the elaboration
of the complex aroma of truffles (Vahdatzadeh et al., 2015). In
addition, some bacteria of the Bradyrhizobiaceae family isolated
from T. magnatum have shown the ability to fix nitrogen
(Barbieri et al., 2010). It has been proposed that they could
participate in the nutrition of the fungus during fruiting body
development (Barbieri et al., 2010). Additional putative effects
such as inhibition of pathogenic fungi, stimulation of the growth
of Tuber mycelium, and ascocarp degradation have also been
suggested based on potential functional activities of bacteria
isolated from fruiting bodies (Citterio et al., 2001; Sbrana et al.,
2002; Dominguez et al., 2012; Gryndler et al., 2013, 2015; Antony-
Babu et al., 2014; Saidi et al., 2015; Deveau et al., 2016).

Despite differences between truffle species (Benucci and
Bonito, 2016), the truffle microbiome is commonly dominated
by bacteria belonging to the Rhizobiales order together with,
to a lesser extent, members of the orders Actinomycetales,
Burkholderiales, Enterobacteriales, Flavobacteriales, and
Pseudomonadales (Barbieri et al., 2016). Yet, important
variations in the composition of truffle microbiomes have
been reported (Barbieri et al., 2016). Part of the discrepancies
may be explained by the evolution of methodologies used to
study microbial diversity, which cover from culture-dependent
to various generations of culture-free methodologies (Sbrana
et al., 2002; Barbieri et al., 2010; Deveau et al., 2016). Another
part of this variability could be due to natural variation in
microbiome composition among fruiting bodies of single Tuber
species. Among the different factors that could influence truffle
microbiome composition, the level of fruiting body maturation
has been proposed as a potential driver of the microbiome
composition in T. borchii, T. indicum, and T. melanosporum
(Citterio et al., 2001; Antony-Babu et al., 2014; Splivallo et al.,
2015; Ye et al., 2018). However, the extent to which other
intrinsic (i.e., maturity, genotype, mating type) and extrinsic
(i.e., season, location, spatial distance) factors drive the truffle
microbiome is not known.

In this study, we filled this gap in knowledge by analyzing
and comparing the microbiomes of more than 50 fruiting
bodies of T. aestivum harvested over several years in two
spatially distant orchards in Europe. T. aestivum is harvested
and cultivated in numerous regions of the world (i.e., all over
Europe, in Iran, Northern Africa) and its microbiome has not
been extensively studied despite the fact that it represents one
of the most relevant truffles in terms of traded volumes. We
hypothesized that the microbial communities of T. aestivum
would be dominated by bacteria of the Bradyrhizobiaceae family
as in other truffle species but also that noticeable differences
in microbial assemblages would be detectable between the
two study sites due to variable environmental factors. To test
and answer those hypotheses, (1) the “core” composition of
the T. aestivum microbiome in both study sites was defined,
(2) the variability in the truffle microbiome across orchards
was assessed, and (3) the intrinsic factors (maturity, genotype,
mating type) and extrinsic ones (season, location, spatial
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distance) determining the assembly of truffle-associated bacterial
communities were evaluated.

MATERIALS AND METHODS

Biological Material and Sampling
Fruiting bodies of Tuber aestivum (Vittad.) were collected from
two artificially inoculated truffle orchards in France (FR) and
Switzerland (SW). Exact GPS coordinates are not given here at
the request of the orchard’s owners, but the closest city nearby is
provided as an approximate location. These orchards have been
described earlier (Splivallo et al., 2012; Molinier et al., 2013a,
2015). The French orchard, located near Daix/Dijon (FR), is a 30-
year old truffle orchard that comprises two rows of inoculated
hazels (Corylus avellana) at its center and two outer rows of
fruit trees on the outer margins (see for details Molinier et al.,
2013a). All hazel trees in the French orchard were inoculated
with T. melanosporum in 1976 and produced T. melanosporum
fruiting bodies for nine seasons from 1980 to 1989 (a few hundred
grams to 12 kg per year; Molinier et al., 2013a). During 1990–
1993 production was gradually and eventually fully replaced by
native T. aestivum and in subsequent years, production ranged
from a few hundred grams to a few kilograms of T. aestivum per
year (Molinier et al., 2013a). The soil of the French truffle orchard
has a calcareous nature and a pH of 7.9 (Molinier et al., 2013a).
The Swiss orchard, located in Valais, near St-Triphon (CH),
contains 42 trees – oaks (Quercus robur) and pines (Pinus nigra)
that were commercially inoculated with T. aestivum and planted
in 1999. In this orchard, pH of the soil is 7.6 and production of
T. aestivum started in 2008/2009 and ranged since then to a few
hundred grams to approximately 1 kg per year.

A total of 62 T. aestivum fruiting bodies were collected from
the two artificially inoculated truffle orchards. Seventeen truffles
were collected in the French orchard in 2010 and 2011, whereas
45 truffles were collected from the Swiss orchard during four
consecutive years (2009–2012). The precise location of truffles
was recorded at the time of the harvest (Figure 1). To avoid post-
harvest drifts of microbial populations, all truffles were cooled
to 4◦C after collection and frozen to −20◦C within 24 h for
subsequent DNA extraction.

Truffles were identified by spore morphology and via
molecular methods (see the section “DNA Extraction and
Truffle Genotyping”). The stage of fruiting body maturation
was determined by estimating the percentage of ascii containing
melanized spores, as previously described (Splivallo et al., 2012).
An overview of the samples used in this study along with the
analyses performed is shown in Table 1.

DNA Extraction and Truffles Genotyping
Genomic DNA was extracted from the gleba (50–100 mg fresh
weight excised from the central part of the gleba) of each
fruiting body using the DNeasy R© Plant Mini Kit (Qiagen,
Hilden, Germany) following the manufacturer’s instructions.
Even though this kit might have been used here for characterizing
truffle’s microbiome for the first time, earlier works have
demonstrated that various DNA extraction methods yielded

FIGURE 1 | Location of truffle samples within the French and Swiss orchards.
Location of truffles, their maturity, mating type, collection year, and identical
multilocus genotypes (MLGs, connected by lines) are shown in the French and
Swiss orchards, along the position of truffle-mycorrhized trees (small gray
dots) and fruit trees surrounding the orchard (crosses). Black arrows in the
lower left corner of each orchard represent a distance of 5 m.

comparable microbiome compositions for different truffle
species (Antony-Babu et al., 2013; Benucci and Bonito, 2016).
DNA qualities and concentrations were checked using a
NanoDrop spectrometer and gel electrophoresis. Mating type
identification was performed using the specific primers aest-
MAT1-1f/aest-MAT1-1r and aest-MAT1-2f/aest-MAT1-2r as
described elsewhere via multiplex polymerase chain reaction
(PCR) (Molinier et al., 2016). In short, PCRs were carried out
using 3 µl of template DNA (diluted 10 times) in a final volume of
20 µl containing 10 µl of JumpStart REDTaq ReadyMix (Sigma-
Aldrich: P1107), 0.4 µl of each primer (0.2 µM each), and water
to adjust to the final volume. Thermal cycles were conducted
using the following program: an initial denaturation of 2 min at
94◦C, 28 cycles at 94◦C for 30 s, 57◦C for 30 s, and 72◦C for 1 min,
followed by 72◦C for 7 min. PCR products were checked on a
1.5% agarose gel and visualized after ethidium bromide staining
by a UV transilluminator.

A total number of 14 SSR loci (aest01, aest06, aest07, aest10,
aest15, aest18, aest24, aest25, aest26, aest28, aest29, aest31, aest35,
and aest36) (Molinier et al., 2013b) were chosen for genotyping.
The genotyping procedure followed that described by Molinier
et al. (2016) but with a slightly modified PCR program: one cycle
of 15 min at 95◦C, 30 cycles of 30 s at 94◦C, 90 s at 60◦C, and
60 s at 72◦C, and a final elongation cycle of 30 min at 60◦C. To
identify multilocus genotypes (MLGs) and true clones based on
the 14 SSR markers, the software MLGSIM (Stenberg et al., 2003)
was used as described elsewhere (Molinier et al., 2016).

Microbiome Analysis
Bacterial communities of Swiss fruiting bodies were analyzed
by 454 pyrosequencing, while French samples were analyzed
by MiSeq Illumina sequencing, because 454 pyrosequencing
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TABLE 1 | Details of the Tuber aestivum samples originating from the Swiss and French orchard, and results of bacterial microbiome analysis.

Microbiome analysis

Sample
code

Collection
year

Collection
month

Maturity
(0% = fully
immature,
100% = fully

mature)

Genotype
(MLG)∗

CH = Swuitzerland
FR = France

Mating
type

Sequencing
technique

(454 or
MiSeq)

Number of
sequencing

reads
before

processing

Number of
reads post
processing

Number
of

OTU†

Shannon Effective
number of

species

13 2009 October 0% CH_27 2 454 15,204 7,149 26 0.288 1

14 2009 October 0% CH_29 2 454 17,689 7,058 8 0.394 1

15 2009 October 0% CH_27 2 n/a n/a n/a n/a n/a n/a

17 2009 October 0% CH_22 2 454 27,548 12,868 26 0.672 2

18 2009 October 95% CH_22 2 n/a n/a n/a n/a n/a n/a

19 2009 October 11% CH_22 2 454 17,645 8,280 65 2.075 8

20 2009 October 0% CH_28 2 454 26,269 11,859 6 0.268 1

21 2009 October 0% CH_27 2 n/a n/a n/a n/a n/a n/a

24 2009 December 93% CH_5 2 454 9,643 4,561 45 0.648 2

25 2009 December 54% n/a 2 454 44,804 22,909 27 0.196 1

26 2009 December 73% CH_17 2 454 22,250 10,740 53 1.350 4

27 2010 September 92% CH_33 1 454 18,690 8,894 77 2.403 11

28 2010 September 2% CH_31 1 n/a n/a n/a n/a n/a n/a

29 2010 September 0% CH_3 2 454 15,096 7,390 26 0.204 1

30 2010 September 87% CH_34 1 454 27,672 12,367 17 1.061 3

31 2010 September 1% CH_34 1 454 19,699 9,673 23 0.862 2

32 2010 September 84% CH_8 1 454 14,311 6,821 4 0.679 2

34 2010 September 82% CH_7 1 454 24,439 10,966 9 0.548 2

40 2010 September 15% CH_20 2 454 10,840 4,965 34 0.886 2

43 2010 September 69% CH_11 2 454 9,640 4,303 14 0.071 1

44 2010 December 96% CH_34 1 454 32,011 14,956 6 0.750 2

45 2010 December 0% CH_2 2 454 24,123 11,645 54 0.755 2

47 2010 December 13% CH_31 1 n/a n/a n/a n/a n/a n/a

48 2010 December 19% CH_32 1 454 26,987 13,060 5 0.140 1

49 2010 December 0% CH_25 1 n/a n/a n/a n/a n/a n/a

50 2010 December 25% CH_16 1 n/a n/a n/a n/a n/a n/a

51 2010 December 85% CH_19 1 n/a n/a n/a n/a n/a n/a

52 2010 December 86% CH_24 2 n/a n/a n/a n/a n/a n/a

53 2011 August 55% CH_18 2 454 28,556 13,665 9 0.023 1

55 2011 August 30% CH_18 2 454 12,310 6,054 56 2.300 10

(Continued)
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TABLE 1 | Continued

Microbiome analysis

Sample
code

Collection
year

Collection
month

Maturity
(0% = fully
immature,
100% = fully

mature)

Genotype
(MLG)∗

CH = Swuitzerland
FR = France

Mating
type

Sequencing
technique

(454 or
MiSeq)

Number of
sequencing

reads
before

processing

Number of
reads post
processing

Number
of

OTU†

Shannon Effective
number of

species

57 2011 August 0% CH_13 2 454 16,204 8,140 12 0.062 1

59 2011 August 0% CH_30 2 454 22,247 11,161 9 0.029 1

63 2011 November 70% CH_9 2 454 14,862 6,325 9 0.329 1

65 2011 November 5% CH_9 2 454 31,539 15,919 6 0.055 1

67 2011 November 0% CH_23 1 454 27,997 13,450 7 0.249 1

69 2011 November 95% CH_21 2 454 18,199 9,109 7 0.024 1

71 2011 November 95% CH_5 2 454 18,022 9,271 37 0.340 1

73 2011 November 50% CH_15 2 454 20,369 9,762 12 0.042 1

75 2011 November 0% CH_14 1 454 15,607 7,883 9 0.070 1

77 2012 August 75% CH_12 2 454 19,118 9,791 22 0.158 1

78 2012 August 75% CH_10 2 454 14,444 6,658 24 1.816 6

79 2012 August 5% CH_27 2 454 24,087 12,414 28 0.236 1

80 2012 December 1% CH_26 2 454 24,658 12,032 15 0.101 1

82 2012 December 85% CH_6 2 454 21,038 9,811 13 0.052 1

84 2012 December 0% CH_1 2 454 23,360 10,788 16 0.599 2

D1 2010 October 0% FR_23 n/a MiSeq 33,632 26,296 97 2.613 13

D2 2010 October 7% FR_23 1 MiSeq 44,386 41,798 91 1.300 4

D3 2010 October 44% FR_2 1 MiSeq 46,082 43,159 109 1.213 3

D4 2010 October 0% FR_12 2 MiSeq 37,830 33,175 83 1.484 4

D5 2010 October 0% FR_10 2 MiSeq 37,405 36,450 75 0.401 2

D21 2010 December 94% FR_20 n/a MiSeq 37,956 35,472 57 2.113 8

D25 2011 October 0% FR_22 1 MiSeq 38,708 38,159 53 0.178 1

D26 2011 October 70% FR_15 2 MiSeq 37,358 36,499 55 0.301 1

D27 2011 October 90% FR_6 2 MiSeq 40,495 35,131 96 1.700 6

D28 2011 October 88% FR_18 1 MiSeq 40,245 38,394 68 0.615 2

D29 2011 October 92% FR_12 2 MiSeq 39,319 38,719 49 0.224 1

D30 2011 October 50% FR_20 1 MiSeq 39,187 38,520 37 0.086 1

D31 2011 October 87% FR_8 2 MiSeq 38,060 36,839 34 0.644 2

D32 2011 October 91% FR_8 2 MiSeq 39,274 38,597 36 0.194 1

D34 2011 October 65% FR_5 1 MiSeq 31,638 28,588 60 2.075 8

D35 2011 November 81% FR_4 n/a MiSeq 39,007 37,880 69 0.302 1

D36 2011 November 82% FR_12 n/a MiSeq 40,582 39,764 46 0.167 1

∗MLGs are named as CH for Switzerland and FR for France followed by a number. Note that the same number (i.e., CH_5 and FR_5) do not refer to the same MLG as the MLG analysis for both orchards were done
independently from each other. †Number of OTUs after singleton removal and elimination of rare OTUs (OTUs with a total number of reads inferior to 0.01% of the total number of all samples). n/a, missing data.
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technique was no longer available at the time of the analysis. In
both cases, the isolated DNA from the gleba of fruiting bodies
was used to generate 16S rRNA gene amplicon libraries using
the primers 787r (ATTAGATACCYTGTAGTCC) (Nadkarni
et al., 2002) and 1073F (ACGAGCTGACGACARCCATG)
(On et al., 1998), modified to include specific linkers and
identification barcode sequences for the respective sequencing
method. The same procedure as described by Antony-Babu et al.
(2014) was used to generate 454 pyrosequencing amplicons.
Briefly, the PCRs contained 10 µl of PCR Mastermix (5 PRIME),
1 µl of each forward and reverse primers (each 0.2 µM), and 2 µl
of template DNA (or sterile water for negative control) in a final
volume of 25 µl. For each truffle DNA sample, amplifications
were performed in three parallel PCR tubes under the following
conditions: an initial denaturation at 94◦C for 10 min followed by
30 cycles of denaturation at 94◦C for 30 s, annealing at 48◦C for
45 s, extension at 72◦C for 90 s, and a final extension at 72◦C for
10 min. The three PCR products were pooled and quantified by
gel electrophoresis and an equimolar mix of amplicons was used
for pyrosequencing. Amplicon sequencing was performed by the
GS-FLX 454 Titanium platform of Beckman Coulter Genomics
(Danvers, MA, United States). Illumina MiSeq amplicons were
produced using the same amplification protocol except that the
identification barcode sequences were added through a second
round of amplification as described by Barret et al. (2015). PCR
cycling conditions were 94◦C for 2 min, followed by 12 cycles of
amplification at 94◦C for 1 min, 55◦C for 1 min, and 68◦C for
1 min each, and a final extension step at 68◦C for 10 min. All
amplicons were purified with the Agincourt AMPure XP system
and quantified with QuantIT PicoGreen. The purified amplicons
were then pooled in equimolar concentrations, and the final
concentration of the library was determined using a quantitative
PCR (qPCR) next-generation sequencing (NGS) library
quantification kit (Kapa Biosystems, Boston, MA, United States).
Amplicon libraries were mixed with 10% PhiX control according
to the 2 × 250 bp Illumina protocols. The second round of PCRs,
the purification steps, and sequencing was performed by the GeT
PLAGE sequencing platform according to standard procedures
(INRA Toulouse). The standard procedure to generate libraries
for Illumina Miseq is available here: https://support.illumina.
com/documents/documentation/chemistry_documentation/16s/
16s-metagenomic-library-prep-guide-15044223-b.pdf.

Both 454 pyrosequencing and MiSeq Illumina 16S rRNA
sequences were analyzed using FROGS (Escudié et al., 2018).
After quality control and demultiplexing, sequences were
preprocessed by removing primers from sequences, sequences
out of the amplicon size range (250–300 bp), sequences with
only one primer, with at least one homopolymer longer than
7 bp and a Phred quality score <10, and replicates of identical
sequences. For the MiSeq Illumina run, 16S rRNA paired-
end sequences were first merged (289 bp). Sequences were
clustered into operational taxonomic units (OTUs) at 97%
sequence similarity based on the iterative Swarm algorithm,
with subsequent removal of chimeras for further analysis.
Taxonomy assignment to each cluster was carried out by
BLAST comparisons against the SILVA database and using
the RDP Classifier (Ribosomal Database Project; Cole et al.,

2009). OTUs with poor affiliation or higher abundance in
negative controls than samples were deleted for further analysis.
Finally, OTUs with a total number of reads inferior to
0.01% of the total number of all samples were discarded.
The raw data are deposited in the NCBI Sequence Read
Archive website1 under the BioProject study accession number
PRJNA506316 and the SRA accession numbers SRX5059925–
SRX5059959 (454 sequences) and SRX5073276–SRX5073292
(Illumina sequences).

Statistical Analyses
All statistical analyses were performed in R (R Core Team,
2017) with the aid of relevant packages. The datasets from
FR and SW were processed independently, but using the
same procedure. The datasets were only combined to generate
a joint heat tree using the R package Metacoder v0.1.3
(Foster et al., 2017), to summarize the overall taxonomic
composition obtained and compare the relative proportion of
taxa between both studies. Differences between sites in the
relative abundances of the main bacterial taxa were assessed via
one-way ANOVA followed by Tukey’s HSD post hoc test, after
verifying normality of data with Shapiro–Wilk test. Overall and
per-sample rarefaction curves were calculated in each dataset
to assess sampling completeness, using function rarecurve() in
package Vegan v3.5-1 (Oksanen et al., 2015). Based on these,
subsequent analyses of diversity and community structure were
performed on datasets where samples had been rarefied with
the Phyloseq package (McMurdie and Holmes, 2013) to achieve
equal read numbers of 26,295 for the FR dataset and 3,855
for the SW dataset. Rarefaction curves were used to verify
that the subsampling was performed as close as possible to
the asymptotes to allow comparison between samples in both
French and Swiss sites (Supplementary Figure 1). Values of
OTU richness and diversity based on Shannon’s index were
calculated using functions available in Vegan. Effective numbers
of species were calculated using Simpson index as proposed by
Jost (2006).

Non-metric multidimensional scaling (NMDS) was used
to visualize differences in community composition among
samples. NMDS is an ordination method that represents pairwise
(dis)similarities between samples in a low-dimensional space, so
that samples placed closer in the graph are more similar than
those further apart (Clarke, 1993; Legendre and Legendre, 2012).
NMDSs were based on Bray–Curtis dissimilarities calculated
among samples after a Hellinger transformation of data
(Legendre and Gallagher, 2001).

We investigated the potential influence of factors on
microbiome variation using variation partitioning based on
distance-based redundancy analysis (db-RDA; Borcard et al.,
2011; Legendre and Legendre, 2012), with the Hellinger-
transformed dissimilarity matrix as response variable.
db-RDA is a constrained ordination method in which
a matrix of pairwise (dis)similarities between samples is
modeled as a function of a set of explanatory variables
(Legendre and Legendre, 2012). Variation partitioning

1http://www.ncbi.nlm.nih.gov/sra
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can then be applied to measure the relative contribution
of individual explanatory variables to overall community
variation while accounting for the effects of other variables,
by sequentially removing components from the db-RDA
model and recording the resulting changes in the total
variance explained.

The explanatory variables to be included in the variation
partitioning analysis were selected, when possible, by means of
permutational analysis of variance (PERMANOVA; Anderson,
2001), so that only those with a significant correlation with
community variation (P < 0.05) in at least one dataset were
retained. The potential influence on community structure
of spatial distance among samples was first examined using
Mantel correlograms (Legendre and Legendre, 2012), which
enable to test whether samples that are spatially close are
more similar than those farther apart. Then, to allow their
inclusion in the variation partitioning analysis, the spatial
relationships were summarized as principal coordinates of
neighbor matrices (PCNM) vectors (Legendre and Legendre,
2012), calculated from the coordinates of each sample
within the orchard using the function pcnm() of vegan.
PCNMs describe non-random patterns in dissimilarity
matrices at different scales, which can then be used to
model potential sources or variation not accounted for
by the measured explanatory variables, such as dispersal,
species interactions, or historical causes (Peres-Neto and
Legendre, 2010). PCNM vectors significantly associated with
community variation in our datasets were forward-selected
using package Packfor v0.0-8 (Dray et al., 2009). Because no
PCNMs were significantly correlated with the FR dataset, in
this case, we manually selected the first four to match the
number of PCNMs retained for SW. As done with spatial
distances among samples, the factor truffle genotype was
assessed by summarizing Euclidean distances among SSR
profiles with PCNM vectors and testing their association
with microbiome variation by forward selection. After the
selection of factors, the final db-RDA models included as
explanatory variables truffle mating type, degree of maturity,
year of collection, and spatial distance. Truffle maturity and
SSR genotypes were excluded because they did not explain
an important nor significant amount of microbiome variation
in any location.

RESULTS

High-Throughput Sequencing
A total of 661,164 and 757,177 quality-passed sequences were
obtained for the French (Illumina sequencing) and Swiss (454
sequencing) orchards, respectively, with averages of 38,892 (±807
SE) and 21,033 (±1,209) reads per sample (Table 1). After
quality filtering and removal of chimeric reads, a total of
623,440 and 362,697 sequences were retained, with an average of
36,673 (±1,023) and 10,075 (±610) reads per sample across the
French and Swiss samples, respectively (Table 1). After taxonomy
assignment, elimination of contaminants and of OTUs present
in <0.01% of the total number of reads (128 and 1,177 OTUs,

respectively), 183 and 147 OTUs were considered for further
analyses in the French and Swiss samples, respectively.

Truffles From Two Distant Orchards Have
Similar Microbiomes
We first compared the microbiome composition of truffles
collected from the French and Swiss orchards. An average of
66 ± 6 (SE) OTUs were detected in the French samples, while
23 ± 3 were recorded in average in the Swiss ones. This important
difference could be a bias due to the use of MiSeq Illumina
sequencing (French orchard) and 454 pyrosequencing (Swiss
orchard). Indeed, Illumina sequencing allows for larger numbers
of reads per sample and may provide a better access to rare
OTUs. This hypothesis was confirmed on another set of data
obtained from T. melanosporum fruiting bodies analyzed both by
454 and MiSeq Illumina sequencing (Deveau et al., unpublished
data). The two samples that were analyzed by both methods
strongly differed in richness (21 vs. 98 OTUs for 454 and Illumina
MiSeq, respectively) but the relative abundance of the dominant
genera that were found in this study was similar no matter
which methodology was used (Supplementary Figure 2). In
accordance with this observation and despite the two different
sequencing methods used, the general composition of the truffle
microbiomes detected at each site was alike, as shown in
Figure 2. In both locations, communities were dominated by
OTUs affiliated to the α-Proteobacteria (FR: 67 ± 9% SE, CH:
63 ± 7%; P > 0.05) followed by closely related proportions
of Bacteroidetes (FR: 9 ± 4%; CH: 14 ± 5%; P > 0.05),
β-Proteobacteria (FR: 9 ± 6%, CH: 17 ± 5%; P > 0.05), and
γ-Proteobacteria (FR: 10 ± 4%, CH: 4 ± 2%; P > 0.05).
Overall, Actinobacteria (FR: 2.5 ± 0.7%, CH: 0.6 ± 0.2%;
P < 0.01) and Firmicutes (FR: 2.7 ± 1.7%, CH: 0.1 ± 0.02%;
P > 0.05) were less frequent, with Actinobacteria being the
only phylum with a significantly different abundance between
the two orchards. OTUs of d-Proteobacteria, Acidobacteria, and
Verrucomicrobia were found at very low levels in some samples
of the two sites. Strong similarities between the two orchard’s
samples were also observed at the genus level, since the most
represented OTUs belonged to the same genera: Bradyrhizobium
(FR: 65.1 ± 8.8%, CH: 58.6 ± 6.9%), Pseudomonas (FR:
8.1 ± 3.4%, CH: 3.4 ± 1.4%), Pedobacter (FR: 4.3 ± 3.3%, CH:
13.8 ± 4.9%), Polaromonas (FR: 5.4 ± 5.0%, CH: 9.2 ± 4.4%), and
Flavobacterium (FR: 2.5 ± 1.2%, CH: 0.8 ± 0.7%). Twenty-three
additional genera were shared between the two datasets. This
“core” microbiome contained genera belonging to five different
Phyla (Supplementary Table 1). Differences nevertheless also
existed between the two localities at the genera level as several
dozens of genera were also specifically found on one of the
two orchards. Yet it is here difficult to discriminate the part of
sequencing methodology bias from true data.

α-, β-Proteobacteria, and
Sphingobacteriia Dominate Single
Fruiting Bodies
Having compared the overall microbiomes of the French and
Swiss orchards, our next aim was to assess the variability in
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FIGURE 2 | Bacterial community structure within T. aestivum fruiting bodies collected from two orchards. Each heat tree represents bacterial community structure as
a taxonomic hierarchy up to genus level. The gray tree serves as a key for the smaller unlabeled trees, node labels highlight the most abundant taxa detected at both
orchards. The smaller colored trees show community structure for each orchard, assessed with different amplicon sequencing technologies [MiSeq for France (FR),
454 for Switzerland (SW)]. Node and edge sizes are proportional to the number of OTUs within each taxon, whereas color represents taxon abundances (square root
of read numbers).

bacterial community structure and taxonomic composition
among fruiting bodies. The bacterial community structure
and composition was highly variable among single fruiting
bodies collected within the same orchard. In both the French
and Swiss orchards, the number of OTUs detected per truffle
samples varied from a few OTUs to more than a hundred
(Table 1). Such variation was independent from the sequencing
depth obtained for each sample (Table 1). It is thus likely not
due to a bias of sequencing depth but rather reflects different
patterns of bacterial community structures, some truffles
being colonized by a small number of species while others
harbored a larger number of species. The evenness of the
bacterial communities also deeply differed between samples
in both orchards as illustrated by the strong variability of
the Shannon and the effective species value (Table 1). While
most truffle-associated bacterial communities were dominated
by a few abundant OTUs and numerous rare OTUs, a few
fruiting bodies of both sites showed more balanced patterns
(data not shown). Such heterogeneity was also reflected when

looking at the composition of the bacterial communities
at different taxonomic levels (Figure 3). Overall, at the
phylum level, 57% of the fruiting bodies showed communities
dominated by α-Proteobacteria while 13% of the fruiting
body communities were dominated by β-Proteobacteria, and
11% by Bacteroidetes. Eight percent of the fruiting bodies
harbored balanced communities in which several phyla were
co-dominants. A similar pattern was maintained at the genus
level, with Bradyrhizobium (α-Proteobacteria), Polaromonas
(β-Proteobacteria), and Pedobacter (Sphingobacteriia) being
the most abundant genera depending on the fruiting body
considered. To a lesser extent, OTUs from the Variovorax
genus (β-Proteobacteria), Pseudomonas (g-Proteobacteria),
Sphingomonas (α-Proteobacteria), and Flavobacterium
(Flavobacteria) formed a significant part of the communities in
some fruiting bodies. Thus, the large sampling effort realized over
several years in the two truffle orchards revealed the existence of
an unsuspected important variability in the composition of the
microbiome of truffle ascocarps.
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FIGURE 3 | The microbiome of T. aestivum. Distribution of major bacterial classes (top panel) and genera (intermediate and bottom panels) in the French and Swiss
truffle fruiting bodies analyzed here. Each column represents a single sample. For each sample, three pile-up plots are given: the relative distribution of reads among
the major bacterial classes (top panel) and of the different genera forms the Bacteroidetes (intermediate panel) and Proteobacteria phyla (bottom panel). Samples
were ordered according to the year and month of collection, and maturity degree (from low to high).

Mating Type and Multilocus Genotype
Distribution of Truffle Fruiting Bodies
Within the Orchards
Truffle fruiting bodies result from the fertilization of two
individuals of opposite mating type (Martin et al., 2010; Rubini
et al., 2011b). Whereas the truffle gleba (maternal tissue) is made
up by one individual, the spores contain meiotic products of the
two mating partners (Paolocci et al., 2006; Rubini et al., 2011b;
Selosse et al., 2017). Here, we determined the genetic profile
of the truffle gleba (maternal genotype) only, since the gleba

harbors most of the truffle microbiome (Antony-Babu et al., 2014;
Splivallo et al., 2015).

Genotyping of the truffles from the French orchard had
been done in a previous study (Molinier et al., 2016). A large
proportion of unique genotypes (i.e., genotypes that were
recorded only once) was observed: eight truffles had unique
genotypes and only two pairs with the same MLG (here
FR12 and FR20) were detected over the 2010–2011 seasons
(Table 1). Truffles of opposite mating types appeared to
be evenly spread over the French orchard. In the Swiss
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FIGURE 4 | Microbial community similarities among truffles within orchards. (A, FR; B, SW) Non-metric multidimensional scaling (NMDS) ordinations based on
Bray–Curtis dissimilarities of the OTU composition of microbiomes in truffle samples. The closer the samples, the more similar their microbiomes are. Different
symbols denote mating type, symbol sizes represent maturity of fruiting bodies, and symbol colors represent collection year. Points linked with lines are fruiting
bodies belonging to the same MLG. (C, FR; D, SW) Correlograms showing correlation of microbiome similarity among samples (y-axis, Mantel’s R) with spatial
distance (x-axis). Solid and empty points denote significant (P < 0.05) and non-significant correlations for each distance class based on Bonferroni adjustment for
multiple testing, indicating that space affects the truffles microbiomes in the Swiss but not the French site.

orchard, out of the 44 fruiting bodies for which the MLG
was identified, 26 had unique MLGs, whereas other MLGs
were shared among the remaining 18 samples. In particular,
four MLGs (namely CH_5, CH_9, CH_18, and CH_31) were
shared between two individuals, two (CH_22 and CH_34)
among three individuals, and only one (CH_27) among four
individuals (Figure 1). In terms of collection season, five
out of seven shared MLGs were found in truffles harvested
in the same season, while only two MLGs were shared by
truffles harvested 2–3 years apart. Last and by contrast to
the French orchard, truffles of mating type 1 were strongly
aggregated in one corner of the Swiss field, whereas the
rest of the orchard was dominated by truffles of mating
type 2 (Figure 1).

Different Factors Affect Truffle’s
Microbial Communities in the French and
Swiss Orchards
Having observed important differences in microbial community
composition and structure within truffles of the same orchard,

we explored whether this variability could be linked to a
series of biotic and abiotic factors inherent to truffle ascocarps
and to truffle orchards. Specifically, we considered seasonality,
space (the location of truffles within an orchard), fruiting body
genotype, mating type, and maturation as potential factors
affecting the microbiome.

Non-metric multidimensional scaling was used to visualize
pairwise dissimilarities between each truffle-associated
microbiome and to explore their relationships with intrinsic
(maturation, genotype, mating type) and extrinsic factors
(collection season, year, or spatial distance) potentially
explaining microbial community structure. NMDS ordinations
based on Bray–Curtis dissimilarities among samples in each
field showed no evident sample groupings related to truffle
maturity, mating type, or MLGs (Figures 4A,B). However,
in the Swiss orchard, mating type was significantly associated
with microbiome variation based on PERMANOVA analysis
(Figure 4B; F(1,35) = 4.6, Adj. R2 = 0.12, P < 0.002), whereas in
the French field, a significant effect was found for the collecting
year (F(1,16) = 3.2, Adj. R2 = 0.17, P = 0.016). Likewise, a
different effect of spatial distance on bacterial communities was
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TABLE 2 | Variation in microbial community composition explained by mating, year of collection, and space.

France Switzerland

df Percentage of variation
explained (Adj. R-square)

P df Percentage of variation
explained (Adj. R-square)

P

Mating 1 0.03 0.154 1 0.09 0.001

Year 1 0.11 0.010 1 0.01 0.169

Space 4 −0.09 0.872 4 0.18 0.001

Residuals n.d. 0.82 n.d. n.d. 0.81 n.d.

For each orchard (FR, SW), the table lists the proportion of overall variation exclusively explained by each factor based on variation partitioning analysis of db-RDA models.
Significant values (P < 0.05) are shown in bold typeface. The factors maturation and genotype were not included in this analysis since they were previously shown not to
influence the microbiome composition. n.d. = not determined.

found in each site: whereas no association was found in the
French orchard (Figure 4C), in SW, similarities among truffle
microbial communities appeared to be significantly influenced
by distance, with a strong aggregation pattern up to a distance of
approximately 2 m (Figure 4D).

Distance-based redundancy analysis ordinations were
applied to model the variation in truffle microbiomes in the
French and Swiss orchards as a function of the explanatory
variables that significantly influenced the microbiome: truffle
mating type, year of collection, and spatial distribution of
samples (PCNMs). Other factors (maturation and genotype)
were excluded as they did not have a significant effect as
demonstrated earlier (see also the section “Materials and
Methods”). The db-RDAs models constrained by truffle
mating type, year of collection, and spatial distribution
explained 19% (F2 = 2.3, P = 0.002) and 18% (F2 = 1.5,
P = 0.048) of overall community variation for the Swiss
and French orchards, respectively. In the Swiss orchard, the
associations of community structure with mating type and
spatial factors previously reported were confirmed (Figure 4B),
with spatial distance and mating type explaining an overall
18 and 9% of total variation, respectively, after accounting
for the effects of other variables (Table 2). These values
contrasted with a comparably low contribution (1.0%) of
collection year (Table 2). In FR, the only variable with a
significant correlation with microbiome structure was the
collection year, with an overall 11% (P = 0.010) of the variance
explained (Table 2).

DISCUSSION

Host-associated microbiomes are important for the nutrition
and health of their hosts: plants, animals, and macrofungi are
extensively colonized by microorganisms that play key roles
in their life cycles (Berg et al., 2014; Bahrndorff et al., 2016;
Webster and Thomas, 2016; Pent et al., 2018). Studies on
animals and plants have revealed that host identity, genotype, and
environmental variables all contribute to shaping the microbial
communities colonizing eukaryotic tissues (Bulgarelli et al.,
2012; Lundberg et al., 2012; Bouffaud et al., 2014; Hacquard
et al., 2015; Glynou et al., 2016), but the relative importance
of each factor varies depending on the host and on the type of

environment. Fungi also host complex microbial communities
that can associate to various fungal structures (i.e., mycorrhizas,
mycelium, fruiting bodies) and colonize either the surface
of hyphae or the intracellular compartments (Deveau et al.,
2018). However, the factors that drive the assembly of these
communities are poorly documented. A recent study on the
microbiome structure of the epigeous fruiting bodies of the
saprophytic fungus Marasmius oreades revealed that host genetic
differences could be responsible for 25% of bacterial community
structure variation (Pent et al., 2018). The authors thus proposed
that, similarly to what’s known for animals and plants, host
genetics could be an important driver of the structure and
function of the microbiome of fungal fruiting bodies (Bulgarelli
et al., 2012; Chaston et al., 2016). This was however not the case
in this study for T. aestivum suggesting that microbiome drivers
might thus differ in different fungal species.

Unexpected Truffle Microbiome
Variations Revealed Through Extensive
Sampling
The relevance of truffle microbiomes lies in their involvement
in aroma production (Splivallo et al., 2015; Splivallo and
Ebeler, 2015; Vahdatzadeh et al., 2015) and impact on truffle’s
shelf-life/freshness (Rivera et al., 2010). We provide here the
first extensive description of the microbiome of the summer
black truffle T. aestivum. The overall structure of the bacterial
communities observed in Swiss and French T. aestivum truffles
corroborates earlier results obtained from other species of
black and white truffles originating from Europe, China,
and the United States (Antony-Babu et al., 2014; Barbieri
et al., 2016; Benucci and Bonito, 2016; Ye et al., 2018). We
confirmed that the T. aestivum fruiting body microbiome is
characterized by an overall dominance of the α-Proteobacteria
mainly affiliated to the Bradyrhizobium genus. However, unusual
patterns were obtained for about 30% of the fruiting bodies
from both Swiss and French truffle orchards. In these cases,
microbiomes were dominated by OTUs affiliated to the genera
Pedobacter (Bacteroidetes), Polaromonas (β-Proteobacteria), or
Pseudomonas (γ-Proteobacteria), and not by α-Proteobacteria.
The richness of the communities tended to be reduced to 10–
20 OTUs when these genera dominated, suggesting that these
particular genera massively invaded the gleba of the fruiting
bodies and replaced or competed with Bradyrhizobium. By
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contrast, a few fruiting bodies were characterized by quite diverse
and even bacterial communities containing up to 100 different
OTUs (e.g., FR_34, CH_55, CH_78). These different microbiome
patterns and the occasional preponderance of particular taxa have
so far not been reported for any white and black truffle species
(Antony-Babu et al., 2014; Vahdatzadeh et al., 2015; Benucci and
Bonito, 2016; Ye et al., 2018) but it is in agreement with the
discrepancies noticed between studies performed on identical
species by different research groups (Barbieri et al., 2016). These
differences might be explained by the low numbers of fruiting
bodies of diverse truffle species analyzed so far (a few fruiting
bodies vs. >50 in our study). Such variability in community
composition between fruiting bodies is likely not a specificity of
T. aestivum truffles, as preliminary results obtained on a large
survey of T. melanosporum suggest the same trend (Deveau et al.,
unpublished data).

The ecological function of bacteria colonizing truffle fruiting
bodies remains speculative but it has been hypothesized that they
might contribute to truffle nutrition as well as aroma variability
(Barbieri et al., 2010; Splivallo et al., 2015; Splivallo and Ebeler,
2015; Vahdatzadeh et al., 2015). It is tempting to speculate that
differences in microbial communities might explain variability
in aroma documented for T. aestivum truffles collected from
the same orchard (Splivallo et al., 2012; Molinier et al., 2015).
However, aroma variability in T. aestivum was linked earlier to
truffle genotype, yet genotype did not contribute in the present
study to microbial community structuring. This suggests that
microorganisms might after all not play a major in the aroma
variability of T. aestivum. Clearly, this hypothesis will need to be
tested in the future, for example, by characterizing the volatile
profiles of single major OTUs in the presence of truffle substrate
(Splivallo et al., 2015).

The data presented here highlight the importance of three
bacterial genera in truffles, namely Bradyrhizobium, Pedobacter,
and Polaromonas. Even though the specific functions of these
genera in truffles remain to be demonstrated, it has been
suggested that Bradyrhizobium could be involved in the nutrition
of the fruiting bodies since the role of this genus as nitrogen-
fixing symbionts is well established in plant roots (Sulieman
and Tran, 2014; Coba de la Peña et al., 2018). Nitrogen
fixation by Bradyrhizobium strains isolated from the white truffle
T. magnatum has been previously detected (Barbieri et al.,
2010), even though several lines of evidence suggest that this
might not occur in the black truffle T. melanosporum (Barbieri
et al., 2016; Le Tacon et al., 2016) where Bradyrhizobium
strains might be missing the nifH genes involved in nitrogen
fixation (Antony-Babu et al., 2014; Deveau et al., unpublished
data). This corroborates the recent proposition based on
genome comparisons that symbiosis was not the dominant
lifestyle of Bradyrhizobium but rather on form of specialization
(VanInsberghe et al., 2015). Bradyrhizobium might also be
involved in the production of specific sulfur volatile compounds
responsible of truffle aroma perceived by humans (Splivallo et al.,
2015). Bacteria of the Pedobacter genus have been reported
to dominate microbial communities of decomposing fungal
mycelium in forest soil and litter (Brabcová et al., 2016). These
bacteria regroup generalists that possess a wide array of enzymes

allowing degradation of diverse carbon sources. Additionally,
some Pedobacter produce chitinases to degrade chitin of fungal
cell wells. Although no obvious sign of degradation of the fruiting
bodies was visible in our samples at the time of harvest, it is
tempting to speculate that these bacteria could participate to the
degradation of truffle fruiting bodies. Last, the role played by
Polaromonas in truffles remains elusive. The genus comprises
nine commonly occurring species that were originally reported
from cold environments. Some members of the Polaromonas
have the ability to fix nitrogen, hydrogen, and carbon dioxide
(Sizova and Panikov, 2007; Hanson et al., 2012), suggesting that
they could have similar functions in truffles. Demonstrating the
exact function in truffles of these three bacterial genera will be
the focus of future work.

Site-Specific Factors Drive Truffle’s
Microbiome Assemblages
Multiple biotic and abiotic factors could drive the composition
of the bacterial communities colonizing fruiting bodies of
truffles. As the biochemical composition of fruiting bodies
strongly changes during several months of maturation of
T. melanosporum fruiting bodies (Harki et al., 2006), the level of
maturity could be an important intrinsic driver of the bacterial
communities. Indeed, a correlation was noticed between the
bacterial community composition and the level of maturity of
fruiting bodies of T. borchii, T. melanosporum, and T. indicum
(Citterio et al., 2001; Antony-Babu et al., 2014; Ye et al., 2018).
In contrast, the community composition of the white truffle
T. magnatum remained stable along the maturation according
to Barbieri et al. (2007). Such correlation between maturity
degree and the composition of the microbiome was not evidenced
in the present study, nor did we observe any link with the
abundance of β-Proteobacteria or Bacteroidetes as previously
reported by Antony-Babu et al. (2014) in T. melanosporum.
Whether this is a specificity of T. aestivum remains to be
determined. A possible reason might be the fact that T. aestivum,
unlike T. melanosporum and other fungi, seems to pass through
several lifecycles within a year with no clear seasonality, showing
ripe and unripe fruiting bodies uncorrelated with size almost
throughout a year (Büntgen et al., 2017). Such asynchrony of
maturation might allow to more clearly disentangle maturation
from spatial and temporal effects on bacterial communities in
truffles. In agreement with this hypothesis, our data highlight a
significant contribution of the spatial distance (Swiss orchard)
and, to a lesser extent, of the collection year (French orchard)
on the community composition of the bacterial communities
in fruiting bodies. In addition, since truffle fruiting bodies are
likely colonized by bacteria that thrive in the surrounding soil
when the embryos are formed (Antony-Babu et al., 2014), such
differences could be explained by variations in the bacterial
communities of the soil surrounding truffles. Soils properties
and climatic conditions likely differed between the two orchards.
Similarly, root microbiomes are initially strongly influenced by
the composition of the communities of the bulk soil and the
environmental factors that influence this “starter” community
(Zarraonaindia et al., 2015; Colin et al., 2017). Local pH,
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nutrients availability, or humidity levels have all been shown to
significantly alter soil bacterial community composition (Uroz
et al., 2016; Lladó et al., 2017). Although the general physico-
chemical properties of soil are likely to be rather homogenous
at the scale of a truffle orchard, it is well-known that small-scale
heterogeneity exists in soil (Vos et al., 2013). We cannot exclude
either that the differences between the factors influencing each
orchard’s microbiomes are due to divergent sampling strategies
in the two sites: firstly, samples were collected over 2 and 4 years,
respectively, and secondly, the two orchards differed in surface
area. Altogether this indicates that a better understanding of
the interactions between soil microbial communities and truffle
embryo at a microscopic scale is required to foresee the process
of colonization of truffle fruiting bodies by bacteria.

Taken together, our results provide an unprecedented view
of the microbiome associated to the black truffle T. aestivum.
Microbiomes dominated by either the α-Proteobacteria class,
and in some cases the β-Proteobacteria or the Sphingobacteriia
classes could be evidenced regardless of geographical origin.
The consistent occurrence of those microbes in fruiting bodies
from orchards separated by hundreds of kilometers suggests
that these bacteria might be highly relevant for truffles ecology
and life cycle. Our results also highlight that factors shaping
truffle’s microbiomes might differ based on local conditions,
but unlike in other fungi, fruiting body maturation and genetic
background did not seem to influence the microbiome. Overall,
the findings presented here highlight the need to improve
our understanding of truffle fruiting body development, of
how the truffle microbiome is shaped, and what benefits it
provides to truffles (or vice-versa). Complementary studies
deploying large sampling efforts and functional studies of main
bacterial players of the microbiome will be required to better
understand these points.
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