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Quantum computing has emerged recently as a new computational paradigm. It considers quantum bits (qubits) instead of classical bits. However, quantum algorithms are often very difficult to understand. In this paper, we propose a tool for quantum software visualization. It presents visually the state of multiplequbits and its evolution at runtime during the execution of a quantum program. This tool allows a unique representation of a quantum state, contrary to the usual vector notation. We show how the problem of visualizing a quantum state can be reduced to a set visualization problem, and our tool uses rainbow boxes to visualize the resulting sets. We also present the application of the proposed tool to quantum teleportation, an algorithm of high importance in cryptography. Finally, we discuss the limit of this approach and its perspectives, in particular for teaching quantum computing.

INTRODUCTION

Quantum computing combines quantum physics, computer science and information theory. In the recent years, it has emerged as a new computational paradigm, targeting quantum computers. It has been showed that quantum algorithms could outperform classical algorithms in terms of complexity [START_REF] Rieffel | Quantum computing : A gentle introduction[END_REF]. However, quantum theory is not intuitive. It is considered as almost impossible to understand properly: R. Feynman, a renowned physician, said "I think I can safely say that nobody understands quantum mechanics". Consequently, it is also difficult to teach.

Software visualization [START_REF] Price | A principled taxonomy of software visualization[END_REF][START_REF] Bassil | Software Visualization Tools: Survey and Analysis[END_REF]) is a field that aims at representing graphically software: e.g. algorithms, source codes, and/or runtime data. In particular, dynamic software visualization tools have been proposed to explore visually the behavior of a program at run-time, for example in Java [START_REF] De Pauw | Visualizing the execution of Java programs[END_REF]. Such tools aim at improving the understanding of what a program is doing, and helping identifying memory leaks, deadlocks and performance bottlenecks. However, to our knowledge, no software visualization approaches were proposed for tracing the execution of quantum programs, despite the use of visualization tools has demonstrated some success in the teaching of quantum physics [START_REF] Rebello | Conceptual understanding of quantum mechanics after using hands-on and visualization instructional materials[END_REF].

In the present paper, we propose a tool for quantum software visualization. Its objective is to facilitate the understanding of a quantum algorithm. It presents visually the quantum state of the system and its evolution at runtime during the execution of a quantum program. We propose to reduce the problem of the visualization of an entangled multiple-qubit state to a set visualization problem. Then, we resolve this problem using rainbow boxes, a technique for set visualization that was introduced a few years ago [START_REF] Lamy | Rainbow boxes: a technique for visualizing overlapping sets and an application to the comparison of drugs properties[END_REF]Lamy et al., 2017). We illustrate the proposed approach through its application to the visualization of quantum teleportation, an algorithm of importance for cryptography.

The rest of the paper is organized as follows. Section 2.1 gives background on quantum computing and set visualization. Section 3 describes how we formalize a quantum state uniquely. It also describes the visual design of our approach and the implementation details. Section 4 provides two examples of the proposed visual approach. Finally, section 5 discusses the proposed approach and its perspectives, before concluding.

RELATED WORKS

Quantum computing

The field of quantum computing [START_REF] Rieffel | Quantum computing : A gentle introduction[END_REF] has produced some interesting new algorithms, and it has been proved that quantum algorithms can perform better than their classical counterparts, in terms of complexity. However, quantum computing is still a matter of research, and it remains widely not understood.

In a quantum computer, classical bits are replaced by quantum bits (qubits). A qubit can be in two states, noted |0 and |1 , but it can also be in a superposition of these two states, noted a|0 + b|1 , where a and b are complex numbers such as |a| 2 + |b| 2 . In the Dirac's BraKet notation, |0 and |1 are two vectors defined by |0 = 1 0 and |1 = 0 1 in their matrix form 1 . These vectors are the orthonormal basis of the qubit's state space, and the general state of a qubit corresponds to a|0 + b|1 = a b .

However, when measured, the qubit return only a single value, either 0 or 1, with probabilities |a| 2 and |b| 2 , respectively. Future measurement of the same qubit will always return the same value, because measuring the qubit causes a quantum decoherence in which the superposition is lost. Thus, a single qubit can store much more information than a classical bit, but all this information cannot be obtained: only one classical bit of information can be extracted from one qubit. Nevertheless, the additional information in the qubit can be used during quantum computation, before measurement.

In addition to the probability of measuring 0 or 1, a 1-qubit state is characterized by its relative phase angle: an infinity of superpositions yielding e.g. a 50%-50% ratio of 0 and 1 exist. Each of the two terms a|0 and b|1 has a global phase, however, only the difference between the two, i.e. the relative phase, matters from a physical or logical point of view.

When considering multiple-qubits, the value of the various qubits may not be independent from each other : this phenomenon is known as quantum entanglement. Consequently, an entangled system of n qubits cannot be viewed as a sum of qubits. It should be considered as a single entity, and its state is a superposition of 2 n values. For example, the state of a 3-qubit system is a superposition of 2 3 = 8 values, noted a|000 + b|001 + c|010 + d|011 + e|100 + 1 Matrix rows and columns are understood to be in bit order, e.g. 0, 1 for one qubit, 00, 01, 10, 11 for two, etc. f |101 + g|110 + h|111 and corresponds to a matrix with 1 column and 8 rows. Some multiple-qubit states are not entangled but separable. Those states can be factored in a tensor product composed of several states involving fewer qubits. For example, the state 1

√ 2 |000 + 1 √ 2 |011 can be factored in |0 ⊗ 1 √ 2 |00 + 1 √ 2 |11 .
Here, the first qubit is not entangled, while the last two qubits are. To conclude, the quantity of information stored in multiple qubits grows exponentially with the number of qubits. However, as previously with a single qubit, only one classical bit can be measured for each qubit. Therefore, when read, the 3-qubit system above would returns only 3 classical bits, e.g. 011. Relative phases also exist in multiple-qubit states.

Several approaches have been proposed for quantum computing, and quantum circuit is currently the main one. Similarly to a classical logical circuit, gates are applied on the qubits. These gates act on a superposition of values. A gate is defined by an unitary 2 k square matrix, where k is the number of qubits the gate is applied to. The gate is applied to a state vector by multiplying the gate matrix by the vector matrix. For example, NOT (also called X) is a single-qubit gate; it will transform the one-qubit

state 1 4 |0 + 3 4 |1 into 3 4 |0 + 1 4 |1
. Other typical gates include: the Z gate that flips the phase of one qubit, the Hadamard gate (H) that creates superposition from a non-superposed state of one qubit, the CNOT gate (Conditional NOT) that considers two qubits and performs a NOT gate on the second qubit whenever the first qubit is |1 , and the CZ gate (Conditional Z) that flips the phase of the second qubit whenever the first qubit is |1 . These gates are defined as follows:

NOT = 0 1 1 0 , Z = 1 0 0 -1 , H = 1 √ 2 1 1 1 -1 CNOT =    1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0   , CZ =    1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 -1   
The following example applies a NOT gate to the

state vector 1 4 |0 + 3 4 |1 : NOT × 1 4 |0 + 3 4 |1 = 0 1 1 0 ×   1 4 3 4   =   3 4 1 4   = 3 4 |0 + 1 4 |1
Figure 1: Block diagram of a quantum circuit performing quantum teleportation. Each horizontal line represent a qbit.

Visual approaches for quantum computing

Few visual approaches have been proposed for quantum computing. First, block circuit diagram representations of quantum circuits have been proposed, e.g. for the IBM Q Experience [START_REF] Cross | Open quantum assembly language[END_REF]. They show the qubits as horizontal lines, and the gates and measurements of a given program as boxes on the lines of the qubits they are applied to. Gates and measurements are applied from left to right. For example, Figure 1 shows an example of block diagram for a quantum circuit, with 3 qubits and 8 gates (labeled ( 1) to ( 8) and corresponding to the 8 steps of the progam). This circuit corresponds to quantum teleportation, a well-known quantum algorithm that allows to "teleport" the state of one qubit (labelled |ψ ) to another qubit. The destination qubit may be physically in a distant place, thanks to quantum entanglement. Hence the name "teleportation". Block diagrams provide an interesting visualization of a quantum program. However, they do not indicate the qubit states after each gate. Moreover, they can be error-prone because, due to entanglement, applying a gate on a qubit may modify other qubits. For example, in Figure 1, the gate (3) is a CNOT gate applied on qubit 1 and 2 (represented by the two topmost horizontal lines). One may abusively consider that qubit 3 (the bottom-most line) is not modified by gate (3). Actually, because the preceeding gate (2) entangled qubit 2 and 3, the states of those two qubits can no longer be separated. Therefore, gate (3) does modify qubit 3.

The state of a single qubit |ψ = a|0 +b|1 is usually visualized by a point at the surface of the Bloch sphere (Figure 2). The point can be identified by two angles θ and ϕ. The probability of obtaining 0 or 1 when measuring the qubit depends on the position of the point on the vertical axis z and thus on angle θ. Angle ϕ corresponds to the relative phase of the state. It has no impact on the measured value, but it could impact the results of future operations, depending on the gates applied. Single-qubit gates correspond to rotation on the Bloch sphere, for example the NOT gate corresponds to a rotation of 180°around the x axis (thus this gate is also called the X gate). The surface of the Bloch sphere is very practical and visual, but misleading: |0 and |1 are not two opposite directions of the same axis (as shown in Figure 2) but two perpendicular dimensions (as the matrix forms of |0 and |1 suggest). Moreover, this approach cannot visualize multiple-qubit states.

The extended complex plane CP∪{∞} can also be used for visualizing a single-qubit state, but it is even less intuitive than the surface of the Bloch sphere, because |0 and |1 are represented differently (|0 is the origin while |1 is the "infinity point" noted ∞).

Finally, bar charts are commonly used to represent the probability of the various superposed states (Francik J, 2002), in particular for teaching the Grover algorithm.

Set visualization

Set visualization is a classical task in information visualization. Alsakallah et al. [START_REF] Alsallakh | The State-of-the-Art of Set Visualization[END_REF] reviewed the techniques for overlapping set visualization. They distinguished 6 approaches: (1) Euler and Venn diagrams and their variants, (2) overlays on a map, (3) node-link diagrams, (4) matrix-based techniques, (5) aggregation-based techniques, and (6) scatter plot-based techniques.

In this work, we chose rainbow boxes, a technique we recently introduced [START_REF] Lamy | Rainbow boxes: a technique for visualizing overlapping sets and an application to the comparison of drugs properties[END_REF]Lamy et al., 2017) for visualizing 2-25 elements and 5-100 sets. Later, a proportional version of rainbow boxes [START_REF] Lamy | Translating visually the reasoning of a perceptron: the weighted rainbow boxes technique and an application in antibiotherapy[END_REF] was proposed for representing artificial neurons. In the present work, rainbow Figure 3 shows an example of rainbow boxes displaying amino acid properties [START_REF] Lamy | A new diagram for amino acids: User study comparing rainbow boxes to Venn/Euler diagram[END_REF]. The elements (i.e. the amino acids, identified by their oneletter code) are shown in columns, and the sets (i.e. their shared properties) are represented by rectangular boxes placed below column headers. Each box covers the columns corresponding to the elements belonging to the box's set. The column order is computed using a heuristic optimization algorithm. It tries to order the columns so as the elements belonging to each set are contiguous. When it is not possible to have them contiguous for a given set, "holes" are present in the set's box (in Figure 3, the polar box has 3 holes). Boxes are stacked vertically, with the largest at the bottom. Two boxes can be next to each other, as long as they do not occupy the same columns.

METHODS AND DESIGN

Unique description of a multiple-qubit state

Multiple-qubits states are usually formalized by vectors, as in section 2.1. These vectors are useful for computing the effects of gates, but they are not intuitive, due to their complex coordinates. Moreover, they do not exactly represent the physical or logical state of a quantum system. In particular, the vector representation is not unique: because of the global phase phenomenon, several vectors correspond to the same quantum state. Although mathematically different, any two vectors |ψ and e iφ × |ψ actually represent the same state, for any value of φ (i being the imaginary number). This is denoted |ψ ∼ e iφ |ψ . For example,

1 4 |0 + 3 4 i|1 and 1 2 √ 2 + 1 2 √ 2 i |0 + √ 3 2 √ 2 i - √ 3 2 √ 2 |1
are two different vectors representing the same state. Thus, we searched for a formal description of a multiple-qubit state that is both unique and as intuitive as possible.

Let us consider the vector form of an entangled multiple-qubit state |ψ = a 1 |0...0 +...+a 2 n |1...1 = 2 n ∑ j=1 a j |B j , where |B j are the base vectors of the state space. Each term of this sum includes a possible measured base state |B j and a complex coefficient a j = α j + β j i. A (relatively) intuitive notion is the probability of obtaining |B j when |ψ is measured. This probability is p j = a j 2 = α j 2 + β j 2 . The remnant piece of information describing the state is the phase

ϕ j = Re 1 i × log a j
|aj| in radians, where Re() returns the real part of a complex number. ϕ j is equivalent to angle ϕ on the Bloch sphere (section 2.2), but for mutiple qubit states. In order to avoid the global phase phenomenon described above, and to have a unique representation of the state, a reference phase must be chosen. We arbitrarily chose as reference the phase ϕ 0 of the lowest bit-value base state |B j with a non-null coefficient a j (e.g. for a 2-qubit state, the phase of |00 , or if the corresponding coefficient is null, the phase of |01 , then the one of |10 , etc).

Then, the relative phase is ϕ j = ϕ jϕ 0 mod 2π. Consequently, a pair (p j , ϕ j ) ∈ R 2 (with 0 ≤ p j ≤ 1 and 0 ≤ ϕ j < 2π, or ϕ j = 0 for reference phase) allows a unique and more intuitive representation of one coefficient a j . Now, let us consider a set of qubits q = {q 1 , ..., q n } and their quantum state |ψ , separable in a tensor product of m factors: |ψ = |ψ 1 ⊗ ... ⊗ |ψ m with 1 ≤ m ≤ n. Each factor |ψ k can be defined by q k ⊆ q, the subset of qubits it involves, and a sum of terms |ψ k = ∑ a k j |B k j . As explained above, each coefficient a k j can be fully defined by a pair (p k j , ϕ k j ), using as reference phase the phase of the lowest bitvalue term with a non-null coefficient (since factor are separable, one reference is required for each). Therefore, the state |ψ can be uniquely defined by a set of quadruplet (q k , |B k j , p k j , ϕ k j ) , each quadruplet corresponding to one term of one separable factor.

For example, the previously mentioned 3-qubit state |0 ⊗ 1

√ 2 |00 + 1 √ 2 |11
is uniquely represented by the following quadruplets:

-({q 1 } , |0 , 1, 0) -({q 2 , q 3 } , |00 , 0.5, 0) -({q 2 , q 3 } , |11 , 0.5, 0) They are read as follows: "qubit q 1 takes value 0 with probability 100%", "qubits q 2 and q 3 take values 00 with probability 50%", and "qubits q 3 and q 3 take values 11 with probability 50% and a relative phase of 0". This representation requires to distinguish separable states from entangled ones, in order to determine the reference phases appropriately (i.e. one reference per separable factor). We achieved this by tracing entanglement through the program: at the beginning, all qubits are separated. Single-qubit gates do not create entanglement. On the contrary, multiple-qubit gates, like CNOT or CZ, entangle the two qubits they are applied on. Finally, measurements destroy the superposition with regards to the measured qubit, and thus unentangle it.

Visual representation

The visualization of a multiple-qubit quantum state defined by a set of quadruplets (q k , |B k j , p k j , ϕ k j ) is a set visualization problem, if we consider the first member of the quadruplets: the qubits q 1 , q 2 ,... are the elements and each quadruplet contains a set made of these elements. The last three members of the quadruplets can be seen as three "attributes" of the set.

We represent those sets with rainbow boxes [START_REF] Lamy | Rainbow boxes: a technique for visualizing overlapping sets and an application to the comparison of drugs properties[END_REF]Lamy et al., 2017), with one column per qubit and one box per quadruplet, i.e. one box for each term of each separable factor of the quantum state. In the rainbow boxes, set membership (i.e. which qubits are involved by a given term) is visually encoded by the horizontal position of the box. We place the boxes with the lower bit-value at the bottom.

We used three additional visual variables for visualizing the rest of the quadruplets. Probability p k j is represented by the height of the box. Phase ϕ k j is represented by the box color. The color is gray when there is no relative phase, i.e. when the state of the qubits is certain and there is no superposition. Otherwise, the color hue indicates the relative phase, ranging through the entire rainbow spectrum (see color scale in Figure 4). We choose green to represent a phase of 0 (i.e. equal to the reference phase). Finally, the binary value of |B k j is given in the box label, and it is also represented by the box texture, by adding hatches in the columns corresponding to qubits measured at 1.

We add detail-on-demand interactivity: when the mouse is over a box, a popup label displays the term a j |B j represented by the box, as well as the probability in percentage and the phase angle in degree.

In order to visualize the evolution of the qubit state through the various steps of an algorithm, we juxtapose several rainbow boxes, one per each step.

Implementation details

We implemented our system in Python 3. We used ProjectQ [START_REF] Steiger | Pro-jectQ: An open source software framework for quantum computing[END_REF][START_REF] Häner | A software methodology for compiling quantum programs[END_REF], a Python module for quantum computing. ProjectQ can compile quantum circuits for various quantum computers, but it can also simulate a quantum computer on a classical computer. In simulation mode, one can access to the "inner state" of the qubits (through the cheat() method) and obtain the complex coefficients a j that characterize the current quantum state. On the contrary, on a real quantum computer, the inner state cannot be obtained: as explained previously, measuring qubits breaks the superposition. We therefore worked in simulation mode.

APPLICATION EXAMPLES

In this section, we illustrate our approach through a simple example on the Bell pair, and the visualization of a quantum teleportation.

Bell pair

Figure 5 shows the state of two qubits during the creation and the measurement of a Bell pair. A Bell pair is a pair of two qubits having the maximal level of quantum entanglement. For each step, a rainbow boxes visualization of the current state is given, and labeled with the quantum gate applied at this step. In each visualization, a qubit is represented by a column and a term of a separable factor of the quantum state by a box. Consequently, entangled states are represented by boxes that span across several columns, indicating which qubits are entangled. On the contrary, non-entangled (i.e. separable) states are represented Figure 5: Visualization of the creation and the measurement of a Bell pair, using the proposed approach. by 1-column boxes. For each step, the label uses the ProjectQ syntax, for example "H | q1" means "apply the Hadamard (H) gate to the first qubit".

In Figure 5, step 0 corresponds to the initial state of the system. The two qubits q 1 and q 2 have the |0 value and are not entangled. In step 1, we apply the Hadamard (H) gate to q 1 . It creates a superposition of |0 and |1 . We can see at a glimpse that |0 and |1 would be measured with the same probability (same box size), and that q 1 and q 2 are still not entangled. In addition, the two boxes are green: it indicates that, now, the relative phase does matter. Since the two boxes have the same color, they have the same phase (i.e. the relative phase is null). In step 2, we apply the CNOT gate to q 1 and q 2 . This gate performs a NOT gate on q 2 whenever q 1 = |1 . It results in an entangled state (the boxes span across the two qubits), corresponding to one of the four possible Bell pairs.

In step 3, we measure q 1 , and the obtained value is 1 (notice that we could also have obtained 0, with a 50-50% ratio). Due to entanglement, measuring q 1 also determine the value of q 2 . We can see in the figure that q 2 is now 1, and that the entanglement is now broken. In step 4, we measure q 2 and we obtain 1 (with certainty). Notice that measuring q 2 does not modify the quantum state, contrary to step 3, because the value of q 2 was already determined at the previous step. Consequently, the rainbow boxes are the same after step 3 and 4.

Quantum teleportation

Figure 6 shows the state of three qubits during the execution of quantum teleportation. Quantum teleportation is an algorithm with huge potential applications in cryptography. It allows to "teleport" the value |ψ of a qubit through a shared Bell pair. Figure 1 presented the circuit for quantum teleportation (the step numbers correspond in the two figure).

Step 0 shows the initial step: q 1 = |ψ contains an interesting value that Alice want to send to Bob, in a secured manner. We arbitrarily chose |ψ = (-0.195 + 0.6i)|0 + 0.776|1 , a 1-qubit state that has a non-null relative phase and a probability of about 40% of being measured at 1. Notice how the colors indicate the relative phase: the |0 box is green (it is the reference phase) and the |1 box has a different color. The other qubits q 2 and q 3 starts at |0 , as previously.

Steps 1 and 2 create an entangled Bell pair in q 2 and q 3 , as previously. After this step, q 3 can be send to a distant person: Bob, the one to whom we want to "teleport" the value of q 1 . Entanglement must be preserved during the sending (this is physically possible, although it remains technically difficult). Sending q 3 is safe, because it currently contains no information about |ψ .

In step 3, we apply the CNOT gate on q 1 and q 2 . It entangles all the three qubits, because q 2 and q 3 were already entangled together. However, notice that, at this step, the probability of measuring 0 or 1 for any of the qubit have not changed. By looking at the hatches, we can verify that about 40% of the entire q 1 column have hatches.

In step 4, we apply the H gate on q 1 . Due to entanglement, it also modifies q 2 and q 3 . Notice that a new color appeared, orange. It is the color opposite to blue, and thus corresponds to the opposite phase. Notice also how "balanced" are the 8 boxes: the probability of measuring 0 or 1 for any qubit, including q 1 , is now 50%-50%, and relative phases are also balanced between the blue and the opposite orange phase. However, the initial value |ψ of q 1 is still encoded in the system. If we look at the two bottom-most boxes, we see that they correspond to |ψ in terms of phase and of probability (relatively, i.e. if we consider only those two boxes). Similarly, the next two boxes just above correspond to |ψ , but are vertically swapped. The next two correspond to |ψ , but with a phase flip: the relative phase is opposed. The last two correspond to |ψ , but both vertically swapped and phase-flipped. In step 5, we measure q 1 . Due to entanglement, it reduces the possible states for the two remnant qubits. Here, we measured 1, thus only states in which the value of q 1 is 1 remain.

In step 6, we measure q 2 . Here, we measured 0. Since we measured q 1 = 1 and q 2 = 0, only the states starting with |01... remains, compared to step 4. Now, Alice must send to Bob the two binary values she measured, e.g. q 1 = 1 and q 2 = 0. Sending these values is safe, because they are not related to |ψ .

In step 7 and 8, Bob reconstructs the value |ψ , using the binary values measured for q 1 and q 2 . If q 1 = 0 and q 2 = 0, the two superposed states remaining in q 3 correspond to the two bottom-most boxes of step 4. They directly correspond to |ψ . If q 2 = 1, the two boxes are vertically swapped, i.e. |0 and |1 are swapped. A NOT gate can be used to swap them again, reverting |ψ . Since this NOT gate must be applied only if q 2 = 1, we apply a CNOT gate on q 2 and q 3 (step 7). Then, if q 1 = 1, we seen at step 4 that the phase is flipped. Thus we apply a CZ (conditional phase flip) gate on q 1 and q 3 (step 8).

Here, we measured q 1 = 1 and q 2 = 0. The CNOT gate (step 7) does nothing, because its conditional qubit (q 2 ) is 0. The CZ gate (step 8) applies the Z gate, because q 1 = 1, and flips the phase: the orange box of step 7 is now blue. We can verify visually that the initial state of q 1 is the same that the final state of q 3 : we successfully teleported the value |ψ .

DISCUSSION AND CONCLUSION

Mathematically speaking, the visualization of an entangled n-qubit state corresponds to the visualization of a point in the complex plane CP 2 n -1 . In this paper, we showed that it can be reduced to a set visualization problem. We visualized those sets using rainbow boxes, and we demonstrated the proposed approach on the well-known algorithm for quantum teleportation. Our visualization of a quantum state is unique, i.e. a given state can be represented in a single manner, contrary to the vectors commonly used in quantum computing.

Our visual approach could be very interesting for teaching quantum computing. Many programmers may be interested in quantum programming in the future, but many of them do not necessarily have the mathematical background required for reading most books on that topic. Moreover, it is well known that quantum theory is not intuitive at all and almost impossible to understand, although it can be used to predict the evolution of a system accurately and it has been widely validated experimentally. Since we still do not understand fully how quantum algorithms work, being able to visualize it during runtime is a step forward. In particular, it greatly helped the author to better apprehend quantum computing.

This visual tool allows an empirical and experimental approach to quantum computing, through the "trial and error" method. It permit testing an algorithm with various initial values or algorithmic variants, and observe how the states of the system are changed. For example, one may visualize quantum teleportation of diverse states |ψ and observe how changing |ψ impacts the state of the system at each step. One can also observe how the system states differ when different values are measured for q 1 and q 2 . Finally, one can test variants, in order to answer to questions such as "What about performing the two measurements in step 5 and 6 in reverse order?" or "What about performing step 7 and 8 in reverse order?". Through experiments, one would conclude that measurements can be performed in any order, while step 7 and 8 must be performed in order.

In rainbow boxes, finding the optimal column order is usually a complex problem. On the contrary, in this particular application of rainbow boxes, it was not, because of the small number of qubits. Most quantum algorithms use only a few qubits, or a variable number of qubits but can be demonstrated with few of them. Here, we presented the qubits in their order in the registry, without performing optimization at all. It worked well, because, in many algorithm, qubits are already "sorted" in order to put next to each other qubits that are entangled with multiplequbit gates such as CNOT. If entangled qubits were not next to each other (e.g. if we swap q1 and q2 in Figure 6), holes would appear in the boxes.

To determine which quantum states are separable, we traced entanglement during the program execution. This method works well for simple algorithms, including quantum teleportation. However, it cannot identify all separable states. For example, a second CNOT gate may be used to unentangle an entangled state. A more robust method would consist in performing tensor product factorization from the state vector. But deciding whether a state is separable (i.e. the separability problem) is, in the general case, NPhard [START_REF] Gharibian | Strong NP-hardness of the quantum separability problem[END_REF].

In order to represent the evolution of a quantum state, we juxtaposed several rainbow boxes views. A similar approach was proposed by [START_REF] Masoodian | Temporal visualization of sets and their relationships using Time-sets[END_REF] with linear diagrams for the temporal visualization of sets.

Perspectives of this work include (a) the use of proposed visualization with students in computer sci-
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ence and its evaluation in this context, (b) its improvement by implementing automatic tensor product factorization and by integrating it more deeply with Pro-jectQ to provide a visual platform for quantum computing, and (c) its extension to other quantum computing paradigms beyond quantum circuits, such as adiabatic quantum computation and one-way quantum computation.