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Abstract Undirected graphs and symmetric square matrices are frequently found in
various domains. An example is character co-occurrence matrices in digital human-
ities. However, the visualization of these datasets is difficult, especially if the graph
is highly connected. In this article, we propose a method for visualizing undirected
graphs and symmetric square matrices, by transforming them into overlapping sets,
and then by visualizing these overlapping sets using set visualization techniques such
as Euler diagram or rainbow boxes. We also propose a clustering approach to simplify
the visualization.

We apply this method to the visualization of various character co-occurrence matri-
ces extracted from novels or DBpedia, ranging from 21 to 114 characters. We show that
this visualization allows the finding of several interesting insights. Finally, we discuss
the advantages and drawbacks of this method, and we compare it to other approaches
in the literature.

Keywords Knowledge visualization · Matrix visualization · Overlapping set
visualization · Undirected graph · Symmetric square matrix · Distant reading · Digital
humanities · Les Misérables

1 Introduction

Undirected graphs and symmetric square matrices are frequently used to represent
co-occurrences in many domains [24]. Any undirected graph can be represented by an
adjacency matrix, leading to a symmetric square matrices, and vice versa. Such graphs
and matrices are frequently encountered in visual text analysis [11], which applies
information visualization methods to digital humanities. The visualization of large
texts such as novel is an important problem. Two approaches exist: close reading, in
which the text is preserved and visualized, and distant reading, in which the text is not
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Fig. 1 Example of a symmetric square matrix showing the relations between 21 characters
in a novel. Numbers in the matrix indicate the parts of the novel in which the two characters
meet for the first time (0: no relation, 1: before the novel starts, 2: during part #1, etc).

preserved but important features or characteristics, such as a character network, are
extracted from the text and visualized. The present work focuses on distant reading.

In particular, character co-occurrence matrices can be extracted from novels, nar-
rative texts, movies or historical databases, and visualized with various techniques. An
example of a symmetric square matrix, representing the relations between the 21 main
characters in a novel, is shown in Figure 1. The visualization of such datasets becomes
challenging when the number of characters increases, but also when the graph is highly
connected: more connections implies more edges, impairing the readability of graph
visualization techniques.

In this article, we propose an original method for visualizing highly connected undi-
rected graphs and symmetric square matrices, by transforming the graph or matrix into
overlapping sets, and then by visualizing these overlapping sets using set visualization
techniques. This method is particularly aimed toward the identification and the rep-
resentation of subsets of interrelated elements, for example groups of characters that
know each other, two by two, in a character network. We will consider two set visual-
ization techniques: the well-known Euler diagrams [8,27] and rainbow boxes [14,15], a
technique we recently introduced.

A preliminary version of this work was presented to the international conference
on Information Visualisation (iV 2018) [20]. In the present article, we extended it by
(1) developing box clustering in rainbow boxes, as suggested by the audience of the
conference, (2) testing another set visualization technique (Euler diagrams) in addition
to rainbow boxes and (3) applying our method to new datasets extracted from DBpedia.

The rest of the paper is organized as follows. Section 2 presents related works in
distant reading and background on rainbow boxes and combinatorial optimization. Sec-



Visualizing undirected graphs and symmetric matrices as sets 3

tion 3 describes the visualization method we propose. Section 4 presents the application
of the method to the visualization of character co-occurrences, with various datasets
ranging from 21 to 80 characters. It also shows the insights that can be gained from
these visualizations. Section 5 discusses the method and the results, and compares our
approach to literature, before concluding.

2 Related works

2.1 Visualization of undirected graphs and symmetric square matrices

In the literature, many approaches have been proposed for the visualization of undi-
rected graphs or symmetric square matrices, such as character co-occurrences. First,
they can be represented as a graph or a network. However, those graphs often become
difficult to read when the number of nodes increases. For instance, word co-occurrences
have been visualized using graphs for analyzing scientific literature on patient adher-
ence [34]. Graphs have also been used for visualizing plagiarism in pieces of music, i.e.
co-occurrences of several identical notes in several pieces [6]. Finally, they have been
applied to the visualization of character co-occurrences in novels and movies [4].

Second, these datasets are frequently visualized as colored matrices after reordering
rows and columns [30]; for instance, an online matrix visualization of the character co-
occurrences in Les Misérables can be seen at https://bost.ocks.org/mike/miserables/.
An example of matrix-based tools is MatLink [9], which has been applied to the analysis
of social networks. Matrix reordering methods allow the identification of interrelated
character groups: those groups form squares on the matrix diagonal (or triangle if only
half of the matrix is shown). BioFabric [25] displays large networks in semi-matrix
style : nodes are represented by horizontal lines and edges by vertical lines. Edge lines
start on the horizontal lines corresponding to the source node, and are grouped by
destination node. Parallel Aggregated Ordered Hypergraph [29] represents the graph’s
nodes as rows, and each edge as a vertical line with dots in each rows involved in the
edge. Edges can be ordered e.g. to represent time.

Third, a character co-occurrence matrix can be treated as a similarity matrix.
Therefore, dimension reduction techniques, such as Principal Component Analysis
(PCA) or Multidimensional Scaling (MDS) [5], can be used in order to transform
a matrix into a two-dimensional scatter plot, a topological landscape or a knowledge
map. An example is the Text Variation Explorer [28], which uses PCA to represent
various sociolinguistic features in text fragments using a scatter plot. Another example
is Memory Islands [31], which integrate hierarchical knowledge, e.g. from an ontology.

Fourth, chord diagrams have been proposed for the visualization of character co-
occurrences in novels [3]. The chord diagram displays all characters on a ring, and
represent co-occurrences by “chords” linking two characters, and located in the mid-
dle of the ring. It allows selecting a character and observing its co-occurrences with
other characters, but it does not help with the identification of groups of interrelated
characters.

Fifth, hierarchical clustering can be applied to the matrix, and visualized as a
dendrogram. This approach was proposed for analyzing co-occurrences between MeSH
(Medical Subject Heading) terms used to index medical articles [32].

https://bost.ocks.org/mike/miserables/
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Fig. 2 Rainbow boxes displaying groups of interrelated characters in Sombre comme l’Aurore.
Box colors indicate the part of the novel during which a character joins the group.

Sixth, various metrics can be derived from the graph or the matrix, such as nodes
degree, and visualized using classical plots. This approach was applied to the analysis
of social networks in Alice in wonderland [1].

Finally, dynamic graphs are commonly visualized either with animated diagrams
or with static charts on a timeline [2]. Another option is Massive Sequence View [7].

2.2 Rainbow boxes

Rainbow boxes are a recent set visualization technique [14,15]. In rainbow boxes (see
example in Figure 2), elements are represented in columns and each set is represented
by a rectangular box that covers the columns corresponding to the elements belonging
to the set (the set label can be shown inside the box, however, in Figure 2 sets are
unlabeled). Boxes are ordered vertically by size (with the largest at the bottom) and
stacked vertically. Two boxes may be placed next to each other when they share no
common column, however, the fact that two boxes appear in the same row has no
particular meaning beyond the fact that the two corresponding sets are disjoint.

When the elements of a given set cannot be placed next to each other, holes are
present in the box (e.g. the yellow box on the left of Figure 2 has one hole of size 2).
The column order is optimized for minimizing the number of holes in the visualization
(see next section). We initially developed rainbow boxes for the comparison of drug
properties [16] and then we applied them to biomedical data and knowledge.

2.3 Artificial Feeding Birds (AFB) metaheuristic

Several visualization techniques require to solve optimization problems, including rain-
bow boxes. In previous works, we used a heuristic algorithm (described in [14,15]). This
algorithm is a simple construction heuristic. It builds a near-optimal order by starting
with a single element (the one belonging to the highest number of set), and then add
the other elements one at a time, on the left or the right of the ordering in construction.
A score is computed for each candidate insertion (two per remnant element: one on the
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left and one on the right). However, in case of tied candidate insertions, all candidates
are tested. This leads to an increasing number of candidate orders to test. In practice,
in a reasonable amount of time, this heuristic is restricted to 20-25 elements.

Here, we will use nature-inspired metaheuristics [33], which are simple, efficient
and yet adaptable optimization algorithms. We chose Artificial Feeding Birds (AFB)
[21], a recent metaheuristic inspired by the behavior of pigeons. AFB can be adapted to
solve both combinatorial optimization and global nonlinear optimization. It was chosen
because we showed that it can successfully optimize rainbow boxes beyond 20 elements.
On randomly generated datasets with 20 and 30 elements, we found that AFB yields
better performances than genetic algorithms (with or without local optimization) and
ant colony optimization, two other metaheuristics commonly applied to combinatorial
problems [21].

AFB considers a population of artificial birds (by default, 20 birds). The position of
each bird represents a candidate solution for the optimization problem. The algorithm
performs several cycles; in each cycle, each bird performs one move. Four moves are
possible: (1) walk to a random position close to the actual one, (2) fly to a random
position, (3) fly to the best position found by the same bird yet, and (4) fly to join
the position of another random bird. Move #4 is allowed only for large birds, which
represent 25% of the bird population. Moves #3 and #4 are totally independent from
the optimization problem. On the contrary, moves #1 and #2 depend on the types of
optimization problem. Consequently, AFB can be applied to any optimization problem
that is defined by a triplet of functions (cost, fly, walk), where cost is the cost function
to minimize, fly is a function that returns a totally random solution and walk is a
function that returns a random solution close to another previous solution.

3 Methods

A symmetric square matrix can be formalized as M = (Mi,j)1≤i≤n,1≤j≤n ∈ R, with
Mi,j = Mj,i. The proposed method for visualizing M consists of three steps: first,
produce overlapping sets from the matrix, second, optionally reduce the number of sets
through clustering, and third, visualize these overlapping sets using set visualization
techniques such as rainbow boxes or Euler diagrams.

3.1 Translating a symmetric square matrix into overlapping sets

For translating the matrix into overlapping sets, we assume that (1) each row/column of
the matrix (i.e. each index i ∈ E = {1, 2, ..., n}) represent an element (e.g. a character),
and (2) the matrix expresses relations between some (but not all) of these elements.
The selection function select : R → {True, False} indicates, for a given value in the
matrix, if the two elements are considered as related, i.e. i and j are related if (and
only if) select(Mi,j) = True. For example, in the matrix of Figure 1, two elements
are considered as related if the value in the matrix is not zero. Overlapping sets will
be made of these elements, each set s including only elements that are related to each
other (e.g. when considering a character matrix, all characters in a given subset s know
all the other characters of the subset): ∀i ∈ s, ∀j ∈ s with i 6= j, select(Mi,j) = True.
Only the largest of such sets will be retained.
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Algorithm 1 Set clustering algorithm. P is the set of all pairs in S, and (b1, b2) is the
best pair found, i.e. the one with the highest score. For simplicity, we wrote

∣∣x : x...
∣∣

for
∣∣{x : x...}

∣∣.
function score(s1, s2):

rset =

∣∣(i, j) ∈ (s1 ∪ s2)2 : i 6= j ∧ select(i, j)
∣∣∣∣(i, j) ∈ (s1 ∪ s2)2 : i 6= j

∣∣
rel =

min
({∣∣j ∈ (s1 ∪ s2) : j 6= i ∧ select(i, j)

∣∣ : i ∈ (s1 ∪ s2)
})

|s1 ∪ s2| − 1

r =
√
rset × rel

return r

function cluster(S, t):
while True:

P = {(s1, s2) ∈ (S, S) : s1 6= s2}
(b1, b2) = arg max

(s1,s2)∈P
score(s1, s2)

if score(b1, b2) < t:
break while loop

else:
remove b1 from S
remove b2 from S
add b1 ∪ b2 to S

First, we compute S0, the set of all sets s that include only elements related to
each other:

S0 =
{
s ⊆ E : |s| > 1 ∧ ∀i ∈ s, ∀j ∈ s with i 6= j, select(Mi,j) = True

}
Second, we compute S, the set containing only the largest sets s in S0 (i.e. we only

keep sets s having no strict superset in S0).

S = {s ∈ S0 :6 ∃s′ ∈ S0, s ⊂ s′}
As a result, the sets s in S are the largest sets of interrelated elements.

3.2 Set clustering

When the number of overlapping sets produced is high, they can be difficult to visualize.
In this case, we propose to cluster similar sets. However, this step is entirely optional.

Set clustering is controlled by a clustering threshold t, with 0 ≤ t ≤ 1. When
t = 1, no clustering occurs; on the contrary, when t = 0, all sets are clustered together.
Algorithm 1 describes the clustering process. Clustering is performed iteratively. In each
iteration, for each pair (s1, s2) of distinct sets in S, a score r is computed (described
below). If no pair with a score superior or equal to the threshold t is found, clustering
terminates. Otherwise, the two sets of the pair (b1, b2) with the highest score r are
merged into a single set b1 ∪ b2. Finally, another iteration is performed.

The score r includes two components: rset, the set component, and rel, the element
component. rset is the ratio of interrelated pairs of elements in s1 ∪ s2, the resulting
merged set. rel is computed on a per-element basis, and the final element component
is the minimum value found. For each element, we compute the ratio of other elements
in s1 ∪ s2 that are related to this element. Both rset and rel are ratios, ranging from
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0 to 1. rset favors clustering of two sets that have a high number of related elements,
while rel ensures that no element is “sacrificed”, i.e. no element in the resulting merged
set has a very small number of relations with the other. The final score r is the square
root of the product of rset and rel (we use a square root because both rset and rel
represent somehow the ratio of interrelated elements in the merged set, thus rset × rel
actually represents the square of that ratio).

3.3 Using rainbow boxes for visualization

The sets in S can be visualized using rainbow boxes: each element in E (corresponding
to rows/columns in the matrix) will be represented by a column in rainbow boxes, and
each set in S will be represented by a rectangular box. The box covers all columns
corresponding to the elements in the set.

Set membership does not represent the totality of the information present in the
matrix, because set membership is binary (an element either belongs to a given set,
or does not belong to). It only represents the part of the information returned by
the Boolean selection function select. However, some matrices may contain additional
information, for example the matrix of Figure 1 indicates not only relations between
characters but also the parts of the novel containing their first meeting. In order to
aggregate this additional information and to represent it by colors in rainbow boxes, we
will consider 2 new functions: the aggregation function and the colorization function.

First, for a given element i ∈ E in a subset s ∈ S, there can be several values in the
matrix. For example, if we consider s = {i, j, k}, two values are present in the matrix
for i and the other elements of s: Mi,j and Mi,k. In the general case, the number of
values is |s| − 1. For the purpose of visualization, we need to aggregate these values
into a single value and then to translate it into a color. The aggregation is achieved by
the function aggregate : Rp → R (with p ≥ 1). It takes one or more values from the
matrix, and returns a single aggregated value. Typical aggregation functions are min,
max, mean and sum.

Second, the colorization function colorize : R → color translates the aggregated
value into a color. The color will be applied to the rectangular box in the corresponding
column (i.e. colors are defined on a per-set/box and per-element/column basis, thus a
given box may have several colors).

Rainbow boxes require to optimize the column order, for minimizing the number
of holes in the boxes. This is a complex combinatorial optimization problem with a
factorial complexity. Here, we used the Artificial Feeding Birds (AFB) metaheuristic
(see section 2.3) for optimizing column order.

3.4 Using Euler diagram for visualization

The sets in S can also be visualized using an Euler diagram. Euler diagrams are known
to be difficult to produce automatically when the number of sets is high. Here, we used
Multidimensional Scaling (MDS) [5]to project the characters on a two-dimensional
plane, as follows. We first create a matrix M ′ = (M ′i,j)1≤i≤n,1≤j≤|S| ∈ {0, 1} whose
rows correspond to characters and columns correspond to set in S. M ′i,j = 1 if the ith

character belongs to the jth set, otherwise M ′i,j = 0. Then, using MDS, we compute
M ′′ = (M ′′i,j)1≤i≤n,1≤j≤2 ∈ R, a two-dimensional projection of M ′. We used the MDS
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implementation in the Python module Scikit-Learn [26]. Using this two-dimensional
projection, characters were positioned in a 2D space. Finally, the sets, corresponding
to character groups, were manually drawn.

4 Application to character matrices

4.1 Application to Sombre comme l’Aurore

Figure 1 shows a character matrix for Sombre comme l’Aurore, a French yet-unpublished
novel written by the author. This matrix includes the 21 main characters of the novel
and was produced manually. A very conservative definition of “character relation” was
considered: two characters are related if it is plausible that they met together outside
of the events directly reported in the novel. Since the novel covers a period of one year,
not all events are reported and, in particular, characters that are friends to each other
are likely to meet much more often that told in the novel. On the contrary, simple en-
counters that do not lead to regular relationship are not considered as “relation” in this
matrix. Consequently, the matrix is a relationship matrix rather than a co-occurrence
matrix. When a relation holds between two characters, the matrix indicates by an in-
teger number the part of the novel during which their relation starts: 1 means before
the story begins, and 2-5 correspond to part #1-4 in the novel, respectively. Finally,
0 in the matrix indicates the absence of relation between two characters. Therefore,
the selection function selects all pairs in the matrix were the value in the matrix is not
zero.

select : p 7→ True if p 6= 0, False otherwise

We used the previously described method for transforming this matrix into over-
lapping sets (without clustering), and for visualizing these sets using rainbow boxes.

4.1.1 Rainbow boxes visualization

We used min as the aggregation function. This is consistent with the content of the
matrix, which indicates the first part of the novel where two characters have a relation.

aggregate : p1, p2, ... 7→ min(p1, p2, ...)

The colorization function produce a bright color, whose hue encodes the first part
of the novel in which a character joins a group, using a color key generated using Color
Brewer 21 and shown at the bottom of Figure 2. Yellow/dark colors correspond to the
beginning/end of the story, respectively.

colorize : a 7→



yellow if a = 1

. if a = 2

. if a = 3

. if a = 4

dark blue if a = 5

Figure 2 shows the sets extracted from the matrix as rainbow boxes. The 21 charac-
ters are represented by columns. Each box represents a group of interrelated characters,
i.e. any character in a given group is related to any other character of the group. For

1 http://colorbrewer2.org

http://colorbrewer2.org
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example, the top-most box indicates that Le Capitann, Raken, Tienn and Alyse are
related to each other, two by two. In addition, the colors indicate at which moment
a character joined the group. The top-most box is entirely yellow, indicating that the
four characters were related to each other before the story begins. On the contrary, the
box covering Alyse, Chéram, Gauve, Méric, Rashkang and Lescantelles has two colors:
Alyse, Chéram, Gauve and Lescantelles formed a group before the story begins (yellow
color) while Méric and Rashkang joined this group in part #1. Notice that, since we
used the minimum function as aggregation function, the fact that Alyse is in yellow in
this box does not imply that she is related to all other characters in the group before
the story begins: she may be related to only some characters in the group before the
beginning, and then develop relations with the others later.

Figure 2 suggest several interesting insights: (1) Most groups already exist before
the story begins (the violet color is dominant). (2) Tienn is the character that belongs
to the highest number of groups (five rectangular boxes in his column). Indeed, Tienn
is the hero of the novel. (3) Tienn belongs to two groups before the story begins (the
two violet boxes in his column). (4) In the first part of the novel, Tienn joins an already
formed group of characters (La Rasinne, Werfam, Auguss and Le Lamineur). In fact,
this corresponds to his colleagues in his first job. (5) This group will be joined by Nicol
in part #4 (dark blue segment in that box). He is a new colleague. (6) In part #2,
Tienn encounters Crépusculine (the middle blue box at the bottom). In addition, we
can see that Tienn and Crépusculine have no common friends at all (this box includes
no other characters), and that they are very distant in the visualization. Indeed, they
come from two different worlds, and they fall in love. (7) Moreover, we can search the
shortest path between Crépusculine and Tienn (ignoring their direct relation). This
path is Crépusculine → King Saphir → Werfam → Tienn. (8) In part #3, Tienn joins
a new group of three characters (Mabine, Malfred and Érard) that have no relations
with any other characters. Indeed, those characters live isolated, in a kind of ghetto.

4.1.2 Euler diagram visualization

Figure 3 shows the sets extracted from the matrix as an Euler diagram with the char-
acters positioned by MDS (see section 3.4 for details on the generation of the Euler
diagram). Many insights previously obtained with rainbow boxes cannot be found
on the Euler diagram. In particular, Euler diagram cannot represent per-element-set-
membership variables, and thus the Euler diagram does not display the part of the
novel in which a character joins a group. Moreover, the important distance between
Tienn and Crepusculine does not appear on the Euler diagram.

However, interestingly, other insights can be obtained from the Euler diagram. In
particular, thanks to the use of MDS, distance represents the (dis)similarity between
characters. First, Tienn and Werfam, are very distant and located on two opposite
corners of the visualization. These two characters seem in opposition, despite the set
that relates them. Indeed, Tienn andWerfam are two political enemies, and they oppose
during part #4 of the novel. Second, the dashed gray line separates the character of
the two afore-mentioned worlds. On the contrary, in rainbow boxes, the characters of
the world of Crépusculine were positioned at both extremities.
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Fig. 3 Euler diagram displaying character co-occurrences in Sombre comme l’Aurore.

4.2 Application to Les Misérables

Les Misérables is a famous French novel written by Victor Hugo. A well-known dataset
from the Stanford GraphBase [13] includes a character graph for this novel. The graph
contains 80 characters and indicates all their co-occurrences in the novel. Each co-
occurrence is a separate relation in the graph, and is labeled with the part and chapter
in which it occurs. We transformed this graph into a symmetric squared matrix, with
characters as rows and columns. For each pair of characters i and j, the matrix contains
a pair of values Mi,j = (p, c) where p is the parts of the novel in which the two
characters co-occur for the first time, and c is their total numbers of co-occurrence. If
the two characters never co-occur, then Mi,j = (0, 0).

We used the following selection, aggregation and colorization functions:

select : x 7→ True if x 6= (0, 0), False otherwise

aggregate : (p1, c1), (p2, c2), ..., (pm, cm) 7→ (min(p1, p2, ..., pm), c1 + c2 + ...+ cm)

colorize : (p, c) 7→ color

hue =


blue if p = 1

violet if p = 2

red if p = 3

orange if p = 4

, brightness =
c

max(c)


The aggregation function retains the minimum value for the part of the first co-

occurrence, and the sum for the number of co-occurrences. The colorization function
encodes the part of the first co-occurrence using hue, from blue to red, and the total
number of co-occurrences using brightness: characters having more co-occurrences with
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Fig. 4 Rainbow boxes displaying the character co-occurrences in Les misérables. Color (blue,
violet, red, orange) indicates the parts (1-2-3-4) of the book (respectively) and brightness the
number of co-occurrences. Characters mentioned in the text are marked with red dots.
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other characters in the group are represented with brighter colors. Since no character
joined a new group in part #5, the colorization function considers only 4 different hues.

In addition, the rainbow boxes column optimization was biased in order to favor
holes in boxes associated with fewest co-occurrences. For each box, we computed cm
the mean number of co-occurrences. Then, the cost of a hole in a given box was propor-
tional to the corresponding cm. This prevented splitting boxes representing the most
important (in terms of the total number of co-occurrences) groups of characters.

The resulting rainbow boxes are shown in Figure 4. It suggests the following in-
sights: (1) Most of the new character-group relations occur in parts #1 and #3 of
the novel (blue and red colors are dominant). (2) Jean Valjean appear as the “central”
character: he is the character that belongs to the highest number of groups. Indeed, he
is the hero of the novel. Moreover, in most groups he belongs to, Jean Valjean is the
most interacting character (brighter color in his column). (3) Javert is placed next to
Jean Valjean (they have 11 groups in common). This is expected, because Javert is a
policeman who tracks Jean during most of the novel. (4) Cosette appears in part #2
and also joins new groups in part #3. (5) Myriel has several relations, but with very few
co-occurrences (non-bright color). (6) Gavroche appears in part #3, in a single group,
but joins many other groups during part #4, two of them including Jean Valjean. (7)
There are some very highly interacting characters from Gavroche to Feuilly, spread
over three groups, and Courteyrac and Enjolras seem the most active in these groups.
(8) There is a group of 8 interrelated characters (from Blacheville to Fantine, the blue
box on the left) that have very few relations with other characters (only Fantine and
Félix are belonging to other groups).

In addition, a characteristic pattern of triangular “Christmas tree” (fir) can be
observed around Myriel and (to a lesser extent) Jean Valjean. This pattern indicates
that the central character (forming the trunk of the tree) has many isolated relations
with other characters (forming the leaves), i.e. the central character is related to many
other characters without having common friends with them. Depending on the global
shape of the rainbow boxes, this pattern can be bilateral (for Jean Valjean) or unilateral
(for Myriel).

4.3 Application to character matrices extracted from DBpedia

4.3.1 Data extraction

Character matrices were extracted from DBpedia [22] version 2016-10, as follows. First,
we selected an article of interest. Then, we extracted all linked entities in this article
(using “wikiPageWikiLink” property) that belong to the class Person (i.e. characters).
Finally, we considered two characters as related if at least one wikiPageWikiLink re-
lation exists between them. For a given pair of characters, the value in the matrix is
the number of relations between them: 0 (unrelated characters), 1 (unidirectional re-
lation) or 2 (bidirectional relation). We used the Owlready 2 [18,17] ontology-oriented
programming module for Python for loading DBpedia RDF and OWL data, and for
performing the extraction. We extracted three datasets, from the following articles:
Paris Commune (the events of 1871), Troubadour, and Trouvère.
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Fig. 5 Rainbow boxes displaying the Paris Commune dataset extracted from DBpedia. Color
brightness encodes the relationship: brighter colors represent bidirectional relations while
dimmed colors represent unidirectional relationship.
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Fig. 6 Rainbow boxes displaying the Paris Commune dataset after clustering with t = 0.25
(left) and t = 0.025 (right).
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4.3.2 Paris Commune dataset

This dataset includes 82 characters. Figure 5 shows the dataset using rainbow boxes,
using the following selection, aggregation and colorization functions:

select : p 7→ True if p 6= 0, False otherwise

aggregate : p1, p2, ..., pm 7→
p1 + p2 + ...+ pm

m

colorize : p 7→ color(hue = red, brighness = p)

We can identify two “Christmas tree” patterns. The larger one has two “trunk”
characters: Napoleon III and Adolphe Tiers. They correspond to the two governmen-
tal leaders, before the Paris Commune and after, respectively. On the contrary, Paris
Commune did not have a single, clearly identified, leader. Despite the Commune had
several iconic characters, such as Louise Michel, they have surprisingly few relations
in DBpedia. A second “Christmas tree” pattern can be seen around Karl Marx. Al-
though not directly involved in the events, he supported the Paris Commune. The four
left-most characters are totally disconnected from the other. They correspond to film
directors or writers that worked on the Paris Commune, but were not contemporaries
of the events.

Figure 6 shows the same dataset after clustering, using the same selection, aggrega-
tion and colorization functions as above. With t = 0.25 (left), the number of character
groups/boxes is lower. We can observe interesting boxes. For example, the box labeled
“1” includes many artists and writers, e.g. Nadar, Victor Hugo, Émile Zola, André Gill,
Gustave Courbet, Édouard Manet. The box labeled “2” includes most of the socialist
and communist theoreticians, such as Auguste Blanqui, Karl Marx, Friedrich Engels,
Mikhail Bakunin, Vladimir Lenin, Pierre-Joseph Proudhon, Louis Blanc,...

Clustering with a very small threshold t = 0.025 provides an interesting results
(Figure 6, right). Here, only four groups remain, two of them being the two small iso-
lated groups mentioned above. The two other groups gather most of the characters and
overlap partially. The group on the left includes most of the characters that supported
the Paris Commune (e.g. Eugène Pottier, Eugène Varlin, Auguste Blanqui, Nathalie
Lemel, Gustave Courbet, Jules Vallès, Louise Michel,...) while most of the characters on
the right did not (with two notable exceptions: Verlaine and Louis Charles Delescluze).

As a matter of comparison, Figure 7 shows the Paris Commune dataset as a graph.
It was generated with the NetworkX Python module using the Kamada-Kawai algo-
rithm [12]. Compared to the proposed visualization, the graph facilitates the identi-
fication of isolated characters (corresponding to the nodes at the periphery). On the
contrary, the highly connected part at the center of the graph is difficult to read, while
interrelated groups of characters are easier to observe on the approach we propose. Sim-
ilarly, Figure 8 shows the dataset using a chord diagram (draw with Bokeh2). Here,
with 82 characters/nodes and many edges, the readability is quite low. In the literature
[3], chord diagram was applied to character relations, but on smaller datasets (about
20 characters). In addition, chord diagram is more interesting when quantitative data
are available.

2 https://bokeh.pydata.org

https://bokeh.pydata.org
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Fig. 7 Graph displaying the Paris commune dataset.

Fig. 8 Chord diagram displaying the Paris commune dataset.
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Fig. 9 Rainbow boxes displaying the Troubadour dataset.
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Fig. 10 Rainbow boxes displaying the Trouvère dataset.
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4.3.3 Troubadour and Trouvère dataset

Troubadours were poets and songwriters in Old Occitan during the high Middle Ages.
Trouvères continued the artistic movement of troubadours, in Oïl language in the north
of France. The two datasets include 114 and 76 characters, respectively. They are shown
in Figure 9 and 10.

The Troubadour dataset seems not very structured, with no “Christmas tree” pat-
tern nor large boxes. We can distinguish two sets of boxes, one on the left and the
other on the right, separated by a white diagonal region in the middle. It does not
indicate two isolated sets of characters, because boxes do not represent characters but
groups. However, it is caused by the presence of many boxes with long holes on the left
columns. Thus, it suggests some kind of heterogeneity in that part of the visualization.
On the contrary, on the Trouvère dataset, we can observe two “Christmas tree” patterns
around Gace Brulé and Theobald I for the first one, and Jehan Bretel for the second.
In addition, these two “Christmas tree” patterns are quite distant one from the other,
suggesting that they involve different characters.

The difference between the Troubadour and Trouvère visualization may suggest
more structured organization or relationships for trouvères, and more informal ones for
troubadours, without prominent “leaders”. However, it can also result from a difference
in the way troubadours and trouvères pages are written or indexed in Wikipedia.

5 Discussion and conclusion

In this article, we proposed a new method for visualizing undirected graphs and sym-
metric matrices using overlapping set visualization techniques. We applied this method
to the visualization of character co-occurrence matrices extracted from novels or DB-
pedia. We showed that this method was efficient for identifying groups of interrelated
elements and generating new insights. It may be particularly interesting for visualizing
highly connected networks, which are usually difficult to visualize using graphs. We
also described a characteristic pattern of “Christmas tree” for identifying characters
related to many isolated others.

The two datasets extracted from novels we used differ in size, but also qualitatively.
The first one was produced manually by the author, using a very conservative definition
of “relation” between two characters. On the contrary, the second one was built auto-
matically by considering co-occurrence of characters in the novel. Figure 2 is visually
much simpler and easier to read than Figure 4, this can be explained by the smaller
size of the dataset, but possibly also by the difference in the nature of the matrices. It
would be interesting to extract a co-occurrence matrix from Sombre comme l’Aurore,
and to compare it with the manually produced matrix.

When building overlapping sets from matrices, we considered only pairwise rela-
tions. Thus, the character groups we extracted do not necessarily exhibit higher-level
relations : for example, if A is related to B and C, and B is related to C, then A, B
and C form a group. However, it does not necessarily imply that A, B and C meet
all the three (i.e. ternary relation). Consequently, A might be unaware that B and
C are related, even if they belong to the same group A, B and C. This limitation is
inherent to the graph structure of the original data: other graph visualizations, such as
reordered matrices, suffer from the same limit. The use of hypergraph could encompass
this problem, however, they may be more difficult to manage and to produce. However,
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contrary to reordered matrices, the proposed approaches could be applied to hyper-
graph because it can represent differently a group of 3 characters vs 3 pairwise-related
characters.

When colors are used to display the parts of the novel during which a character
joins the group, another limitation is that we do not display the moment at which a
character leaves that group (if he does). In theory, time of leaving could be encoded
visually using another visual variable beyond color, e.g. texture, or by using two colors
in boxes (e.g. one at the top of the box and another at the bottom). However, the
notion of “leaving a group” is difficult to define: if groups correspond to characters that
know each other, one still knows someone else even if he no longer meets him. Moreover,
the absence of meetings after the initial encounter does not necessarily imply that the
characters are no longer related: often, the first meeting between two characters is
detailed in the novel, and then, the characters are supposed to meet again regularly
but these events may not be narrated explicitly. Consequently, in the present work, we
focused on the moment a character joins a group, but not the moment he leaves it.

With regard to the matrix size, the proposed method is limited by the number of
columns that can be shown on a screen, and by the maximum number of columns that
can be optimized in rainbow boxes. Here, we presented for the first time rainbow boxes
with more than 100 columns. However, the optimization took more than one hour on
a recent laptop computer (Intel Core i7-7500U 2.70 GHz, 16 Gb RAM, using a single
core, i.e. without parallelization). As a consequence, the method is currently limited
to matrices with at most 100-150 rows/columns.

The proposed method focuses on groups of interrelated characters. In the litera-
ture, matrix reordering methods have been used for the identification of interrelated
character groups: those groups form squares on the matrix diagonal (or triangle if only
half of the matrix is shown). For example, in Figure 1, 5 such groups can be seen on
the diagonal. However, a character can belong only to a single group in this approach,
or at most two if the character is placed in-between two squares on the diagonal. For
instance, Tienn has been placed at the beginning of the matrix in Figure 1, but could
also be placed at the end (due to the three “4” at the end of the Tienn’s row). On the
contrary, Tienn belong to not less than 5 groups in the rainbow boxes representation
in Figure 2, and a total of 9 interrelated groups have been identified (thus 4 additional
groups compared to the matrix reordering methods). Similarly, in Figure 4, we can see
several overlapping groups at the top of the visualization, most of them including Jean
Valjean. In addition, rainbow boxes allow a compact representation of the dataset: a
group of n characters that know each other occupies n×(n−1)

2 cells in the matrix, but
the entire group is represented as a single box in rainbow boxes, with a length of n
columns.

The proposed method needs to be properly evaluated and compared to other tech-
niques, e.g. during case studies, or user studies measuring efficacy, efficiency, and user
preference. Diverse tasks should be tested. We expect that the proposed method may
be efficient for tasks relating to the identification of interrelated groups, as these groups
are clearly identified in our method. On the contrary, it may not be as efficient for other
tasks, e.g. when considering the relations of a given element rather than a group.

We proposed two techniques for visualizing the resulting overlapping sets, Euler
diagrams and rainbow boxes. However, the latter have two advantages: (1) they are
easier to produce automatically, while it is known that Euler diagrams are difficult
to generate above 6 sets [8,27], and (2) rainbow boxes are easier to read, as shown
by a recent user study on amino acid properties [19]. Nevertheless, Euler diagrams
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suggested different insights than rainbow boxes, and thus they can be a complementary
visualization, especially on small datasets. Other techniques, such as UpSet [23], could
also be considered in the future for visualizing these overlapping sets.

Rainbow boxes were previously used only in biomedicine. Here, we presented an
application of rainbow boxes to digital humanities, which is a totally different domain.
This validates the general nature and the genericity of the visualization technique. In
addition, we introduced box clustering in rainbow boxes. Clustering can be used to
simplify the visualization, by reducing the number of boxes and thus the vertical space
required. Moreover, we have shown on the Paris Commune dataset that it can also be
used for performing overlapping clustering on characters when the threshold t is very
low. This character clustering abilities is an interesting perspective and need additional
evaluation.

Additional perspectives of this work are (1) to adapt the proposed method to the
visualization of directed graphs/non-symmetric square matrices and hypergraph, (2) to
implement element/column clustering, in addition to set/box clustering, (3) to apply
the method to other domains, such as the visualization of FOAF (Friend Of A Friend)
graphs in social media, protein-protein interaction matrices in bioinformatics, drug-
drug interaction matrices in pharmacology, or matrices in Linkography [10], and (4) to
evaluate the proposed approach properly.
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