
HAL Id: hal-02264232
https://hal.science/hal-02264232v1

Submitted on 6 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Artificial Feeding Birds (AFB): a new metaheuristic
inspired by the behavior of pigeons

Jean-Baptiste Lamy

To cite this version:
Jean-Baptiste Lamy. Artificial Feeding Birds (AFB): a new metaheuristic inspired by the behavior
of pigeons. Advances in nature-inspired computing and applications, 2019, �10.1007/978-3-319-96451-
5_3�. �hal-02264232�

https://hal.science/hal-02264232v1
https://hal.archives-ouvertes.fr

Artificial Feeding Birds (AFB): a new metaheuristic inspired by the
behavior of pigeons

Jean-Baptiste Lamy

July 23, 2018

LIMICS (Laboratoire d’informatique médicale et
d’ingénierie des connaissances en e-santé), Université Paris
13, Sorbonne Université, Inserm, 93017 Bobigny, France,
jean-baptiste.lamy @ univ-paris13.fr

Abstract

Many optimization algorithms and metaheuristics have
been inspired by nature. These algorithms often permit
solving a wide range of optimization problems. Most of
them were inspired by exceptional or extraordinary animal
behaviors. On the contrary, in this chapter, we present
Artificial Feeding Birds (AFB), a new metaheuristic in-
spired by the very trivial behavior of birds searching for
food. AFB is very simple, yet efficient, and can be eas-
ily adapted to various optimization problems. We present
application to unconstrained global nonlinear optimization,
with several benchmark functions and the training of arti-
ficial neural networks (ANN), and to the resolution of or-
dering combinatorial optimization problems, with two ex-
amples: the traveling salesman problem and the optimiza-
tion of rainbow boxes (a recent visualization technique for
overlapping sets). We compare the results with those pro-
duced with Artificial Bee Colony (ABC), Firefly Algorithm
(FA), Genetic Algorithm (GA) and Ant Colony Optimiza-
tion (ACO), showing that AFB gives results equivalent or
better than the other metaheuristics. Finally, we discuss
the choice of inspiration sources from nature, before con-
cluding.

1 Introduction

Many algorithms have been inspired by nature. Two well-
known examples are Artificial Neural Networks (ANN)
[1] and Genetic Algorithms (GA) [5]. More recently, re-
searchers inspired themselves from the behavior of animals
for inventing new optimization algorithms: social organiza-
tion of insects [3] like ants [6] and honey bees [12], cohesion
within a swarm in flight [18], communication by light be-
tween fireflies [23], parasitic behavior of cuckoo [22], ability
of pigeons to orientate themselves spatially according to
the sun position and the North pole direction [7]. These
algorithms typically rely on swarm intelligence, i.e. they
consider a population of agents that interact between them-
selves and with their environment [8]. These agents are very
simple but they can achieve complex tasks together, and in
particular they can solve optimization problems [2]. These
algorithms are called metaheuristics when they provide a
top-level strategy that can be used to guide a low-level
heuristic search strategy [21, 16]. Consequently, a meta-

heuristic is not specific to a given type of problem; it can
solve very different problems, depending on the chosen low-
level search strategy.

Most of the meta-heuristics were actually inspired by ex-
ceptional or extraordinary animal behaviors. For instance,
the ability of fireflies to emit light is exceptional: only a few
animal species are able to emit light. Even the social orga-
nization of insects are quite rare: many species do not orga-
nize themselves in huge colonies (even not all bee species).
However, from an evolutionary point of view, the most effi-
cient behaviors lead to a higher chance of survival and thus,
they are expected to be observed more frequently. Conse-
quently, we might regard exceptional behaviors as poorly
efficient ones (in terms of performances or capability of
adaptation), and common behaviors as more efficient.

In this chapter, we propose Artificial Feeding Birds
(AFB), a new metaheuristic that follows a different kind
of inspiration: it has been inspired by a very trivial and
common behavior that we observed on birds like pigeons,
when they are searching for food on sidewalks or in a gar-
den. Our hypothesis is that, if pigeons are so common, it
is because their food search strategy is efficient, and thus
it is an interesting inspiration source for algorithms. AFB
presents several advantages: (1) the metaheuristic is very
simple, (2) it provides good results, and (3) it is easy to
adapt to new optimization problems, and in particular it
makes no assumption on the solution space and does not re-
quire the computation of distances between solutions. Here,
we will show the adaptability of AFB by applying it to
unconstrained global nonlinear optimization, including the
training of ANN, and to the resolution of ordering optimiza-
tion problems, with two examples: the Traveling Salesman
Problem (TSP) and the optimization of rainbow boxes [14].
Rainbow boxes are a recent information visualization tech-
nique for overlapping set that requires to solve a complex
optimization problem.

The rest of the chapter is organized as follows. Sec-
tion 2 presents a brief state of the art of nature-inspired
optimization algorithms. Section 3 describes the behavior
that we observed on pigeons and other birds searching for
food. Section 4 presents the metaheuristic algorithm, and
its adaptation to two problems: unconstrained global non-
linear optimization and ordering optimization. Section 5
presents various experiments performed for determining pa-
rameters values, and for testing AFB on several benchmark
functions, on TSP and on rainbow boxes optimization, and
comparing AFB with other metaheuristics. Finally, section
6 discusses the main results, the differences between AFB
and other metaheuristics, and gives some perspectives.

1

Flies...
...to land at a

new random

position (2)

...to join the

position of

another

bird (4)

position (1)

...to return to

a memorized

position rich

in food (3)

Figure 1: The four types of move observed on birds when they are searching for food.

2 Related works

Many optimization algorithms have been inspired by na-
ture [24]. Many of them are based on the social behavior of
insects [3] and their ability to communicate through chem-
ical substances, moves or light. An example is the behavior
of ants, which inspired Ant Colony Optimization (ACO)
[6]. Ants explore their environment for searching food and
they leave a track behind them using chemical substances
named pheromones. These pheromones are then considered
by other ants as signals indicating them the directions to
follow or not to follow. Fireflies behavior and their use of
light to attract sexual mates also inspired an algorithm [23].
The Firefly Algorithm (FA) has been used subsequently for
training ANN [4].

The Artificial Bee Colony (ABC) algorithm [12] has been
inspired by the communication between bees through their
waggle dances when they are searching nectar. When a
bee has found an interesting food source, she goes back to
the hives and performs the waggle dance to “recruit” other
bees for bringing them to the food source. ABC consid-
ers three types of bee: workers, onlookers and scouts. Each
worker is associated with a food source, whose position cor-
responds to a solution of the optimization problem. Better
solutions correspond to richer source food. On each cy-
cle, each worker tries to improve her solution by trying a
nearby solution, and keep this new solution if it is better
than the current one. Then she communicates to onlookers
the quality of her solution. Onlookers obtain this informa-
tion from workers; on each cycle, each onlooker chooses a
worker to help, the choice is random but with a higher prob-
ability to choose the workers with better solutions. Then,
the onlooker tries to improve the solution, in a way similar
to the worker. When a solution cannot be improved af-
ter a fixed number of trials, it is abandoned and the scout
bee is in charge of finding a new random food source for
the worker. The ABC metaheuristic has been adapted to
unconstrained global nonlinear optimization [12], the opti-
mization of constrained problems [9], the training of ANN
[10] and clustering [11].

Particle Swarm Optimization (PSO) is a technique in-
spired by the behavior of animals that move in a swarm
(flying insects or birds, fishes) [18]. In the swarm, the move
performed by each individual at a given time depends on
the position of the other individuals and of the quality of
the solutions associated with their positions. FA can also
be seen as an improvement of PSO.

More recently, several bird-inspired algorithms were pub-
lished. XS Yang et al. inspired themselves from the par-

asitic behavior of cuckoo [22]. H Duan et al. proposed an
algorithm inspired by pigeons and their ability to orientate
themselves spatially according to the sun position and the
North pole direction [7]. The algorithm has been used for
air robot path planning.

3 Behaviors observed on birds

Our observations were carried initially on pigeons, and then
in groups mixing various types of birds feeding at the same
place. Pigeons are very common birds in European towns
and they are easy to observe. They feed by pecking seeds
or crumbs of food on the ground. When no food is in
reach, they explore their environment, using the two mode
of movement at their disposal: walking and flying.

We observed that a pigeon performs four types of move
when searching for food (Figure 1) : (1) walking to a new
position close to his current position (because they walk
slowly), (2) flying and landing at an arbitrary semi-random
position, (3) flying and returning to a memorized position
rich in food (such as a picnic area), and (4) flying and
landing close to another pigeon. Typically, a pigeon walks
for searching food (one or several move 1). After a while, if
no food is found, he flies and go to a random place (move
2), to a memorized position (move 3) or join another pigeon
(move 4). Then, he begins to walk again (move 1), etc.

This simple behavior optimizes the food search. Move 1
(walk) allows a local search. This is meaningful because
there is a high probability to find food close to a posi-
tion where food has already been found (e.g. if crumbs
of a sandwich are present somewhere, it is probable to find
other crumbs of the same sandwich nearby). Move 2 (fly to
random position) allows the random exploration of space.
Move 3 (return to a memorized position) allows retrieving
food, or continuing to look for it in the surroundings. Move
4 (join another bird) allows benefit from the food that the
other bird might have found. This leads to big groups of
pigeons when an important quantity of food is available in
a given place.

These observations were carried on pigeons, however,
many other birds present a similar behavior, including spar-
rows and gooses. When several species of birds are mixed
together and feed at the same place, we observed that the
size of the bird has an impact on move 4 (join another bird):
a big bird can join a smaller one. On the contrary, a small
bird is frightened by bigger ones and do not join them. We
observed this behavior in population mixing gooses and pi-
geons.

2

4 Translation in algorithms

4.1 Metaheuristic

We designed a metaheuristic inspired by the bird feeding
behavior. We consider a multi-agent system, each agent be-
ing an artificial bird. The position of each bird corresponds
to a candidate solution for the optimization problem. Each
bird also keeps in memory the best position he found, i.e.
the one corresponding to the solution that minimizes the
best the cost function. When the current position of a bird
is better than the memorized position, the current position
is memorized and the bird is considered to “have fed”.

The metaheuristic performs several cycles. In each cy-
cle, each bird performs one of the four moves described
previously. For a given bird, the next move is determined
as follows: if the bird has flown in the previous cycle, he
walks. If the bird has eaten in the previous cycle, he walks.
Otherwise, one of the four moves is randomly chosen, with
different probabilities associated with each move. In addi-
tion, we considered two sizes of birds: small and big ones.
Only big birds can perform move 4 and join another (small
or big) bird. While this rule does not exactly match our
observation, it efficiently avoids that all birds get stuck in
a local minimum.

Two moves (3 and 4) are generic and independent from
the optimization problem. On the contrary, the two other
moves (1 and 2, i.e. walk and random fly) are problem-
dependent. Therefore, we can define an optimization prob-
lem as a triplet of three functions (cost, fly, walk), as fol-
lows:
- cost : A → R, the cost function to minimize, where A is
the admissible set of solutions for the cost function,
- fly : φ→ A, a function that returns a random position,
- walk : N→ A, a function that returns a random position
close to the current position of the bird indicated by the
given integer index.

The metaheuristic takes 5 parameters:
- n, the number of artificial birds,
- r, the ratio of small birds in the total bird population (the
other being big birds),
- p2, the probability that a bird chooses move 2,
- p3, the probability that a bird chooses move 3,
- p4, the probability that a bird chooses move 4.

The probability for move 1 is thus p1 = 1− p2 − p3 − p4.
The metaheuristic defines 6 per-bird variables, 1 ≤ i ≤ n:

- xi ∈ A, the current position of bird i,
- fi ∈ R, the value of the cost function for xi,
- Xi ∈ A, the best position found and memorized by bird i,
- Fi ∈ R, the value of the cost function for Xi,
- si ∈ {0, 1}, the size of bird i (0 is a small bird, e.g. a
pigeon, and 1 a big bird, e.g. a goose),
- mi ∈ {1, 2, 3, 4}, the type of move performed by bird i at
the previous cycle (1 walk, 2 fly to a random position, 3 fly
to the memorized position, 4 fly to the position of another
bird).

Algorithm 1 shows the metaheuristic. It initializes the
variables, runs cycles and finally determines the best solu-
tion found. During initialization, the position xi of each
bird is randomly defined using the fly() function, the cur-
rent cost fi is computed and mi is set to 2 (because the
random initialization is comparable to move 2).

Algorithm 1 The AFB metaheuristic in pseudo-code.
For 1 ≤ i ≤ n:

xi = Xi = fly()
fi = Fi = cost(xi)
mi = 2
si = 0 if i ≤ r × n, 1 otherwise

Repeat:
For 1 ≤ i ≤ n:

If mi ∈ {2, 3, 4} or fi = Fi:
p = 1

Else, if si = 0:
p = random real number between p4 and 1

Else:
p = random real number between 0 and 1

If p ≥ p2 + p3 + p4:
mi = 1
xi = walk(i)
fi = cost(xi)

Else, if p ≥ p3 + p4:
mi = 2
xi = fly()
fi = cost(xi)

Else, if p ≥ p4:
mi = 3
xi = Xi

fi = Fi

Else:
mi = 4
j = random integer number between 1 and n,

with j 6= i
xi = xj
fi = fj

If fi ≤ Fi:
Xi = xi
Fi = fi

Check stopping condition

The best solution found is Xk, with 1 ≤ k ≤ n such as
Fk = min({Fi | 1 ≤ i ≤ n})

In each cycle, for each bird i, the algorithm chooses one of
the four possible moves using the previously described rules,
updates mi with the chosen move, performs the move, and
updates the best position if needed. Moves 1 and 2 call
the walk() and fly() functions, respectively, and then the
cost() function. Moves 3 and 4 move the bird to the best
memorized position or to the position of another random
bird, respectively. These two moves do not test a new so-
lution and thus do not require to call the cost() function.

If the current cost fi is lower or equal to the best memo-
rized cost Fi, then the current position and cost are memo-
rized. The condition “lower or equal” allows the modifica-
tion of the memorized position in order to keep a solution
that is not better than the previous one, but different; this
potentially increases the diversity of the solutions memo-
rized by the population of birds.

Finally, it is necessary to include a stopping condition in
the algorithm. We suggest stopping the algorithm after a
pre-defined number of solutions have been tested (i.e. to
limit the number of calls to the cost() function). As our

3

Algorithm 2 fly() and walk() functions for optimization
problems in Rd.
Function fly():

x′ ∈ Rd

For 1 ≤ k ≤ d:
x′k = random real number between xmin and xmax

Return x′

Function walk(i):
x′ ∈ Rd, x′k = xik for 1 ≤ k ≤ d
j = random integer number between 1 and n, j 6= i
k = random integer number between 1 and d
∆ = |xik − xjk|
if ∆ = 0: ∆ = 0.001
r = random real number between -1 and 1
x′k = x′k + r ×∆
If x′k < xmin: x′k = xmin

Else, if x′k > xmax: x′k = xmax

Return x′

Algorithm 3 fly() and walk() functions for solving order-
ing problems.
Function fly():

x′ = sequence of the elements in T , in a random order
Return x′

Function walk(i):
∆ = 0
Repeat maximum 100 times:

j = random integer number between 1 and n, j 6= i
k = random integer number between 1 and |T |
∆′ = position of xik in xj − position of xi(k−1)

in xj
If 1 < abs(∆′) < |T | − 1:

∆ = ∆′

Break
If ∆ = 0: ∆ = random integer number between 2

and n− 1
l = (k + ∆) modulo |T |
If k > l: Swap k and l
x′ = clone of sequence xi
Reverse the order of elements between x′k and x′l
Return x′

metaheuristic does not test a new solution for each bird in
each cycle, this stopping condition allows a fair comparison
with other optimization algorithms that test more solutions
per cycle.

At the end of the process, the best solution found is the
best position memorized by the birds.

The walk() and fly() functions depend on the optimiza-
tion problems. fly() returns a random solution, and walk()
a new solution close to the one of the given bird. Simple
walk() functions just modify the bird position. More so-
phisticated walk() functions (as the two presented below)
first evaluate the local density of birds at the given bird’s
position. The local density is roughly estimated by ∆, a
partial distance computed between the walking bird and
another bird chosen randomly. Then walk() modifies the
solution of the bird by performing a move (or a change)
that is proportional to ∆.

4.2 Adaptation to unconstrained global
nonlinear optimization

In this section, we apply the AFB metaheuristic to the
global optimization of a real function with d parameters,
i.e. A = Rd. The solutions are points in a space with d
dimensions, whose coordinates are between xmin and xmax.

Algorithm 2 describes the fly() and walk() functions we
propose for global nonlinear optimization. The fly() func-
tion simply returns a random position. The walk() function
modifies a randomly chosen coordinate k of the current bird
position xi. The modification has a maximum amplitude
which is ∆, the absolute value of the difference between co-
ordinates xik and xjk, where j is another randomly chosen
bird index. This allows smaller amplitudes when birds are
closer. This is a similar local search heuristic than the one
proposed in the ABC algorithm [12]; however our meta-
heuristic differs.

4.3 Adaptation to ordering optimization

In this section, we apply the AFB metaheuristic to order-
ing problems, i.e. problems in which an optimal order of
the elements of a set T must be found. Ordering problems
are a subcategory of combinatorial optimization problem.
Algorithm 3 describes the fly() and walk() functions we
propose for solving ordering problems. Bird positions xi
are ordered sequences of the elements in T . The fly()
function generates a random order. The walk() function
corresponds to a variant of the 2-opt local search heuristic
[17], in which the sequence is opened at two points, and
reconnected after reversing one of the two parts (e.g. if the
sequence ABCDEF is split between B-C and E-F, the re-
sulting sequence is ABEDCF). We modified the heuristic in
order to take into account the local similarity of the bird’s
position with the position of another random bird j (figure
2). The similarity is (roughly) estimated by ∆, the number
of elements in xj between the element located in position
k (the first opened edge) and the previous element in xi.
If no satisfying value can be found for ∆ after 100 tries, a
default random value is used.

5 Experimentations

5.1 Implementation

The algorithms described in the previous section were im-
plemented in the Python language and executed with the
PyPy2 interpreter (a version of Python integrating a Just-
In-Time (JIT) compiler). Other algorithms (ABC, FA, GA
and ACO) have also been implemented in the same lan-
guage, for comparison purpose.

The AFB implementation in Python is available online
under the GNU LGPL Open Source license, including most
of the examples of the chapter:

https://bitbucket.org/jibalamy/metaheuristic_optimizer

5.2 Benchmarks and tests

For nonlinear optimization, we selected five functions fre-
quently used in benchmarks (Figure 3): a 5-dimension
sphere function, the Rosenbrock function, the 10-dimension

4

https://bitbucket.org/jibalamy/metaheuristic_optimizer

Figure 2: Examples of the modified 2-opt local search heuristic on sequences of 6 elements, ABCDEF. Notice how the order
of another random bird j affects the 2-opt for bird i (the schema shows the results for two different birds j). Variable names
(i, j, k, l, ∆,...) correspond to those in algorithm 3.

Sphere(x1, ..., xn) =

n∑
i=1

x2i n = 5 and −100 < xi < 100

Rosenbrock(x, y) = (1− x2) + 100× (y − x2)2 −2.048 < x < 2.048 and −2.048 < y < 2.048

Rastrigin(x1, ..., xn) =

n∑
i=1

x2i − 10× cos(2πxi) + 10 n = 10 and −600 < xi < 600

Eggholder(x, y) = −(y + 47) sin
(√∣∣y + x

2 + 47
∣∣)− x sin

(√
|x− (y + 47)|

)
+ 959.640662720851 −512 < x, y < 512

Himmelblau(x, y) = (x2 + y − 11)2 + (x+ y2 − 7)2 −6 < x, y < 6

Figure 3: The five benchmark functions for experimentation.

Rastrigin function, the Eggholder function (we added a con-
stant to this function, so as its global minimum is about 0,
as for the other functions) and the Himmelblau function.

In addition, we tested the training of ANN, using the
“Xor6” problem, which is also commonly used for bench-
marking [4]. Its consist of an ANN with 2 input neurons
I1 and I2, 2 hidden neurons H1 and H2, and 1 output neu-
ron O. Neurons have no bias, there are thus 6 coefficients
to optimize: I1-H1, I1-H2, I2-H1, I2-H2, H1-O and H2-O.
The four learning samples (I1, I2, O) are (0, 0, 0), (0, 1, 1),
(1, 0, 1), (1, 1, 0); they correspond to a logical exclusive or.
The cost function takes 6 parameters corresponding to the
6 coefficients of the ANN, and returns the Mean Squared
Error (MSE). We tested the Xor6 problem with two acti-
vation functions: sinus and sigmoid, leading to 2 functions
to optimize: Xor6sin and Xor6sig, with xmin = −100 and
xmax = 100.

For ordering optimization, we tested two problems. The
first one is the Traveling Salesman Problem (TSP). It is

a well-known optimization problem in which a traveling
salesman must visit a set T of towns and then return to
his starting town. The objective is to find the optimal or-
der for visiting the towns, in order to minimize the total
distance of the trip. We used the FRI26 dataset, which
includes 26 towns.

The second problem is the optimization of rainbow boxes.
Rainbow boxes [14, 13] are an information visualization
technique that we recently proposed for overlapping sets.
We applied this technique for the visualization of drug prop-
erties [15]. Several elements and sets are to be visualized,
each element can belong to several sets and each set can
contain several elements. In rainbow boxes, each element
is represented by a column, and each set by a rectangu-
lar box that covers the columns corresponding to the ele-
ments belonging to the set (see example in figure 4). When
these elements are not presented in adjacent columns, holes
are present in the box. The optimization problem con-
sists in finding the optimum column order to minimize the

5

Figure 4: Example of rainbow boxes, corresponding to one of the small random dataset (“el” stands for “element”). Here,
after optimization, there are 3 holes, one in set 4 and two in set 5.

p1 (walk) p2 (random fly) p3 (memory) p4 (join other)

Sphere() 0 0 0.64 0.36
Rosenbrock() 0.54 0.05 0.36 0.05
Rastrigin() 0 0 0.58 0.42
Eggholder() 0.37 0.01 0.31 0.31
Himmelblau() 0 0.20 0.66 0.14

Xor6sin() 0.06 0.09 0.52 0.33
Xor6sig() 0.20 0 0.51 0.29

Retained values 0.25 0.01 0.67 0.07

Table 1: The best values obtained for parameters p2, p3 and p4 for each test function, and the retained values.

number of holes. Therefore, the cost() function computes
and returns the number of holes produced by a given col-
umn order. We tested two previously presented rainbow
boxes datasets [13], amino acid and histones, and we gen-
erated two sets of 100 random datasets, the first with small
datasets (20 elements, 8 sets and 30 membership relations)
and the second with larger ones (30 elements, 15 sets and
60 membership relations).

5.3 Parameter values

First, n was set to 20 semi-arbitrarily: this value gives good
results and is used in several other population-based algo-
rithms, such as ABC. Similarly, r was set to 0.75 (corre-
sponding to 15 small birds and 5 big ones).

Finally, for studying and determining the values of the
parameters p2, p3 and p4, we created two instances of the
AFB metaheuristic, one in charge of optimizing the param-
eters of the other. Table 1 shows the best parameter values
found for each benchmark functions. Since each parameter
p1−4 correspond to one of the four moves, we can see that
some moves are not pertinent for optimizing some func-
tions (However, notice that p1 = 0 does not mean that the
birds never walk, because they always walk after landing
or feeding; it just mean that the bird never walk after an
unsuccessful walk move). However, additional tests showed
that the values found for p4 are overestimated in table 1:
when optimizing parameter values, we computed the mean
of 20 runs for each set of parameter values, but there is still
a certain variability in the results. A high p4 value means
that the AFB algorithm will focus more on the best solu-
tions found, and this possibly benefits more to better runs,
which are those selected during the optimization process.

The last line of table 1 shows the parameter values that
we retained. These values will be systematically used in the
rest of the chapter.

5.4 Results on unconstrained global non-
linear optimization

We tested AFB on the optimization of the benchmark func-
tions presented in section 5.2, and we compared the results
with those obtained with ABC and FA. The stopping con-
dition was fixed to 40,000 tested solutions. For ABC, pa-
rameters were the following: n = 20 (number of bees),
limit = 100 (a food source is considered exhausted if it
cannot be improved after 100 cycles). These values cor-
respond to the conditions used by Karaboga for the ABC
algorithm: 2000 cycles for 20 bees [12]. For FA, we were un-
able to find a set of parameter values that performed well on
all tests. We used the following values: n = 20 (number of
fireflies), α = 0.022, αfade = 1.0, β = 0.442, γ = 3.413
for Rosenbrock(), α = 0.268, αfade = 1.0, β = 0.128,
γ = 9.807 for Eggholder(), and α = 0.37, αfade = 0.98,
β = 0.91, γ = 0 for others. These values were obtained by
running another optimization algorithm on the parameter
values.

Table 2 gives the results. For ABC, they are similar
to the ones published [12, 4]. AFB gives the best results
for all functions but Xor6sig() and Himmelblau(), but for
these two functions, AFB is close to the best results. Com-
pared to ABC, AFB performs much better for two func-
tions, Rosenbrock() and Eggholder(). We explain this dif-
ference as follows. In ABC, a single coordinate of the solu-
tion is modified, and then a greedy selection is performed
between the new solution and the previous one. This im-
plies that the solution can move only in a single axis, and
the move needs to improve the results to be conserved. But
the Rosenbrock() function has a narrow “valley” that re-
quires diagonal moves. In AFB, walk moves also involve a
single coordinate, however, several walks can be performed
before returning to the best memorized position. This per-
mits diagonal moves.

Finally, computation times were similar between AFB
and ABC, but higher for FA.

6

AFB ABC FA

Sphere()
Result 5.07e-81 6.23e-17 2.36e-32
Std. deviation 2.88e-80 3.05e-17 1.62e-32
Time (ms) 15 15 310

Rosenbrock()
Result 2.64e-05 8.73e-03 2.84e-03
Std. deviation 8.05e-05 1.40e-02 3.56e-02
Time (ms) 13 10 176

Rastrigin()
Result 0 (*) 7.94e-15 95.04
Std. deviation 0 1.02e-13 113.30
Time (ms) 26 28 383

Eggholder()
Result 0 (*) 0.48 11.3
Std. deviation 0 2.86 18.16
Time (ms) 17 17 185

Himmelblau()
Result 6.00e-31 5.80e-17 2.46e-31
Std. deviation 3.37e-31 3.17e-17 4.04e-31
Time (ms) 11 11 156

Xor6sin()
Result 1.24e-06 9.31e-06 1.34e-04
Std. deviation 2.78e-06 1.13e-05 8.39e-04
Time (ms) 37 39 337

Xor6sig()
Result 4.40e-02 4.05e-02 1.26e-01
Std. deviation 3.77e-02 3.10e-02 1.75e-02
Time (ms) 41 39 49

Table 2: Comparison of the results obtained when minimizing various functions with AFB and ABC. Results are the means
over 250 runs, and the lower values are the best. (*) 0 results are understood at double precision (which is 1e-323).

5.5 Results on ordering problems

We compared the results obtained with AFB with those ob-
tained with GA and ACO. The GA we implemented is the
random-key algorithm proposed by Snyder et al. [19] for
generalized TSP. We tested the algorithm both with and
without local optimizations (2-opt and swap). We used
two ACO algorithms: ACO-pants1, a Python ACO imple-
mentation for TSP with some TSP-specific optimizations,
for TSP and the MAX-MIN Ant System (MMAS) [20] for
rainbow boxes optimization (without any specific optimiza-
tion).

For TSP, the stopping condition was fixed to 40,000
tested solutions and we performed 250 runs for each al-
gorithm. The best possible tour has a distance of 937. For
rainbow boxes optimization, the stopping condition was
fixed to 40,000 for large random datasets, and to 10,000
for the others. We performed 250 runs for each of the
amino acid and histone dataset, and one run for each of
the random datasets. The best known results are 4 for
amino acids and 6 for histones. Table 3 gives the results.
AFB performed better than other algorithms. For TSP,
AFB yielded a mean distance of 941.0. This represents a
0.43% error margin compared to the best possible solution.
ACO performed well on rainbow boxes small datasets, but
poorly on large ones.

Results obtained with GA for TSP are not on par with
those published by Snyder et al. [19]. Two reasons can
explain that. First, the number of tested solutions was
much lower in our experiment and the GA needs to run
longer, especially if local optimizations are used because
they perform a lot of calls to the cost function. Second, we
did not implement the TSP-specific optimizations proposed
by Snyder et al. (such as considering the two tours ABCD
and BCDA as identical), since we were targeting ordering

1; https://github.com/rhgrant10/Pants

problems in general.

6 General discussion

In this chapter, we presented Artificial Feeding Birds
(AFB), a new metaheuristic, inspired by the behavior of
pigeons searching for food. We showed that AFB was able
to solve various problems: unconstrained global nonlinear
optimization, including training of neural networks, travel-
ing salesman problem and rainbow boxes optimization. We
also showed that AFB competes well with ABC, FA, GA
and ACO algorithms.

We focused on rapid tests and rather small datasets, be-
cause our short-term goal is to optimize visualizations, such
as rainbow boxes, and they often need to be produced dy-
namically, on the fly. In particular for TSP, the results
presented here need to be confirmed on bigger datasets and
with longer computation times. For rainbow boxes opti-
mization, we previously proposed a specific heuristic algo-
rithm [14, 13], however, it was limited to 25 elements or
less, due to computation time. Here, we showed that AFB
could be used up to 30 elements, and possibly even more.

Lones [16] identified several metaheuristic aspects that
are shared by many nature-inspired optimization algo-
rithms. The following ones are found in AFB:

(a) Neighborhood search consists of testing new solutions
that are close (or similar) to the previously tested solution.
In AFB, the walk move performs a local search, by produc-
ing a position that is close to the current position.

(b) variable neighborhood search is similar to neighbor-
hood search, but considers moves with variable steps, de-
pending e.g. on the position of other agents. In AFB, the
two walk() functions we proposed perform variable neigh-
borhood search: the step of the walk move is proportional
to ∆, which depends on the position of another bird.

7

https://github.com/rhgrant10/Pants

AFB GA GA+local op ACO

TSP (26 towns)
Result 941.0 1082.0 983.3 968.21
Std. deviation 7.1 66.2 36.1 13.6
Time (ms) 133 574 103 4203

R
ai
nb
ow

bo
xe
s

Amino-acid dataset
Result 4.04 7.16 6.46 4.82
Std. deviation 0.20 1.24 1.42 0.69
Time (ms) 205 219 263 648

Histone dataset
Result 6 6.39 6.53 6.27
Std. deviation 0 0.73 0.82 0.5
Time (ms) 550 512 557 623

Small random datasets
Result 3.85 5.39 4.92 3.87
Std. deviation 1.08 1.16 1.25 1.02
Time (ms) 184 194 208 658

Large random datasets
Result 12.59 16.63 15.59 21.21
Std. deviation 1.90 1.94 1.58 1.53
Time (ms) 1052 3496 4528 61523

Table 3: Comparison of the results obtained on ordering problems. Lower values are the best.

(c) hill climbing consists of trying to improve a given
solution incrementally. If the new solution is better than
the previous one, it is kept. Otherwise, it is discarded and
the previous solution is kept. In AFB, when a walk move
leads to a better solution than the one memorized by a bird,
a second walk is systematically performed in the next cycle.

(d) accepting negative moves consists of keeping a new
solution that is worse than the previous one; it is somehow
the opposite of hill climbing. In AFB, when a walk move
does not lead to a better solution, a second walk is still
possible, but not systematic.

(e) population-based search consists of considering multi-
ple agents. AFB considers a population of artificial birds,
each bird having its own position and memory.

In particular, when using specific parameter values, AFB
performs like well-known algorithm. If p1 = 1 and p2 =
p3 = p4 = 0, AFB performs a random walk. If p3 = 1
and p1 = p2 = p4 = 0, AFB performs like a hill-climbing
algorithm.

AFB presents some similarities with ABC. In both al-
gorithms, agents perform the four following tasks: random
exploration of the solution space, local search, reversion to
the best solution found so far, and concentration of sev-
eral agents on the most promising solutions. In AFB, these
tasks correspond to the four moves of the birds: move 2
allows random exploration, move 1 local search, move 3 re-
version to the best solution, and move 4 allows a bird to
“join his force” with another bird and eventually to adopt
his best solution. In ABC, these tasks are associated with
the three types of bee. Scouts are in charge of the random
exploration, workers of local search with reversion to the
best position found in case of failure, and onlookers allow
concentrating more agents on the best solutions. However,
there is an important difference between ABC and AFB:
in ABC, local search and reversion to the best position are
grouped in the worker behavior, while in AFB, we sepa-
rated them in two distinct moves (1 and 3). This separa-
tion allows accepting negative moves (i.e. “diagonal moves”
in nonlinear optimization), and we have seen in section 5.4
that it improved the results for some benchmark functions.
While our walk() function for global nonlinear optimization
was inspired by ABC, our metaheuristic differs, hence the
difference observed in the results.

The inspiration source of AFB is particular at two lev-
els. First, in section 2, we noticed that most inspiration
sources were exceptional or extraordinary animal behaviors,
such as light emission. Here, on the contrary, we success-
fully inspired ourselves from a very trivial behavior: birds
searching for food. From an evolutionary point of view, the
most efficient behaviors lead to a higher chance of survival
and thus, they are expected to be encountered more fre-
quently. Consequently, it should be more interesting to in-
spire ourselves from very common behaviors, widely spread
over many species, rather than exceptional behaviors. How-
ever, this hypothesis needs additional verification.

Second, most inspiration sources include communication
between animals, using chemical signs (ants), dances (bees)
or light (fireflies). On the contrary, we did not observe com-
munication when pigeons are feeding; their behavior seemed
to us rather “individualistic”. For example, when a pigeon
finds some food, he does not seem to call other pigeons.
When a pigeon joins another one, it is not following a call,
but rather following a simple observation (“another bird is
there, he seems to feed, let’s get closer!”). In consequence,
in AFB, observation replaces communication. In Algorithm
1, each agent accesses only his own information and vari-
ables, as well as the position of other agents, which can
be obtained through simple observation. On the contrary,
an agent never access to the best position found by another
agent. Surprisingly, when we modified the metaheuristic by
adding communication of the best position, i.e. changing
move 4 so as it moves the bird on the best position found by
another bird (xi = Xj and fi = Fj) rather than his current
position, the results did not improve significantly (and they
were even poorer for Rosenbrock()).

A first strength of AFB is its extreme simplicity. Nature-
inspired algorithms are often surprisingly simple, with re-
gards to their performance [24]. This is especially true for
AFB: the metaheuristic (Algorithm 1) is very simple and,
in particular, does not need complex computations, con-
trary to many other algorithms (e.g. ABC has a complex
formula for computing the probability of onlooker bees to
choose a given food source).

A second strength of AFB is its generic nature. It can
be run on any optimization problem that can be defined by
a (cost, fly, walk) triplet of functions, and we have shown

8

that it performs well on very different kinds of problems.
In the presentation of our algorithms, we clearly sepa-
rated the AFB metaheuristic from its adaptation to the
two problems (global nonlinear optimization and ordering
problems). This separation greatly facilitates the adapta-
tion to new problems, since one only has to define the two
functions fly() and walk(). Usually, in other metaheuris-
tics, the separation between the problem-specific and the
problem-independent part of the algorithm is not so clear.
Furthermore, AFB makes no assumption about the opti-
mization problem and the solution space, and in particular,
it does not require to compute distance between solutions.
Distance computation is not trivial in some problems, such
as TSP, in terms of computation method and computation
time. Finally, AFB is rather insensitive to parameter val-
ues, since we used the same default values across all our
experiments. This allows to use the metaheuristic without
having to tune the algorithm for a specific problem.

Perspectives of this work include the adaptation of the
AFB metaheuristic to other optimization problems, such
as clustering, and its use in real life applications. AFB
could also be improved, for example by adding additional
moves, possibly inspired by other metaheuristics. Finally,
the extreme simplicity of AFB could also make it interesting
for educational purpose.

References
[1] Abraham A. Handbook of Measuring System Design, chap-

ter Artificial neural networks. John Wiley & Sons, 2005.

[2] C Blum and X Li. Natural computing series, Swarm in-
telligence: introduction and applications, chapter Swarm
intelligence in optimization, pages 43–85. 2008.

[3] E Bonabeau, M Dorigo, and G Theraulaz. Inspiration for
optimization from social insect behaviour. Nature, 406:39–
42, 2000.

[4] I Brajevic and M Tuba. Training feed-forward neural net-
works using firefly algorithm. In Recent advances in knowl-
edge engineering and systems science, 2013.

[5] Darrell W. A genetic algorithm tutorial. Statistics and
Computing, 4:65–85, 1994.

[6] M Dorigo, M Birattari, and T Stutzle. Ant Colony Op-
timization - Artificial ants as a computational intelligence
technique. IEEE Comput. Intell. Mag, 1:28–39, 2006.

[7] H Duan and P Qiao. Pigeon-inspired optimization: a new
swarm intelligence optimizer for air robot path planning.
International journal of intelligent computing and cyber-
netics, 7(1):24–37, 2014.

[8] S Garnier, J Gautrais, and G Theraulaz. The biological
principles of swarm intelligence. Swarm intelligence, 1(1):3–
31, 2007.

[9] D Karaboga and B Basturk. Artificial Bee Colony (ABC)
optimization algorithm for solving constrained optimization
problems. Lecture Notes in Computer Science, 4529:789–
798, 2007.

[10] D Karaboga and C Ozturk. Neural networks training by ar-
tificial bee colony algorithm on pattern classification, 2009.

[11] D Karaboga and C Ozturk. A novel clustering approach:
Artificial Bee Colony (ABC) algorithm. Applied Soft Com-
puting, 11(1):652–657, 2011.

[12] Karaboga D. An idea based on honey bee swarm for nu-
merical optimization. Technical report, 2005.

[13] J B Lamy, H Berthelot, C Capron, and M Favre. Rainbow
boxes: a new technique for overlapping set visualization
and two applications in the biomedical domain. Journal of
Visual Language and Computing, 43:71–82, 2017.

[14] J B Lamy, H Berthelot, and M Favre. Rainbow boxes: a
technique for visualizing overlapping sets and an applica-
tion to the comparison of drugs properties. In International
Conference Information Visualisation (iV), pages 253–260,
Lisboa, Portugal, 2016.

[15] J B Lamy, H Berthelot, M Favre, A Ugon, C Duclos, and
A Venot. Using visual analytics for presenting comparative
information on new drugs. J Biomed Inform, 71:58–69,
2017.

[16] Lones MA. Metaheuristics in nature-inspired algorithms.
In Proceedings of the Companion Publication of the 2014
Annual Conference on Genetic and Evolutionary Compu-
tation, pages 1419–1422, Vancouver, BC, Canada, 2014.

[17] Marinakis Y. Encyclopedia of optimization, chapter Heuris-
tic and metaheuristic algorithms for the traveling salesman
problem, pages 1498–1506. Springer-Verlag, 2009.

[18] R Poli, J Kennedy, and T Blackwell. Particle swarm opti-
mization - An overview, 2007.

[19] L V Snyder and M S Daskin. A random-key genetic algo-
rithm for the generalized traveling salesman problem. Euro-
pean Journal of Operational Research, 174(1):38–53, 2015.

[20] T Stützle and H H Hoos. MAX-MIN Ant System. Future
Generation Computer Systems, 16(9):889–914, 2000.

[21] Voss F. Encyclopedia of optimization, chapter Metaheuris-
tics, pages 2061–2075. Springer-Verlag, 2009.

[22] X S Yang and S Deb. Cuckoo search via Levy flights. In
World Congress on Nature & Biologically Inspired Comput-
ing, pages 210–214, 2009.

[23] Yang XS. Firefly algorithms for multimodal optimization.
Stochastic Algorithms: Foundations and Applications - Lec-
ture Notes in Computer Sciences, 5792:169–178, 2009.

[24] Yang XS. Nature-inspired metaheuristic algorithms (second
edition). Luniver Press, 2010.

9

	Introduction
	Related works
	Behaviors observed on birds
	Translation in algorithms
	Metaheuristic
	Adaptation to unconstrained global nonlinear optimization
	Adaptation to ordering optimization

	Experimentations
	Implementation
	Benchmarks and tests
	Parameter values
	Results on unconstrained global nonlinear optimization
	Results on ordering problems

	General discussion

