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In this article we consider a new scheduling problem known as the Multi-Skill Project Scheduling Problem with Partial Preemption. The main characteristic of this problem is the way we handle the resources release during the preemption periods: only a subset of resources are released. Since this problem is NP-hard, we propose a greedy algorithm based on priority rules, modeling the subproblem of technicians allocation as a Minimum-Cost Maximum-Flow problem. In order to improve the performance of the greedy algorithm, we propose a randomized tree-based local search algorithm. Computational tests are carried out and analyzed.

INTRODUCTION

Scheduling activities within a research nuclear facility is a very complex task. This is due to the diversity of activities to schedule, and to the big amount of constraints we must take into account in order to complain with the operational and legal regulations. Because of this complexity, this research project is carried out in order to optimize the weekly scheduling within one of the research facilities of the French Alternative Energies and Atomic Energy Commission (CEA in short for French). After a deep analysis of the characteristics of the studied facility, we conclude that the problem at hand can be regarded as an extension of the Multi-Skill Project Scheduling Problem.

The Multi-Skill Project Scheduling Problem (MSPSP) acquires great importance for scheduling activities in very specific fields, such as pharmaceutical, chemical and nuclear, where the regulation requires the presence of a group of technicians having a set of well-defined competences for the execution of an activity. This problem shows to be more challenging than traditional scheduling problems (such as the Resource-Constrained Project Scheduling Problem [START_REF] Artigues | The resource-constrained project scheduling problem[END_REF]) due to the extra decision we need to make: we need to decide not only which resources will be assigned to each activity, but also the skills with which they will contribute [START_REF] Correia | A modeling framework for project staffing and scheduling problems[END_REF].

This problem consists in determining a feasible schedule, respecting the resource constraints and the precedence constraints between activities: a resource cannot execute a skill it does not master, cannot be assigned to more than one competence requirement at a given time, and must be assigned to the corresponding activity during its whole processing time [START_REF] Bellenguez-Morineau | Methods to solve multiskill project scheduling problem[END_REF].

One of the most important hypothesis of the MSPSP is that activities are supposed to be nonpreemptive; what means that, once started, an activity must run continuously until its completeness. However, in some practical applications as in the case of scheduling research or engineering activities, it may be interesting to allow the preemption of activities, due for example to the impossibility of working continuously and other technical constraints. In order to better represent the real situation of the nuclear laboratory, we proposed in [START_REF] Polo-Mejía | Mixed-integer and constraint programming formulations for a multi-skill project scheduling problem with partial preemption[END_REF] a more general variant of the MSPSP: the Multi-Skill Project Scheduling Problem with Partial Preemption.

The remainder of the paper is as follows. In Section 2, we describe the studied problem. Then, a priority-based heuristic method is proposed in Section 3. The computational experiments performed are presented in Section 4. Finally, in Section 5, the main conclusions are presented as well as some directions for future research.

The main drawback of preemptive versions of various scheduling models is that activities can be preempted and continued later without any additional cost [START_REF] Ballestín | Pre-emption in resource-constrained project scheduling[END_REF]. The possibility of resuming a preempted activity without any cost does not appear realistic enough for industrial applications [START_REF] Ballestín | Scheduling projects with limited number of preemptions[END_REF][START_REF] Vanhoucke | Setup times and fast tracking in resource-constrained project scheduling[END_REF], due mainly to the cost/time of setup for resuming or simply to the reduction in the production rate.

In real life, setup time of an activity is almost always related to only a subset of resources, while the others can be easily preempted with insignificant setup time. When working with preemptive scheduling problem, we commonly assume that all resources are released during the preemption periods. What we propose in this new variant is to handle the preemption in a different way: during the preemption periods we will release only those resources with a low setup time while seizing those with an important setup time. This is what we call partial preemption [START_REF] Polo-Mejía | Mixed-integer and constraint programming formulations for a multi-skill project scheduling problem with partial preemption[END_REF].

In our practical case, partial preemption also answers to a technical requirement for the good operation of the facility. In fact, some critical activities require the presence of equipment to ensure the confinement of the irradiated material or even to ensure an inert atmosphere within this confinement. For safety reasons, the equipment ensuring these functions must be allocated to the activity from the beginning to the end without interruption. The remainder resources, however, can be preempted without problem. If we use a traditional preemptive/non-preemptive scheduling approach, these activities must be defined as nonpreemptive in order to respect the safety requirements. Using the concept of partial preemption, we can better exploit the characteristics of these activities while complying with all the operational constraints.

In the MSPSP with partial preemption (MSPSP-PP), additionally to the characteristics of the classical MSPSP, we must indicate for each activity the subset of resources that can be released during the preemption periods. Preemption is now handled in three levels according to the activities characteristics: 1) Nonpreemption, for activities where none of the resources can be preempted; 2) Partial preemption, for activities where a subset of resources can be preempted; and 3) Full preemption, for activities where all resources can be preempted.

Additional changes must be included in order to better represent the research facility behavior:

• Resources in the MSPSP, as defined in [START_REF] Néron | Lower bounds for the multi-skill project scheduling problem[END_REF], are supposed to be disjunctive, which means they can handle only one activity at a time.

In the research laboratory under consideration, additionally to the disjunctive multi-skilled resources (technicians), we must also handle some cumulative (more than one activity at a time) mono-skilled resources (compound machines and equipments).

• Unlike the traditional MSPSP, in our practical case, technicians may respond to more than one skill requirement per activity.

• Due to operational and safety reasons, we need to guarantee a minimum number of technicians (Nt i ) present during the execution of the activity.

• Due to the duration of some activities (larger than technicians work shifts), we need to relax the constraint stating that the same technician must execute the activity in full (except for nonpreemptive activities, which duration is supposed to be smaller than work shifts).

• Finally, we must include some characteristics to our problem concerning the time windows for scheduling. In the laboratory, the regulatory test must be executed before a restrictive date (deadline, dl i ). Moreover, some of the activities are in collaboration with other nuclear facilities, such activities are then restricted by a release date (r i ) fixed by external partners.

Summarizing, in the MSPSP with partial preemption the objective is to find a feasible schedule that minimizes the total duration of the project (Cmax). Finding a solution consists in determining the periods during which each activity is executed and also which resources will execute the activity in every period; all this, while respecting the resources capacity and the activities characteristics. Figure 1 illustrates an example of an MSPSP-PP instance and a possible solution.

We must schedule these activities over renewable resources with limited capacity; they can be cumulative mono-skilled resources (machines) or disjunctive multi-skilled resources (technicians) mastering Nb j skills. Multi-skilled resources are able to respond to more than one skill requirement per activity and may execute it partially (except for non-preemptive activities where technicians must perform the whole activity). An activity is now defined by its duration (d i ), its precedence relationships, its requirements of resource k (Br i,k ), its requirements of skill c (Bc i,c ), the minimum number of technicians needed to perform it (Nt i ) and the subset of preemptive resources. Activities might or not have either a deadline (dl i ) or a release date (r i ).

For each instance of the MSPSP we can match an instance of the MSPSP with partial preemption, where none of the resources can be preempted. Since the MSPSP has been proved to be strongly NP-hard (Bellenguez-Morineau, 2008), we can therefore infer that the MSPSP-PP is also strongly NP-hard. The results presented in [START_REF] Polo-Mejía | Mixed-integer and constraint programming formulations for a multi-skill project scheduling problem with partial preemption[END_REF] show the difficulties of Mixed Integer Linear Programming and Constraint Programming exact methods to tackle large instances.

In the nuclear installation under study, the scheduling of the activities of the following week must be constructed and validated during a meeting of the heads of research, heads of maintenance and engineers responsible for activities that takes place at the end of the week. Although the planners prepare an interim scheduling before this meeting, it is very common that important changes must be made during the meeting due to new information or the status of the administrative progress of the documentation necessary to carry out an activity. It is important then to be able to have a new feasible schedule within a few minutes. This fact forces us to develop some efficient methods for finding good quality solutions in acceptable computational times, such as the one proposed in the next section.

PRIORITY LIST-BASED HEURISTIC

Flow Problem For Technicians Allocation

The MSPSP-PP can be seen as a problem consisting of two coupled sub-problems: an activity scheduling problem combined with an allocation problem of the technicians performing each activity. In a heuristic approach, even when the periods in which an activity will be executed are defined, we still have the problem of choosing the technicians who will perform it. To achieve this allocation in the best way, we must first allocate the technicians with the least chances of being necessary to the activities not yet scheduled, that is to say, the less critical technicians.

According to the work of Bellenguez-Morineau (Bellenguez-Morineau, 2008) for the MSPSP, the allocation problem of technicians with the lowest criticality can be treated as a Minimum-Cost Maximum-Flow (MCMF) problem [START_REF] Ahuja | Network Flows: Theory, Algorithms, and Applications[END_REF] on a graph G i = (X, F), X = S ∪ P, where S represents the set of skills required by activity A i and P is the subset of available technicians and who master at least one of the skills required by activity A i (Figure 2). The MCMF problem is a way of minimizing the cost required to deliver maximum amount of flow possible in the network.

In this graph, there is an edge between the source vertex and each vertex S k ∈ S whose maximum capacity is equal to b i,k (need of the skill k for executing the activity A i ). There is also an edge between a vertex S k and a vertex P j ∈ P, iff the technician P j masters the skill S k . The maximum capacity of this arc is fixed to 1 because, in the MSPSP as defined in [START_REF] Néron | Lower bounds for the multi-skill project scheduling problem[END_REF], a technician can only respond to one unit of need per skill. Similarly, there is an edge between each vertex P j and the sink of the graph, with a maximum capacity equal to 1 (a technician can only answer one skill per activity). We associate a cost (CP j ) related to the criticality of the technician P j to these last arcs.

Using one of the existing polynomial algorithms such as the Edmonds-Karp Algorithm [START_REF] Edmonds | Theoretical improvements in algorithmic efficiency for network flow problems[END_REF], one can solve the problem of maximum flow at minimum cost for the proposed graph. To determine the technicians to allocate, we just look at the vertices P j ∈ P through which the flow passes. If the maximum flow going throw the graph is less than the sum of the skill needs, we can conclude that there is no possible assignment for this activity.

The graph presented in Figure 2 was designed under the set that each technician can only respond to one skill requirement per activity. However, this constraint has been relaxed for the MSPSP-PP and technicians can respond to several skills per activity. We must then redefine the graph to take this change into account. More precisely, the maximum capacities of the arcs connecting all vertices P j and the sink are now equal to the number of skills mastered by the technician P j (Nb j ). As indicated in Section 2, in our industrial problem we must allocate a minimal number of technicians (Nt i ) for the activity execution. In order to take into account this constraint, we must add an additional S k vertex (S * ) linked to the source vertex with a capacity equal to Nt i and connected to all vertices P j ∈ P with a capacity of 1. Concerning the unit cost of the arcs connecting technicians vertices to the sink, we use a cost function CT i, j (Definition 2) which varies according to the technician P j and the activity A i analyzed. The new graph is shown in Figure 3.

Definition 1. The correlation indicator Cr i, j expresses the correlation of the technician P j and the activity A i . It indicates the degree to which the activity A i might require the technician P j for its execution. Let us define ST j as the skill set that a technician P j masters, and let SA i be the skill set needed to execute the activity A i . The correlation indicator is calculated as follows:

Cr i, j = Cardinality(ST j ∩ SA i ) (1)
Definition 2. The criticality cost CT i, j of a technician P j is an indicator of the degree to which a technician could be requested by the set of not yet scheduled activities (set L). It is directly proportional to the sum of duration (d l ) of every activity A l ∈ L multiplied by the correlation indicator between the activity A l and the technician P j . This cost is inversely proportional to the correlation with the studied activity. This indicator is calculated as follows:

CT i, j = ∑ L (d l * Cr l, j ) Cr i, j (2) 
In case of equality of such a cost for different technicians, we break the ties in order to ensure that the flow algorithm always minimizes the number of technicians allocated to each activity.

Greedy Algorithm: Serial Generation Scheme

For this heuristic method, we propose to use a serial scheduling scheme with priority rules. Given a set J containing the activities to be scheduled and sorted according to a priority rule, we take one by one the activities in J and perform their scheduling and technicians allocation (using the proposed method in Section 3.1) sequentially as early as possible. For every activity A i ∈ J, we check each time t, beginning with t = r i (earliest start time, see Definition 3 below), the ability to schedule the activity during period t depending on the type of preemption it has:

• For non-preemptive activities, we check the possibility of continuous execution from t to t + d i -1 (taking into account the availability of resources and technicians), where d i is the duration of the activity. If the answer is positive, we schedule the whole activity and move on to the next one. If continuous execution is not possible, we check for the next t (a period where an event happens: end of an activity, new availability of technicians, etc.) until the activity can be scheduled. • For partially preemptive activities, we will first determine the minimum end date (starting from the analyzed t period) depending on the availability of preemptive resources and technicians. We will then check the continuous availability of non-preemptive resources. If non-preemptive resources are available without interruption, we allocate them to the activity from t until the end date. Preemptive resources are allocated for periods t ∈ t..end date where all preemptive resources are available. If continuity is not verified, we go to the next t and repeat until getting an affirmative answer. • For preemptive activities, the availability of resources and technicians during period t is checked. If they are available, we allocate them for the period t; then increase t and repeat the process until the duration of the activity is complete. Definition 3. "Earliest start time" (r i ) indicates the date before which activity A i can not begin. It is calculated using the precedence constraints and is equal to the longest path from the source vertex (A 0 ) to the activity vertex (A i ) in the precedence graph (taking into account the release date and the possible end date of the predecessors).

The steps of the serial generation schema are presented in Algorithm 1.

The presence of deadlines is one of the critical constraints for generating feasible solutions using Algorithm 1: Greedy Serial Scheme Generation heuristic methods. In order to maximize the chance of finding feasible solutions, we propose to use a 2-step approach to generate the schedule. As a first step, activities with a deadline and its previous activities (set DL) are scheduled following a slack time-based priority list. Then, the rest of the activities (set L) are scheduled using the other priority rules.

Scheduling Activities With Deadline

For this first part of the heuristic, we use a serial scheduling generation scheme using a priority list based on the "slack time" of activities with a deadline (dl i ). Giving priority to activities with the smallest slack time. Definition 4. "Slack time" (Slack i ) refers to the margin that an activity A i has in its planning window. It is a function of the deadline (dl i ), the earliest start time (r i ), and the activity duration (d i ). We calculate it as follows:

Slack i = dl i -r i -d i (3) 
We define the set Prec i as the set containing all the predecessors of activity A i and which is sorted according to the number of precedences of each element in the subset. Items with the lowest number of predecessors will be at the beginning. The set DL is thus constituted as follows:

DL = {Prec 1 , Prec 2 , ..., Prec n } where Slack 1 ≤ Slack 2 ≤ ... ≤ Slack n .
We perform the serial scheduling of the activities contained in DL. Once these activities have been scheduled, we must proceed to schedule the activities without a deadline (set L) according to one of the priority rules.

Scheduling Other Activities

Once planned activities with deadline and its predecessors, we must perform the scheduling of the remaining activities (L). To choose the order in which activities will be scheduled, we propose to use the most common priority rules in the scheduling literature:

• Longest Duration (LD): prioritizes the activity A i with the greatest duration (d i ).

• Most Successors (MS): prioritizes the activity A i with the highest number of successors.

• Earliest Start Time (EST): prioritizes the activity A i with the lowest earliest start date (r i ).

• Earliest Finish Time (EFT): prioritizes the activity A i with the smallest "earliest finish time". This date is calculated by adding the duration of the activity (d i ) to the earliest start date (r i ), ie: r i + d i .

• Greatest Rank (GR): prioritizes the activity A i for which the sum of the durations of its successors is the largest.

• Greatest Resource Demand (GRD): prioritizes the activity A i with the highest resource consumption.

In order to increase the chances of finding a feasible solution from the beginning, and even improve the solution we get, we propose to build the set of activities to schedule L as follows: L = {NPA, SPA, PA} where NPA is the subset of non-preemptive activities, SPA is the subset of partially preemptive activities and PA is the subset of preemptive activities. NPA, SPA and PA are sorted according to the priority rule. With this approach, we exploit the ability of preemptive and partially preemptive activities to fill the unused spaces left after scheduling the non-preemptive activities.

The heuristic presented before is a single-pass heuristic because only one priority rule is used to select the activities to be scheduled. In order to improve the results we get, we can execute the procedure using all the activity priority rules presented before and keeping the minimum makespan, as proposed by Almeida et al. [START_REF] Almeida | Priority-based heuristics for the multi-skill resource constrained project scheduling problem[END_REF]. This process originates a so-called multi-pass heuristic.

Tree-based Local Search Algorithm

Greedy construction algorithms, as the one proposed in Section 3.2, may accept some myopic choices that lead us to local optimum, needing an additional phase were changes can be performed to ameliorate the current solution [START_REF] Voß | Looking Ahead with the Pilot Method[END_REF]. In order to improve our results, we propose to use a tree-based local search algorithm partially inspired by the Limited Discrepancy Search [START_REF] Harvey | Limited discrepancy search[END_REF] and Branch-and-Greed [START_REF] Sourd | Scheduling tasks on unrelated machines: Large neighborhood improvement procedures[END_REF] methods.

For each sequence (priority rule), there is a big amount of possible schedules that are defined by the technician allocations we made. In fact, for each period we choose to schedule an activity, there could be a large number of possible technicians allocation. Because of the combinatorial explosion, enumerate all possible solutions for a same priority rule can be prohibitive. An incomplete binary search tree maybe then interesting.

For generating this tree, we use the same approach than in the greedy algorithm (Algorithm 1). But now, every time we must realize the technician allocation (Step 3 in Algorithm 1), we will generate a node having in the left-hand branch the best allocation we get solving the MCMF with the method in Section 3.1, while in the right-hand branch we have the second best solution (this solution should not change the start time of the activity), if such solution exists. Again, for non-preemptive activities only one node will be generated (since the flow problem must be solved only once to ensure that the same technicians execute the whole activity), while for preemptive and partially preemptive activities we must generate as much nodes as time units of duration the activity has.

Visiting the whole binary search tree can be still prohibitive for industrial instances (specially for instances having a big amount of preemptive and partially preemptive activities). We must limit even more the number of visited branches. From the way the solution is constructed in our greedy algorithm, we can infer that heuristic's probability of making mistakes decreases as we add more activities to the partial schedule (going deep in the search tree); if there are less activities to be scheduled the criticality cost of a technician (Definition 2) is more accurate. We can then decrease the number of branches examined by giving each node a probability, decreasing according to the depth in the tree, to examine the right branch (second best answer for the MCMF). In this first version of the algorithm, we propose to use a constant gradual decrease (∆), calculated as follows:

∆ = Prob max Depth max (4)
In Equation 4, Prob max represents the maximum probability of analyzing the right branch at the top of the search tree. Depth max is the maximum depth of the tree.

For exploring the search tree, we use a depthfirst search approach, going from the left side to the right side (exploring first the answer we get using the greedy algorithm). In order to accelerate the search process, we cut all solutions (or partial solutions) that do not improve the Cmax. Every time a better Cmax is found, the upper bound is updated. Again, the proposed algorithm can be seen as a single-pass. To improve the results, we can develop its multi-pass version executing the algorithm for all the priority rules proposed in Section 3.2.2. 

COMPUTATIONAL EXPERIMENTS

Greedy Algorithm

We generated a set of instances using a basic instance generation algorithm that allows the control of certain aspects such as: proportions of preemption type, percentage of activities with deadline and release date, number of precedence relationships, skill number per technician, etc. All the parameters settings are set to reflect the characteristics of the actual installation. To test this heuristic, we have generated 4 sets (A, B, C and D) of 40 instances. For each instance in a set, there is a similar instance in the other sets having as only difference the distribution of the preemption type of activities (this distribution is presented in Table 1). These instances have an average makespan of 23 time units, 10 activities with duration between 1 to 10 time units, 15 skills, 8 cumulative resources, 8 technicians (multi-skilled resources), 20% of activities with release date and deadline, all other characteristics are random.

The proposed heuristic has been coded in C++. To solve the flow problems, we used the adapted C++ version of the Edmonds-Karp algorithm proposed in Ababei [START_REF] Ababei | C++ adapted version of the Edmonds-Karp relabelling MCMF algorithm[END_REF]. To obtain the optimal solutions we use the mixed-integer linear programming (MILP) model proposed in [START_REF] Polo-Mejía | Mixed-integer and constraint programming formulations for a multi-skill project scheduling problem with partial preemption[END_REF], which was solved using CPLEX 12.7.1. All computational tests have been carried out using a Intel Xeon E5-2695 processor running at 2.3 GHz and limiting the number of thread used by Cplex at 8.

Table 2 shows average gap values (percentage error) between the solution we get with the heuristic and the optimal one. We observe that the heuristics using the priority rule Most Successors (MS) seems to give in average smaller gaps than the other lists, followed by the Greatest Rank (GR) and Longest Du- [START_REF] Derrick | How to compare the means of two samples that include paired observations and independent observations: A companion to Derrick, Russ, Toher and White[END_REF]), presented in Table 3, show us that there is not enough statistically evidence to affirm that MS rule outperforms the GR and LD rules. From Table 2 we can also conclude that the Earliest Finish Time (EFT) rule gives us the worst results, followed by the Earliest Start Time (EST) rule. This is confirmed by the p-values in Table 3, where we can appreciate that these two rules are always outperformed by the other rules.

If we analyze the results in Table 2 according to the distribution of the preemption type, we can see that 4 out of 6 priority rules give better results when the proportion of non-preemptive activities is high (Set C). This is corroborated by the results of the ttest for the multi-pass heuristic in Table 4. In the other hand, there is not enough statistical evidence to conclude about the impact of a high proportion of preemptive and/or partially preemptive activities within the instances.

We also wanted to know how the heuristic behaves for bigger instances. We generate 4 new sets (A1, B1, C1, D1) of 50 instances having similar characteristics to the 4 first sets (A, B, C, D) except for the number of activities within the instances (30 activities now), Using a relaxed version of the MILP model (based on the preemptive MSPSP), we were able to determine the optimal solution of 46 more instances and improve the lower bounds for the remainders. However, there are still 57 instances for which we could not find an initial solution (testing other configuration parameters for primal heuristics or search strategies within CPLEX, should be done in the future to improve the MILP results). These results confirm the interest of heuristic methods for solving the MSPSP-PP in acceptable times; especially for instances with a high percentage of non-preemptive activities, for which the MILP model seems to be more difficult to solve (for 45 instances out of 50 within set C1 we could not find an initial solution within the time limit).

Table 5 shows the average gap (percentage difference between the optimal solution and the obtained value with the heuristic method) for each list and the multi-pass version of the heuristic for those instances solved to optimality with MILP methods. Results show again that the priority rules based on Most Successors, Longest Duration and Greatest Rank give the best results; while Earliest Finish Time rule gives the worst. In general, the average gap for the heuristic seems to be statistically the same for small and big instances.

For the instances for which optimality was not proved by the MILP methods, we used the best lower bound as reference for calculating the gap. Results in Table 6 show that the average gap increases at the same time as the proportion of non-preemptive activities within the instances (set C1). This result should not be seen as a contradiction to our previous conclusion from results in Table 2 (the greedy algorithm gives better results for highly non-preemptive instances), this behavior can be explained by the quality of the lower bounds: it is harder to find good lower bounds for highly non-preemptive activities. We must remember that solving the MILP model we could not find any initial solution for 45 instances within set C1.

If we analyze only those instances for which a solution was found (24 instances) we have an average gap of 3.69% for the MILP methods and 6.66% for the greedy algorithm. Even if the MILP methods give us better values, they required bigger amount of time (30 minutes) compared against the time required by greedy algorithm (less than 1 second).

Tree-based Local Search Algorithm

The probability of visiting the right-hand branch (Prob max ) is the main parameter of the proposed algorithm. It plays an important role in the quality of the obtained solution and also in the time required to visit all the search tree. Further research may be necessary in order to identify the right way to set this parameter having a compromise between quality of solution and time required to get it (especially for industrial instances).

In order to test the feasibility of the algorithm we decided to set this value arbitrarily to 75% for executing preliminary tests with small instances. We solved again the sets of instances A, B, C and D using the tree-based local search algorithm. Table 7 shows the new values for the gap and the average percentage of improvement with respect to the greedy algorithm. As expected, we observe than the priority rules Earliest Finish Time (EFT) and Earliest Start Time (EST), which gave the worst results for the greedy algorithm, show the bigger average improvement; while the priority rules Most Successors (MS) and Greatest Rank (GR), those with the best results for the greedy algorithm, show the lower average improvement. LD, MS and GR priority rules keep giving the best results for average gap.

If we analyze the results for the multi-pass version, we observe a reduction of the average gap going from 7.45% to 5.89%. Again, the algorithm seems to give better results when the proportion of non-preemptive activities is high (Set C). There is not enough statistical evidence to conclude about the other instances sets.

For small instances (sets A, B, C and D), running time seems not to be a problem (even when we use a high value for Prob max ). However, for bigger instances (sets A1, B1, C1 and D1), running time may become prohibitive for high values of Prob max . We wanted to study the behavior of the solving time and the average gap when we increase the value of Prob max . Using the multi-pass version of the local search algorithm, we measure average time and gap for different values of Prob max (5%, 10%, 15% and 20%) for those instances solved to optimality; these values are presented in Figure 5. Results for Set C1 are not presented in Figure 5 since only 1 instance was solved to optimality. However, for highly nonpreemptive activities solving time remains reasonable (less than 15 sec) even when Prob max goes to 75%.

The curves in Figure 5 show similar behaviors for highly preemptive (Set A1) and partially preemptive (Set B1) instances. This was expected, since for these two types of activities, we may re-evaluate the technicians allocations for every unit time of the activity duration (what increases significantly the number of nodes in the search tree). We observed an exponential increase on the average solving time when Prob max = 20% for all sets of instances; this while the average gap presents an exponential decrease. Also as expected, the average time for solving instances within Set D1, is lower than for instances within sets A1 and B1; this is due to the presence of more non-preemptive activities. If we take the results for Prob max = 15% (the best compromise solving time and average gap) as reference point, we observe an important reduction of the general average gap decreasing from 4.98% (for the multi-pass version of the greedy algorithm) to 2.88%.

CONCLUSIONS AND FUTURE RESEARCH

In this article we consider a new variant of the Multi-Skill Project Scheduling Problem including partial preemption (MSPSP-PP). The main characteristics of this variant is the innovative way we handle the release of resources during preemption periods. Instead of releasing of resources, as we do in classical pre- emptive scheduling, we will release only those having a smal setup time/cost. The proposed problem can be easily adapted to other field, specially those where setup times/costs are important or hard to estimate.

The MSPSP-PP is NP-hard, we then propose a greedy algorithm based on priority rules and using a serial schedule generation scheme. To solve the subproblem of technicians allocation, we proposed to model it as a Minimum-Cost Maximum-Flow problem. The proposed algorithm gives us encouraging results that are improved when we used it as a multipass heuristic, obtaining an average gap of 7.45%.

In order to improve the solution obtained with the greedy algorithm, we proposed a randomized treebased local search algorithm that allows us to reduce the average gap from 4.98% to 2.88%. Both algorithms seem to give better results when the proportion of non-preemptive activities is high.

As future work, we must study the way to choose the right value for the probability of visiting the righthand branch in the search tree, in order to have a compromise between the solutions quality and the time required to get them. A different approach for gener- ating the tree search node is also necessary in order to improve the solving times. Experimental tests show that the proposed heuristic is very sensitive to the sequence (priority rule) we use. We must then identify the structure of the optimal sequences in order to improve our results.
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  The tree-based local search procedure is presented in Algorithm 2.

	Cmax then
	Update Best Cmax
	end if
	else
	Backtrack
	end if
	end while
	Algorithm 2: Tree-based Local Search Algorithm

Select first activity from the list while Node = root do Select time periods for scheduling the activy if Time perids exist then if Left branch visited(Node) = false then Solve MCMF Allocate best solution Go to next node else p ← random(0, 1) if Right branch visited(Node) = false and p ≤ P(Node) and Second best solution exist then Solve MCMF Allocate second best solution Go to next node else Backtrack end if end if if Currect Cmax ≥ Best Cmax then Backtrack end if if Node is a leaf and Current Cmax ≥ Best

Table 1 :

 1 Distribution of preemption type.

		Set A	Set B	Set C	Set D
	Non-preemptive	10%	10%	80%	33.3%
	Partially preemptive	10%	80%	10%	33.3%
	Preemptive	80%	10%	10%	33.3%
	To get faster results, we propose first to determinate
	the Cmax for every priority list using the greedy al-
	gorithm; and after to execute the local search algo-
	rithm starting from the list with the lowest Cmax to
	the list having the biggest Cmax, keeping always the
	best Cmax as upper bound for cutting branches.

Table 2 :

 2 Gap for the greedy serial scheme algorithm.

				Gap		
		All	A	B	C	D
	LD	11.85%	12.08%	12.29%	10.87%	12.14%
	MS	11.49%	12.04%	12.14%	9.41%	12.36%
	EST	13.73%	14.81%	13.42%	11.76%	14,91%
	EFT	15.21%	15.75%	13.01%	18.16%	13.93%
	GR	11.93%	12.04%	12.14%	11.18%	12.36%
	GRD	12.23%	13.62%	12.24%	11.84%	11.20%
	Multi-pass	7.45%	7.99%	9.00%	4.78%	8.03%

Table 3 :

 3 p-values for t-test of average gap of priority rules.

		MS	EST	EFT	GR	GRD
	LD	0.6901	0.0178	0.0031	0.9262	0.6515
	MS	-	0.0045	0.00004	0.2362	0.4081
	EST	-	-	0.0831	0.0372	0.0926
	EFT	-	-	-	0.0001	0.0024
	GR	-	-	-	-	0.7620
	ration (LD) priority rules. However, p-values of the
	t-test for paired samples (test used to determine if the
	average time were statistically equal or not; for more
	details we recommend			

Table 4 :

 4 p-values for t-test of average gap multi-pass heuristic according to preemption type.

		B	C	D
	A	0.5821	0.0271	0.6269
	B	-	0.0265	0.3813
	C	-	-	0.0262

Table 5 :

 5 Gap for the greedy serial scheme algorithm (larger instances).

				Gap		
		All	A1	B1	C1	D1
		(119 ins)	(46 ins)	(44 ins)	(1 ins)	(28 ins)
	LD	7.15%	6.62%	7.45%	1.33%	7.76%
	MS	7.59%	7.18%	7.94%	4.00%	7.81%
	EST	8.37%	8.65%	8.07%	12.00%	8.26%
	EFT	9.09%	9.06%	8.95%	5.33%	9.48%
	GR	7.52%	6.98%	7.87%	4.00%	7.96%
	GRD	7.67%	7.19%	7.60%	4.00%	8.68%
	Multi-pass	4.98%	4.58%	5.25%	1.33%	5.32%
	activities duration (from 5 up to 10 time units) and the
	average makespan (from 60 up to 90 time units). We
	try again to solve the instances using the MILP model
	with CPLEX (configured with default settings). After
	a computation time limited to 30 minutes, only 73 out
	of 200 instances have been solved to optimality with
	an average solving time of 544.39 seconds (standard
	deviation of 407.82 seconds).			

Table 6 :

 6 Average gap to lower bound for the greedy serial scheme algorithm (larger instances).

			Average gap to lower bound	
		All	A1	B1	C1	D1
		(81 ins)	(4 ins)	(6 ins)	(49 ins)	(22 ins)
	LD	19.62%	9.37%	7.84%	26.45%	9.46%
	MS	22.02%	9.07%	11.63%	30.14%	9.12%
	EST	23.92%	9.91%	11.20%	32.28%	11.30%
	EFT	24.68%	8.65%	9.99%	34.22%	10.36%
	GR	22.01%	9.07%	11.63%	30.03%	9.32%
	GRD	22.30%	8.52%	8.67%	30.98%	9.17%
	Multi-pass	17.25%	6.01%	6.14%	24.10%	7.07%

Table 7 :

 7 Gap for the tree-based local search algorithm.

						Gap				
		All		A		B		C		D	
		Gap	Improv.	Gap	Improv.	Gap	Improv.	Gap	Improv.t	Gap	Improv.
	LD	8.86%	2.78%	10.18%	1.73%	8.91%	3.02%	6.66%	4.12%	9.70%	2.23%
	MS	9.29%	2.02%	9.46%	2.40%	9.28%	2.59%	8.33%	1.01%	10.08%	2.08%
	EST	9.92%	3.33%	9.92%	4.52%	10.71%	2.43%	9.11%	2.52%	10.68%	3.83%
	EFT	10.11%	3.77%	10.11%	5.15%	10.53%	2.38%	13.76%	4.12%	10.13%	3.44%
	GR	9.46%	2.48%	9.46%	2.40%	9.28%	2.59%	8.18%	2.85%	10.08%	2.08%
	GRD	9.47%	3.01%	9.47%	3.81%	9.00%	2.83%	8.06%	3.60%	9.19%	1.81%
	Multi-pass	5.89%	1.88%	5.89%	1.99%	6.10%	2.67%	4.14%	0.62%	5.69%	2.24%