
HAL Id: hal-02264213
https://hal.science/hal-02264213v1

Submitted on 6 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Memory and feasibility indicators in GRASP for
Multi-Skill Project Scheduling with Partial Preemption

Oliver Polo Mejia, Christian Artigues, Pierre Lopez, Lars Mönch

To cite this version:
Oliver Polo Mejia, Christian Artigues, Pierre Lopez, Lars Mönch. Memory and feasibility indicators in
GRASP for Multi-Skill Project Scheduling with Partial Preemption. XIII Metaheuristics International
Conference (MIC 2019), Jul 2019, Carthagène des Indes, Colombia. pp.153-156. �hal-02264213�

https://hal.science/hal-02264213v1
https://hal.archives-ouvertes.fr


Memory and feasibility indicators in GRASP for
Multi-Skill Project Scheduling with Partial Preemption

Oliver Polo-Mejı́a1,2, Christian Artigues2, Pierre Lopez2, Lars Mönch3

1 CEA, DEN, DEC, SETC
St Paul lez Durance, France

oliver.polomejia@cea.fr
2 LAAS-CNRS,Université de Toulouse, CNRS

Toulouse, France
3 Department of Mathematics and Computer Science, University of Hagen

Hagen, Germany

Abstract
This paper describes a GRASP algorithm aiming to solve a new scheduling problem known as

the Multi-Skill Project Scheduling Problem with Partial Preemption, in which not all resources are
released during preemption periods. We use a self-adaptive strategy for fixing the cardinality of the
restricted candidate list in the greedy phase of the GRASP. We also propose an adaptive evaluation
function that includes memory-based intensification, exploiting the characteristics of the best solu-
tions, and a feasibility element for increasing the number of feasible solutions visited. Numerical
experiments show the interest of the proposed approach.

1 Introduction

We propose a variant of the Multi-Skill Project Scheduling Problem (MSPSP), aiming to represent the
real scheduling process of activities within a nuclear research laboratory: the MSPSP with Partial Pre-
emption (MSPSP-PP). The MSPSP is a generalisation of the well-known Resource-Constrained Project
Scheduling Problem, where resources are characterised by the skills they master, and non-preemptive
tasks require a certain amount of resources with a specific skill. Determining a solution consists in com-
puting the periods in which each activity is executed and also which resources are assigned to the activity
at each period, while satisfying activity and resource constraints: a resource can execute only those skills
it masters and must cover only one skill per activity.

The main characteristic of the variant we consider, the MSPSP-PP, is that we allow activities pre-
emption, but we handle the resource release during preemption periods in an innovative way: not all
resources can be released, and the possibility of releasing them depends on the characteristics of the
activity. We can classify activities within three types: Non-preemptive, for which no resource can be re-
leased; partially-preemptive, for which a subset of resources can be released; and preemptive, for which
all resources can be released. These activities are scheduled over renewable resources with limited ca-
pacity; they can be cumulative mono-skilled resources (compound machines) or disjunctive multi-skilled
resources (technicians) mastering Nbj skills. Multi-skilled resources can respond to more than one skill
requirement per activity and may partially execute it (except for non-preemptive activities where tech-
nicians must perform the whole activity). An activity is defined by its duration (di), its precedence
relationships, its resource requirements k (Bri,k), its skill requirements c (bi,c) and the subset of pre-
emptive resources. Also, activities might or not have either a deadline (dli) or a release date (ri). The
MSPSP-PP is NP-hard, and the use of exact methods can be prohibitive for large-sized industrial in-
stances. That is why, in the remainder of this paper, we describe a Greedy Randomized Adaptive Search
Procedure (GRASP) aiming to get near-optimal solutions in a reasonable amount of time.

2 GRASP for the MSPSP-PP

A GRASP is an iterative multi-start algorithm, in which each iteration consists of two phases: generation
and local search. In the generation phase, a feasible solution is generated; then its neighbourhood is

1



explored by the local search algorithm. The best solution found over all GRASP iterations is kept as the
results. In the following of this section, we describe a GRASP algorithm for the MSPSP-PP.

2.1 Generation and local search phase

In each greedy iteration, using a serial generation scheme, we select an activity randomly from the
restricted candidate list (RCL), we then identify the earliest periods when this activity can be scheduled
(according to its preemption type and resources and technicians availability), and we finally allocate the
technicians to the activity using a Minimum-Cost Maximum-Flow (MCMF) problem.

Let F (Ai) be an adaptive evaluation function, which indicates the degree of relevance of planning
activityAi in the current greedy iteration. Let also defineM as the number of not yet scheduled activities
after the current greedy iteration. The RCL is made up of the 1 +α ∗M , α ∈ [0, 1], activities having the
best F values. Each element within the RCL has a probability of being chosen (πi) defined as follows:

πi =
F (Ai)∑

j∈RCL F (Aj)
. (1)

For choosing the value of α, we propose to use the reactive strategy proposed by Praias and Ribeiro
[2], where the value of α is randomly selected from a discrete set Ψ = {α1, ..., αn} of possible α values.
The probabilities associated with the choice of each value are all initially uniformly distributed. After
a few iterations, they are periodically reevaluated taking into consideration the quality of the obtained
solution for each αk ∈ Ψ.

The allocation problem is formulated as a MCMF problem over a bipartite graphGi = (X,F ), X =
S ∪ P , where S represents the set of skills required by activity Ai and P is the subset of available
technicians who master at least one of the skills within S. In this graph, there is an edge between the
source vertex and each vertex Sc ∈ S whose maximum capacity is equal to bi,c (need of the skill c
for executing the activity Ai). There is also an edge between a vertex Sc and a vertex Pj ∈ P , iff the
technician Pj masters the skill Sc. The maximum capacity of this arc is fixed to 1 since a technician
can only respond to one unit of need per skill. Similarly, there is an edge between each vertex Pj

and the sink of the graph, with a maximum capacity equal to the number of skills mastered by the
technician Pj (Nbj). We associate a cost (CTi,j) that is related to the criticality of the technician Pj for
not yet scheduled activities. To determine the technicians to allocate to the activity, we solve the MCMF
problem, and we look at the vertices Pj ∈ P through which the flow passes.

2.2 Local Search

To explore the neighbourhood, we use an incomplete binary search tree partially inspired on the “Limited
Discrepancy Search”. For each sequence used in the generation phase, there is a big amount of possible
schedules that are defined by the technician allocations we made. The objective of the algorithm is to
visit some of these possible schedules. For developing the search tree, we use the sequence obtained in
the generation phase within a serial greedy algorithm (similar to the one used in the generation phase,
but forced always to follow a given sequence). Every time we must effectuate a technician allocation,
we generate a node having in the left-hand branch the best allocation we get solving the MCMF, while
in the right-hand branch we have the second best allocation (if such a solution exists). Visiting the whole
binary tree can be still prohibitive for industrial instances. From the way schedules are generated, we
can expect that heuristic?s chance of making poor decisions decreases as we add more activities to the
partial schedule (going deep in the search tree). We exploit this characteristic by giving to each node a
probability, that decreases with its depth in the tree, to examine the right branch; reducing the number
of explored branches. Moreover, we limit the maximal number of “discrepancies” (number of times we
choose the second best solution for the MCMF) of the branch we visit.

2.3 Adaptive greedy evaluation function

The proposed adaptive greedy evaluation function has three components: priority rule (L(Ai)), intensi-
fication (I(Ai)) and feasibility (G(Ai)); and it is defined as follows:

2



F (Ai) = β ∗ L(Ai) + δ ∗ I(Ai) + γ ∗G(Ai) . (2)

Priority due to priority rule (L(Ai)): Computational experiments, presented in [1], suggest that using
priority rules “Most Successors” and “Greatest Rank” provide smaller optimality gaps. Let Sci be the
set of successors of activity Ai; we can define the priority function as follows:

L(Ai) = di +
∑
j∈Sci

dj . (3)

Intensification component (I(Ai)): The idea is to use the characteristics of a set ε of q elite solutions
to influence the construction phase. In our algorithm, the quality of the solution is highly dependent on
the order (Seqk) in which activities have been treated to obtain solution k. Let define Bef(k, i, l) as a
binary function taking the value of 1 is activity i was treated before activity l in the Seqk, 0 otherwise.
Let L be the set of not yet scheduled activities. The intensification component is defined as follows:

I(Ai) =
∑
k∈ε

∑
l∈L

Bef(k, i, l) . (4)

Feasibility factor (G(Ai)): Time windows makes it difficult to find feasible solutions with the greedy
algorithm. We introduce a component giving priority to activities with a short slack time. Slack time
(Slacki) refers to the margin that an activityAi has in its planning window. It is a function of the deadline
(dli), the earliest start time (ri˜ ), and the activity duration. The feasibility factor is defined as follows:

G(Ai) =
1

dli − ri˜ − di . (5)

Note that L(Ai), I(Ai) and G(Ai) must be normalised before taking the weighted sum. Moreover,
we have β, δ, γ ∈ [0, 1] and β + δ + γ = 1. Parameters δ and γ are self-adaptive, and their values are
periodically updated. If after K iterations the number of infeasible solutions increases, we must increase
the value of γ; on the contrary, if this number decreases, we decrease γ. On the other hand, the parameter
δ decreases when the diversity of obtained solutions is too low and increases when the variability is high.

3 Results and conclusions

The GRASP algorithm was tested over a set of 200 instances. The instances have an average makespan
of 80 time units, 30 activities with a duration between 5 to 15 time units, up to 5 skills per activity, 8
cumulative resources, 8 technicians (multi-skilled resources). 20% of the activities have release date and
deadline (all other characteristics are random). The algorithm allows to obtaining an average gap to opti-
mality of 2.12% within an average time of 35.5 seconds with the size of the elite solution set equal to 20,
and the maximal number of GRASP iterations with feasible solutions equal to 550. To analyse the impact
of the intensification component, we tested a version of the algorithm without this factor with the same
stopping criteria. After a statistical test, we cannot prove that the intensification component significantly
improved the average optimality gap (2.16% for the version without intensification). However, the time
required by the algorithm is lower when the intensification component is used (44.87 sec if not used).
This is because the intensification factors also help the algorithm to generate less unfeasible solutions.

References

[1] Oliver Polo-Mejı́a, Christian Artigues, and Pierre Lopez. A heuristic method for the multi-skill
project scheduling problem with partial preemption. In 8th International Conference on Operations
Research and Enterprise Systems, pages 111–120, Prague, Czech Republic, February 2019.

[2] Marcelo Prais and Celso C. Ribeiro. Reactive GRASP: An application to a matrix decomposition
problem in TDMA traffic assignment. INFORMS Journal on Computing, 12(3):164–176, 2000.

3


