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1 Introduction

In this report, we aim at deriving three abrupt change detectors’ decision functions: the Bayesian Information
Criterion (BIC), the Cumulative Sum (CUSUM) and the Hotelling T? test. The three expressions are given by
considering both univariate and multivariate cases. We first start by mathematically formulating the detection
problem.

2 Hypothesis testing framework

Three detection algorithms capable of determining step-changes in signals are studied in this report. These
changes can be detected by comparing the mean of the current observations with the mean of previous ob-
servations. Let X, , = (Zn,, Tng41s---sTm,y-- -, Tpn) With z,, € RP, Ym € {ng,...,n}, be a realization of a
Gaussian process corresponding to a (pxw) matrix of the last w=n—n,+1 samples of a p-dimensional time-
series at the current time instant n. Each signal sample z,, corresponds to a vector of p features such as
T = (Tm,1s- o Ty - - ,xm,p)T, where ., ; is the value of feature j € {1,...,p} at time instant m. Each
vector z,, is assumed to follow a multivariate Gaussian distribution N, (u, ¥), where ¢ € R” is the mean vector
and ¥ € RP*P is the semidefinite covariance matrix. An abrupt change occuring at a change time instant
ng < ne < n is modeled by an instantaneous modification of the statistical parameters (i.e. mean vector and/or
covariance matrix). Two hypothses mut be considered:

Hy Tpyy-vrTn NNp(Mo,Eo) (1)
Hl Do Tngs e ny, NNp(l‘laaEla)
Tngs--3Tn NNP(IJ’Ibazlb) (2)

with ny = n, — 1. The “without change” hypothesis Hy supposes that, on both sides of n., the signal follows
the same distribution (1), that is a multivariate Gaussian distribution with a mean vector uo and a covariance
matrix Xg. On the opposite, the “with change” hypothesis H; supposes that a change of distribution occurs
at n. (2). Before the change, the signal samples x,,_, ..., z,, follow a multivariate Gaussian distribution with
a mean vector 1, and a covariance matrix 3;,. After the change, x,,_,...,z, follow a multivariate Gaussian
distribution with a mean vector corresponding to p1, # 1, and a covariance matrix equal to X1 # X1,. A
detector performs a hypothesis test for each potential change point in a signal. An on-line approach is followed
by using a sliding window over the signal. Therefore, at each time instant n, a decision between Hy and H;
(i.e. a decision “to reject Hg in favor of Hy”) is made by comparing a decision function g, to an a dimensional
threshold A [1].

decide H; if g, >h (3)
decide Hy if ¢, <h (4)

In what follows three abrupt change detectors in their univariate and multivariate versions are studied: the
BIC, the CUSUM and the Hotelling T2 test.

3 Detectors’ decision functions

In what follows, each decision function is presented in both, the multivariate and the univariate cases. For
each detector, we assume that the samples x,, are taken from independent and identically distributed (i.i.d)
Gaussian random vectors. It is also assumed that an abrupt change may occur at n, = n— 4 +1, the estimated
covariance matrices are invertible and the sliding window length is w > 2(p + 1).

3.1 Bayesian Information Criterion (BIC)

The Bayesian Information Criterion (BIC) of X, , under hypothesis H;, i € {0,1} is defined as a maximum
likelihood criterion penalized by the model complexity [3, 4], proportional to the number M; of free parameters
to be estimated:

A
BIC,,(H;) = maxIn(L, ;) — =M; In(w) (5)
2 ’ 2
where L, ; is the data likelihood function under hypothesis H;, i € {0, 1} defined as the joint Probability Density
Function (PDF) of the observed data and considered as a function of the statistical parameters p and 3. The
scalar M is a penalty factor, ideally equal to 1 [3].



3.1.1 Criterion derivation for a multivariate case

For a multi dimensional signal, under Hy, the number of free parameters My in (5) corresponds to the sum
of the dimension p of the mean vector po plus the p(p + 1)/2 variances and covariances to be estimated from
the symmetric (p X p) covariance matrix Yo, resulting in My = p(p + 3)/2. Under Hy, the number of free
parameters are the p ones from the (p x 1) mean vectors p1,, and the p ones from the (p x 1) mean vector
t1p plus the p(p + 1)/2 ones from the (p X p) covariance matrices ¥1,, and the p(p 4+ 1)/2 ones from %14, so
My = p(p +3) = 2Mp.

Assuming that the samples z,, are taken from ¢.7.d Gaussian random vectors, the likelihood functions of X, ,
under Hy and H; correspond to the joint PDFs which are, by independance of the x,, values, equal to the
product of the samples’ PDF's, such as:

‘Cn,O = Hpuo,zo (xm) (6)

m=ng

n

= H 1 det(ZO)_% exp (—;(:vm — uo)Tzal(ﬂﬁm - MO)) (7)

men, (27

ny n
»Cn,l = Hpula,Ela(xm) pr«lb,zlb(mm) (8)

o 1 1 1 _
= H 3 det(21a>_% eXp (_(wm - Nla)Tzlal(xm - Mla)> (9)
Wit (277) 2 2
. 1 —1 1 Ty —1
H —— det(X1p) 2 exp | — 5 (Tm — p11)” X7y (Tm — 115) (10)
m=n (27T)2 2

The two expressions are maximized when considering the Maximum Likelihood Estimators (MLEs) of the mean
vectors and covariance matrices [3, 4]:

(/lOa 2ADO) = argmax ‘Cn,O and (,[Llaa ,[le7 2Ajlm 2Ajlb) = argmax En,l (11)
10,20 HiasfH1b: 510,510
such as:
ﬂla - ! i T,y ZAjla = ! i (l'm - ﬂla)(wm - /:Lla)T (12)
Ne — Ng m—rg Ne — Ng m=ng

R 1 n - 1 . N
[y = Z T, Elb = Z (xm - ,Uflb)(xm - .ulb)T (13)

n—ny = n—ny
fio = 1 Zn: Ty = fle — Tla f1a + n- nbﬂlb, IS 1 z": (T — f10) (T — fio) " (14)
w w
Then, we have:
BIC,(Hy) = In(Lno)— gp(p +3) In(w) (15)

w

1 2 1 & et A A
=In ((27r)?'k1et(f)o)> €xXp (‘2 Z(afm—MO)TEo (xm—/lo)> - Zp(p+3) In(w) (16)

- _% 3" (o = 10)" S5 (@ — fio) - % In(27) — %m(det(io)) - %p(p +3)In(w)  (17)
and
BICn(Hl) = In (,le) — %p(p-}- 3) ln(w) (18)
B S S A U S A S CVR
o ((27T>pdet(ila)> ((QW)pdet(ilb)> p( 2 ;E m MIU’) E1a( m Nla)

+ Z (xm*ﬂlb)Til_bl (zmﬂlb)>>> - %p(p + 3) ln(w) (19)

m=nc¢

(20)



Since:

> @ = 0) ™S5 @ — o) = Yt (@ = j10) TS (@ — o) (21)

= Z tr [ial(xm — f10)(Tm — ﬂo)T} (22)

= |5 D (@ — fi0) (@m — ﬂo)T] (23)

= trjwl] =wp (24)
ny n

likewise for Z (xm — ﬂla)Tfll_al(asm — [i14) and Z (xm — ﬂlb)Tfll_bl (zm — fi1p), then the BIC values under

Hp and H; are respectively:

BIC,(Hy) = _% In(27) —% In(det(3o)) - % - gp(p +3) In(w) (25)
BIC, (H,) = —% In(27) — (e —a) In(det(314)) — w In(det(S1)) — %—%p(p +3)In(w) (26)
The BIC variation for a given value of n, is given by:
ABIC,, = BIC,(H;) — BIC, (Ho) (27)
= %ln(det(io)) _ (ne=na) In(det(214)) — w In(det(315)) — gp(p +3) In(w) (28)

If ABIC,, > 0, the model of two Gaussians is favored (i.e. the signal can be segmented into two parts at
n¢). Consequently, the decision function can be expressed as:

H;
gn 2 h with g, = ABIC,, (29)
Ho
det(39)% A
=B ) T nw) (30)
det(Ela) 2 det(Zlb)T

Since we consider that an abrupt change occurs at n, =n — 3 + 1, the decision function becomes:

H; .
det(Xg)? 4 A
g, 2 B with ¢, = In e (%) - and h'=—h+ —p(p+ 3)In(w) (31)
I_f det(Zla) det(Elb) w w
0

3.1.2 Criterion derivation for a scalar case

For a one dimensional signal, the number of free parameters under Hy corresponds to pg and og, so My = 2.
Under Hj, the number of free parameters is 14,014, 416,016, S0 M1 = 4. The BIC criterion derivation for a
one dimensional signal is given in [?] and corresponds to

Hy
~92 4

J1a010b w

Hq

3.2 CUmulative Sum (CUSUM) algorithm

The CUSUM algorithm is a statistical test for the detection of a mean change in a Gaussian process [1]. It
involves the calculation of a cumulative sum and works by tracking its deviations from a threshold value.
3.2.1 Ceriterion derivation for a multivariate case

In the case of a multi dimensional signal, when considering (1) and (2), in order to derive the CUSUM decision
function, it is assumed that under Hy, pg = p14 and X9 = X1,. Under Hy, X1, = ¥1,. The decision rule is



based on a maximization of the log-likelihood ratio such as:

H; "
In % h, with g, = Z Sm, (33)
H0 m=nc

Indeed, the log likelihood ration over n. corresponds to the cumulative sum of values s,,, such that:

ny n
r Hp/"flayzla (‘Tm) H Puiy,Tia (l‘m)
In <£n’1) = In| 2= — M=t (34)
n,0
Hp#1a721a<mm)

m=ng

n

Z In (pmb,zm (xm)> (35)

M="N¢ p.u'ltuzla (xm)

=Y e (36)

m=nc

Because z,, are i.i.d Np(p, X), s, becomes:

L ((mE et exp(= 3w — ) S @ — ) -
( ) 2 det(zla) % eXP( %(an ,ula)Tzl_al (xm - Hla))
_ oy [P 3 @m = ) TS (@ — ) (38)
exp(—5 (@m — p1a) "1, (Tm — p1a))
1 _ 1 _
= i(xm - Mla)Tzlal (xm - Nla) - §(xm - Mlb)Tzlal (xm - Ulb) (39)
1 | | 1 1 1 11
= _535 Em Hla — 5/11@21@ T + §M1a21a Hia + 233m21a M1 + 2#1(;21(1 Tm — §u1b21a py - (40)
Since:
e S1g e = i S, o and el B e = 0, 21, (41)
Then:
1 _ _ _ _
Sm = 5 [zﬂrlrbzlalxm - 2:ur1razla1xm + (.U’rlraxlalﬂla - u?bzlalﬂlb)] (42)
_ 1 _
= (1o — f1a) " ST, T — 5 (hap + t1a) " S5, (H16 — H1a) (43)
_ +
= (1o — p1a) " S1a (xm - M) (44)

To calculate s, all the unknowns in its expression, such as the mean vectors fi1p, fi1, and the covariance matrix
Y14, are replaced by their MLEs expressed in (12), (13). Then, according to (33), the CUSUM decision function
becomes:

H; )
gn 2 h with g, = (fiap — fina)” ( > - /m) (45)
HO m=nc¢
X X & X 1) + [
= (i — fua)TET) <(nc —n+jiap — (ne —n+ 1)“12“1“> (46)
_ (n —mny) 10 -
- T(ﬂlb - Mla) Zla (:U’lb - Mla) (47)
If considering an abrupt change occurring inside a sliding window of w samples at n. = n — 5 + 1, then the
decision function can be expressed as follows, when considering (14) and (12):
H; A
g 2 h where g, = (jip — f1a) X1, (fap — fua) and B = Eh (48)
Ho



3.2.2 Criterion derivation for a scalar case
The CUSUM criterion derivation for a one dimensional signal is given in [?] and corresponds to:
n Hy

gn = Z Sm % h  with s, = (n—np)
m=nc HO

(fiap — f1a)?

49
27, (49)

Since we aim at detecting a mean change at n. =n — 3 + 1, the CUSUM decision function corresponds to:

Hy
i1y — fi1a 2 4
i M 2 W where W' =—h (50)
63, = w
Hy

3.3 Hotelling T? test

When testing for the difference between the means of two normally distributed samples with unknown variances
but assumed equal, the most commonly used statistical test is the Hotelling T? test [5]. It aims at quantifying
the difference between two Normal distributions using the mean and variance in the data.

3.3.1 Criterion derivation for a multivariate case

The Hotelling T? test is the multivariate extension of the Student’s t-test [6]. In a Hotelling T? test, the
difference between the (p x 1) mean vectors of two samples is considered [7]. In order to formulate the Hotelling
T? test, we need to derive the maximum likelihood ratio test for both hypotheses Hy and H;. The likelihood
ratio corresponds to:

ACn 1
A= —— 51
‘Cn,O ( )
which is maximized when considering the MLEs in (14), (12) and (13), such as:
% 2 n
1 1 f o \T$—1 N L \T—1 .
m) exp (‘2 ( Z:(xm_ﬂla) X (xm—ula)+Z($m_Mlb) 2 (xm_ﬂlb)>>
An _ m=ng _ m=n, (52)
2 A - ~
() o (‘é > _(@m=iio)"; 1($m—uo>
m=ng
where:
2All - l i (-rm - ,ala)(xm - ,ala)T + Xn: (xm - ﬂlb)('xm - ,alb)T (53)
w m=n m=n
_ Ne ;na ila + n—ng i:lb (54)

Then (52) can be simplified using (24), such as:

w

A = (det@0)>2 (56)
det(El)

wlg

det [ S (@ — o) m)T]

m=ng

- ny p (57)
det |fi ( Z (xm - ﬂla)('xm - lala)T + Z (xm - /llb)(xm - ﬂlb)T>]
The above expression can be simplified, indeed:

g 23

D@m= fi0)(@m = f10)" =D (@ = fr1a)@m — f112) "+ (R = 10) (110 = fio) (fira — fi0) " (58)
m=ng Mm=ngq
< A A~ \T (nc - na)(n - nb)2 A A A A~ \T

ZZ(Q?m — [i1a)(Tm — f1a) + w2 (A1 — fap) (fira — fi1p) (59)



Liwewise, we have:

n n 2
. . . . n—np)(ne —ng)? . . A
Ej%n_ﬂd@m_ﬂdT:E:@m_ﬂwx%n_mwT+( biQ )(mb—maww—umﬁwm
According to (54), we obtain:
. . Ne —ng)(n —mny) , . N .
Yo=%1+ ( I v) (fib — fira) (frrp — flra)” (61)

w?

Therefore, when substituing (61) in (57), we have:

w

det(3; + mew — fina) (s — f1a)T) \ 2
A, = - (62)
det(El)
et det($ o e (3 )y — ) T) )
_ (te—ma)(n—n3) 1 w2 H1b — Hi1a)(H1b — Mla (63)
w? S
7(7%_”&)(”_7%) det(El)
det(S1) (=g + (i — 1) S Giao — na) )\
. (ne—mna)(n—mp) @ 1 e (64)
- — -
7(7%_7%)(”_”1)) det(El)
Ne —Ng)(n—mnp) , . . N . 2
= (1 + (e ZU)Q( +) (furp — Mla)TE1 1(M1b - Mla)) (65)
= (1 + gn)% (66)
Note, when considering u = m, V= fh, W= (flup — fi1a):
_ A11 A12 _ u ’LBT
4= {Azl AQJ B {w v o
_ det(All) det(AQQ - A21A1_11A12) o udet(V + l’LEIF)T)
det(4) = { det(Ass) det(Ary — ArpAgt Aoy) — | det(V)(u+ @™V ) (68)
Thus,
1
uwdet(V 4+ —w@”) = det(V)(u+ &7 V@) (69)
U
det(V + Laa™) (R i
L = 1 - =
dev(V) L (70)

Informally, this likelihood ratio aims at measuring the plausibility of Hg relative to Hy. Therefore, if the
likelihood ratio is sufficiently small, we might be inclined to reject Hy. According to Neyman Pearson Lemma
[6], this is made possible by setting (66) less than v € [0, 1]. Indeed, under Hy, we have p1, = p1p, 50 Ay, =1
and under Hy, we have 1, # p1p, so A, > 1. This leads to:
gn > —1=h (71)
gn corresponds to the decision function that is compared to an adjusted threshold h such as:
Hy

—1

W 2 h with g, = iy — fina) "7 1y — fia 72

g 5 with ¢ (nc_na n_m) (1 — f1a) " 27 (f1p — fi1a) (72)
0

w w

According to (54), the decision function g, can also be expressed as:

H, )
gy Z W =hx = (73)
0 (ne —ng)(n —ny)
0
. ~ ~ Ne — Na ¢ N=Nhg \—1,~ ~
with g, = (i — )T (= = Tra + == 50) " (ap — fina) (74)

If an abrupt change occurs inside a sliding window of w samples at n, =n — % + 1, the Hotelling’s T? decision
rules becomes:
Hy
gn 2 W' =hx2 with g, = — )" (S1a + 1) (s — fira) (75)

Hy



3.3.2 Criterion derivation for a scalar case: the Student t-test

The student’s t-test is a generalization of Hotelling’s T? statistic, used in univariate hypothesis testing. As for
the multivariate case, we need to derive the maximum likelihood ratio test which corresponds to:

w

~2\ 2
An:@ - (Jg) (76)

Lo 0%
ny n %
i ( Z (Tm — ﬂ0)2 + Z (Tm — ﬂ0)2>
= e e (77)
i ( Z (xm - /)Jla)2 + Z (xm - ﬂlb)2>

The above expression can be simplified, indeed:

nep ny

Yo @m—0) = Y ((@m — fua) + (f1a — f10))° (78)

np
= Z(wm - ﬂla)2+(nc - na)(ﬂla_ﬂO)Q (79)
L . . Ne — ) fiat (0 — np)fing \ >
=S (@ — ) (e — 1) (ma— ( Jinat ( b),ulb) (80)
m=ng w
ny _ 2
=Y e P e (81)
m=ng
As for (78), we have:
= . = . Ne —ng)%(n —mnp) .
S G o = 3 ) P e (52)
and 63 = + Z (xm — fig)? can also be expressed as follows:
o1 X - ) ne—ng)(n—mny)®
66 = w ( Z(@"m — f1a)*+ Z(xm - Mlb)2> + ( ;g ) (A1 — f1a)®
(ne —ng)?(n —mnp) A
+ 3 (fip — f1a)? (83)
By analogy with (54), we have:
1 ny n
=y ( D2 (om = fna)® + 3 (m = mb)?) (84)
M= MNg .o | NN .o
= o Cle T T (85)
1 & IR
where 6}, = ———- ,,; (@ = fna)* and 63, = —— - m; .(xm — fip)? (86)
Where 67 is commonly referred as the pooled variance [7]. Therefore,
~ ~ Ne = Ng )\ —Np) /. ~
5= o4 e ) e (57)
Thus, when substituing (87) in (77), we have:
~92 (ne—ng)(n—mnp) [~ ~ 2 5
+ = — fl1a
A, = (Ul w? . (f11p — fi1a) > (88)
g1
(ne = na)(n = m) (s — i) *
= (1 39
( + w262 62 (89)
= (l+g.)° (90)



gn corresponds to the Student’s t-test and can be also expressed as:

71 ~ ~ 2
w w ({1 — fi1a)
n = 1
g (n n b) . (91)

c—MNg N —n 01

By setting the likelihood ratio less than A € [0, 1] according to Neyman Pearson Lemma, we obtain:
(1+g)% <y = gn>v%—1=h (92)
The Student t-test can be expressed as:

H,

2 - .2
r> B ith I . w _ (lulb *ﬂla) 93
gn S w1 gn g X (nc _ na)<n _ nb) 6’% ( )
Hp
_ (fi1p — fi1a)? (94)
Relhe gl + e,
2
and h' = hx “ (95)

(ne —nqa)(n —np)

with A’ is a threshold value adjusted according to some desired decision probabilities. When an abrupt change
is occurring at n. = n — 3 + 1, the Student’s t-test decision rules becomes:

(/\ ~ )2 1

H1b — Hia

Z - 62 462 + 62 2 W' =2n (96)
la 1b

0
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