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Multivariate abrupt change detectors

In this report, we aim at deriving three abrupt change detectors' decision functions: the Bayesian Information Criterion (BIC), the Cumulative Sum (CUSUM) and the Hotelling T 2 test. The three expressions are given by considering both univariate and multivariate cases. We first start by mathematically formulating the detection problem.

Hypothesis testing framework

Three detection algorithms capable of determining step-changes in signals are studied in this report. These changes can be detected by comparing the mean of the current observations with the mean of previous observations. Let X n,p = (x na , x na+1 , . . . , x m , . . . , x n ) with x m ∈ lR p , ∀m ∈ {n a , . . . , n}, be a realization of a Gaussian process corresponding to a (p×w) matrix of the last w = n-n a +1 samples of a p-dimensional timeseries at the current time instant n. Each signal sample x m corresponds to a vector of p features such as x m = (x m,1 , . . . , x m,j , . . . , x m,p ) T , where x m,j is the value of feature j ∈ {1, . . . , p} at time instant m. Each vector x m is assumed to follow a multivariate Gaussian distribution N p (µ, Σ), where µ ∈ lR p is the mean vector and Σ ∈ lR p×p is the semidefinite covariance matrix. An abrupt change occuring at a change time instant n a < n c < n is modeled by an instantaneous modification of the statistical parameters (i.e. mean vector and/or covariance matrix). Two hypothses mut be considered:

H 0 : x na , . . . , x n ∼ N p (µ 0 , Σ 0 ) (1) 
H 1 : x na , . . . , x n b ∼ N p (µ 1a , Σ 1a ) x nc , . . . , x n ∼ N p (µ 1b , Σ 1b ) (2) 
with n b = n c -1. The "without change" hypothesis H 0 supposes that, on both sides of n c , the signal follows the same distribution [START_REF] Basseville | Detecting changes in signals and systems -a survey[END_REF], that is a multivariate Gaussian distribution with a mean vector µ 0 and a covariance matrix Σ 0 . On the opposite, the "with change" hypothesis H 1 supposes that a change of distribution occurs at n c (2). Before the change, the signal samples x na , . . . , x n b follow a multivariate Gaussian distribution with a mean vector µ 1a and a covariance matrix Σ 1a . After the change, x nc , . . . , x n follow a multivariate Gaussian distribution with a mean vector corresponding to µ 1b = µ 1a and a covariance matrix equal to Σ 1b = Σ 1a . A detector performs a hypothesis test for each potential change point in a signal. An on-line approach is followed by using a sliding window over the signal. Therefore, at each time instant n, a decision between H 0 and H 1 (i.e. a decision "to reject H 0 in favor of H 1 ") is made by comparing a decision function g n to an a dimensional threshold h [START_REF] Basseville | Detecting changes in signals and systems -a survey[END_REF].

decide H 1 if g n > h (3) decide H 0 if g n ≤ h (4) 
In what follows three abrupt change detectors in their univariate and multivariate versions are studied: the BIC, the CUSUM and the Hotelling T 2 test.

Detectors' decision functions

In what follows, each decision function is presented in both, the multivariate and the univariate cases. For each detector, we assume that the samples x m are taken from independent and identically distributed (i.i.d) Gaussian random vectors. It is also assumed that an abrupt change may occur at n c = n -w 2 + 1, the estimated covariance matrices are invertible and the sliding window length is w ≥ 2(p + 1).

Bayesian Information Criterion (BIC)

The Bayesian Information Criterion (BIC) of X n,p under hypothesis H i , i ∈ {0, 1} is defined as a maximum likelihood criterion penalized by the model complexity [START_REF] Delacourt | DISTBIC: a speaker-based segmentation for audio data indexing[END_REF][START_REF] Zhou | Efficient audio stream segmentation via the combined T 2 Statistic and Bayesian Information Criterion[END_REF], proportional to the number M i of free parameters to be estimated:

BIC n (H i ) = max µ,Σ ln(L n,i ) - λ 2 M i ln(w) (5) 
where L n,i is the data likelihood function under hypothesis H i , i ∈ {0, 1} defined as the joint Probability Density Function (PDF) of the observed data and considered as a function of the statistical parameters µ and Σ. The scalar λ is a penalty factor, ideally equal to 1 [START_REF] Delacourt | DISTBIC: a speaker-based segmentation for audio data indexing[END_REF].

Criterion derivation for a multivariate case

For a multi dimensional signal, under H 0 , the number of free parameters M 0 in (5) corresponds to the sum of the dimension p of the mean vector µ 0 plus the p(p + 1)/2 variances and covariances to be estimated from the symmetric (p × p) covariance matrix Σ 0 , resulting in M 0 = p(p + 3)/2. Under H 1 , the number of free parameters are the p ones from the (p × 1) mean vectors µ 1a , and the p ones from the (p × 1) mean vector µ 1b plus the p(p + 1)/2 ones from the (p × p) covariance matrices Σ 1a , and the p(p + 1)/2 ones from Σ 1b , so

M 1 = p(p + 3) = 2M 0 .
Assuming that the samples x m are taken from i.i.d Gaussian random vectors, the likelihood functions of X n,p under H 0 and H 1 correspond to the joint PDFs which are, by independance of the x m values, equal to the product of the samples' PDFs, such as:

L n,0 = n m=na p µ0,Σ0 (x m ) (6) = n m=na 1 (2π) p 2 det(Σ 0 ) -1 2 exp - 1 2 (x m -µ 0 ) T Σ -1 0 (x m -µ 0 ) (7) 
L n,1 = n b m=na p µ1a,Σ1a (x m ) n m=nc p µ 1b ,Σ 1b (x m ) (8) = n b m=na 1 (2π) p 2 det(Σ 1a ) -1 2 exp - 1 2 (x m -µ 1a ) T Σ -1 1a (x m -µ 1a ) (9) × n m=nc 1 (2π) p 2 det(Σ 1b ) -1 2 exp - 1 2 (x m -µ 1b ) T Σ -1 1b (x m -µ 1b ) (10) 
The two expressions are maximized when considering the Maximum Likelihood Estimators (MLEs) of the mean vectors and covariance matrices [START_REF] Delacourt | DISTBIC: a speaker-based segmentation for audio data indexing[END_REF][START_REF] Zhou | Efficient audio stream segmentation via the combined T 2 Statistic and Bayesian Information Criterion[END_REF]:

(μ 0 , Σ0 ) = argmax µ0,Σ0 L n,0 and (μ 1a , μ1b , Σ1a , Σ1b ) = argmax µ1a,µ 1b ,Σ1a,Σ 1b L n,1 (11) 
such as:

μ1a = 1 n c -n a n b m=na x m , Σ1a = 1 n c -n a n b m=na (x m -μ1a )(x m -μ1a ) T (12) μ1b = 1 n -n b n m=nc x m , Σ1b = 1 n -n b n m=nc (x m -μ1b )(x m -μ1b ) T (13) μ0 = 1 w n m=na x m = n c -n a w μ1a + n -n b w μ1b , Σ0 = 1 w n m=na (x m -μ0 )(x m -μ0 ) T (14) 
Then, we have:

BIC n (H 0 ) = ln (L n,0 ) - λ 4 p(p + 3) ln(w) (15) = ln   1 (2π) p det( Σ0 ) w 2 exp - 1 2 n m=na (x m -μ0 ) T Σ-1 0 (x m -μ0 )   - λ 4 p(p + 3) ln(w) (16) = - 1 2 n m=na (x m -μ0 ) T Σ-1 0 (x m -μ0 ) - wp 2 ln(2π) - w 2 ln(det( Σ0 )) - λ 4 p(p + 3) ln(w) (17) 
and

BIC n (H 1 ) = ln (L n,1 ) - λ 2 p(p + 3) ln(w) (18) = ln   1 (2π) p det( Σ1a ) nc -na 2 1 (2π) p det( Σ1b ) n-n b 2 exp - 1 2 n b m=na (x m -μ1a ) T Σ-1 1a (x m -μ1a ) + n m=nc (x m -μ1b ) T Σ-1 1b (x m -μ1b ) - λ 2 p(p + 3) ln(w) (19) 
(20)

Since:

n m=na (x m -μ0 ) T Σ-1 0 (x m -μ0 ) = n m=na tr (x m -μ0 ) T Σ-1 0 (x m -μ0 ) (21) = n m=na tr Σ-1 0 (x m -μ0 )(x m -μ0 ) T (22) = tr Σ-1 0 n m=na (x m -μ0 )(x m -μ0 ) T (23) 
= tr [wI] = wp (24) likewise for

n b m=na (x m -μ1a ) T Σ-1 1a (x m -μ1a ) and n m=nc (x m -μ1b ) T Σ-1 1b (x m -μ1b
), then the BIC values under H 0 and H 1 are respectively:

BIC n (H 0 ) = - wp 2 ln(2π)- w 2 ln(det( Σ0 ))- wp 2 - λ 4 p(p + 3) ln(w) (25) BIC n (H 1 ) = - wp 2 ln(2π) - (n c -n a ) 2 ln(det( Σ1a )) - (n -n b ) 2 ln(det( Σ1b )) - wp 2 - λ 2 p(p + 3) ln(w) (26)
The BIC variation for a given value of n c is given by:

∆BIC n = BIC n (H 1 ) -BIC n (H 0 ) (27) = w 2 ln(det( Σ0 )) - (n c -n a ) 2 ln(det( Σ1a )) - (n -n b ) 2 ln(det( Σ1b )) - λ 4 p(p + 3) ln(w) (28) 
If ∆BIC n > 0, the model of two Gaussians is favored (i.e. the signal can be segmented into two parts at n c ). Consequently, the decision function can be expressed as:

g n H 1 > ≤ H 0 h with g n = ∆BIC n , (29) 
= ln det( Σ0 )

w 2 det( Σ1a ) nc -na 2 det( Σ1b ) n-n b 2 - λ 4 p(p + 3) ln(w) (30) 
Since we consider that an abrupt change occurs at n c = n -w 2 + 1, the decision function becomes:

g n H 1 > ≤ H 0 h with g n = ln det( Σ0 ) 2 det( Σ1a ) det( Σ1b ) and h = 4 w h + λ w p(p + 3) ln(w) (31) 

Criterion derivation for a scalar case

For a one dimensional signal, the number of free parameters under H 0 corresponds to µ 0 and σ 0 , so M 0 = 2. Under H 1 , the number of free parameters is µ 1a , σ 1a , µ 1b , σ 1b , so M 1 = 4. The BIC criterion derivation for a one dimensional signal is given in [?] and corresponds to

g n H 1 > ≤ H 0 h with g n = ln σ2 0 σ1a σ1b , h = 4 w (h + λ ln(w)) (32)

CUmulative Sum (CUSUM) algorithm

The CUSUM algorithm is a statistical test for the detection of a mean change in a Gaussian process [START_REF] Basseville | Detecting changes in signals and systems -a survey[END_REF]. It involves the calculation of a cumulative sum and works by tracking its deviations from a threshold value.

Criterion derivation for a multivariate case

In the case of a multi dimensional signal, when considering (1) and ( 2), in order to derive the CUSUM decision function, it is assumed that under H 0 , µ 0 = µ 1a and Σ 0 = Σ 1a . Under H 1 , Σ 1b = Σ 1a . The decision rule is based on a maximization of the log-likelihood ratio such as:

g n H 1 > ≤ H 0 h, with g n = n m=nc s m (33)
Indeed, the log likelihood ration over n c corresponds to the cumulative sum of values s m such that:

ln L n,1 L n,0 = ln       n b m=na p µ1a,Σ1a (x m ) n m=nc p µ 1b ,Σ1a (x m ) n m=na p µ1a,Σ1a (x m )       (34) = n m=nc ln p µ 1b ,Σ1a (x m ) p µ1a,Σ1a (x m ) (35) = n m=nc s m (36) 
Because x m are i.i.d N p (µ, Σ), s m becomes:

s m = ln (2π) -p 2 det(Σ 1a ) -1 2 exp(-1 2 (x m -µ 1b ) T Σ -1 1a (x m -µ 1b )) (2π) -p 2 det(Σ 1a ) -1 2 exp(-1 2 (x m -µ 1a ) T Σ -1 1a (x m -µ 1a )) (37) = ln exp(-1 2 (x m -µ 1b ) T Σ -1 1a (x m -µ 1b )) exp(-1 2 (x m -µ 1a ) T Σ -1 1a (x m -µ 1a )) (38) = 1 2 (x m -µ 1a ) T Σ -1 1a (x m -µ 1a ) - 1 2 (x m -µ 1b ) T Σ -1 1a (x m -µ 1b ) (39) = - 1 2 x T m Σ -1 1a µ 1a - 1 2 µ T 1a Σ -1 1a x m + 1 2 µ T 1a Σ -1 1a µ 1a + 1 2 x T m Σ -1 1a µ 1b + 1 2 µ T 1b Σ -1 1a x m - 1 2 µ T 1b Σ -1 1a µ 1b (40) 
Since:

x T m Σ -1 1a µ 1b = µ T 1b Σ -1 1a x m and x T m Σ -1 1a µ 1a = µ T 1a Σ -1 1a x m (41) 
Then:

s m = 1 2 2µ T 1b Σ -1 1a x m -2µ T 1a Σ -1 1a x m + (µ T 1a Σ -1 1a µ 1a -µ T 1b Σ -1 1a µ 1b ) (42) = (µ 1b -µ 1a ) T Σ -1 1a x m - 1 2 (µ 1b + µ 1a ) T Σ -1 1a (µ 1b -µ 1a ) (43) = (µ 1b -µ 1a ) T Σ -1 1a x m - µ 1b + µ 1a 2 (44)
To calculate s m , all the unknowns in its expression, such as the mean vectors μ1b , μ1a and the covariance matrix Σ1a , are replaced by their MLEs expressed in (12), (13). Then, according to (33), the CUSUM decision function becomes:

g n H 1 > ≤ H 0 h with g n = (μ 1b -μ1a ) T Σ-1 1a n m=nc x m - μ1b + μ1a 2 (45) = (μ 1b -μ1a ) T Σ-1 1a (n c -n + 1)μ 1b -(n c -n + 1) μ1b + μ1a 2 (46) = (n -n b ) 2 (μ 1b -μ1a ) T Σ-1 1a (μ 1b -μ1a ) (47)
If considering an abrupt change occurring inside a sliding window of w samples at n c = n -w 2 + 1, then the decision function can be expressed as follows, when considering ( 14) and (12):

g n H 1 > ≤ H 0 h where g n = (μ 1b -μ1a ) T Σ-1 1a (μ 1b -μ1a ) and h = 4 w h (48)

Criterion derivation for a scalar case

The CUSUM criterion derivation for a one dimensional signal is given in [?] and corresponds to:

g n = n m=nc s m H 1 > ≤ H 0 h with s m = (n -n b ) (μ 1b -μ1a ) 2 2σ 2 1a (49)
Since we aim at detecting a mean change at n c = n -w 2 + 1, the CUSUM decision function corresponds to:

g n = (μ 1b -μ1a ) 2 σ2 1a H 1 > ≤ H 0 h where h = 4 w h (50)

Hotelling T 2 test

When testing for the difference between the means of two normally distributed samples with unknown variances but assumed equal, the most commonly used statistical test is the Hotelling T 2 test [START_REF] Nikovski | Fast adaptive algorithms for abrupt change detection[END_REF]. It aims at quantifying the difference between two Normal distributions using the mean and variance in the data.

Criterion derivation for a multivariate case

The Hotelling T 2 test is the multivariate extension of the Student's t-test [START_REF] Giri | On the likelihood ratio test of a normal multivariate testing problem[END_REF]. In a Hotelling T 2 test, the difference between the (p × 1) mean vectors of two samples is considered [START_REF] Hotelling | A generalized T test and measure of multivariate dispersion[END_REF]. In order to formulate the Hotelling T 2 test, we need to derive the maximum likelihood ratio test for both hypotheses H 0 and H 1 . The likelihood ratio corresponds to:

Λ n = L n,1 L n,0 (51) 
which is maximized when considering the MLEs in ( 14), ( 12) and ( 13), such as:

Λ n = 1 (2π) p det( Σ1) w 2 exp -1 2 n b m=na (x m -μ1a ) T Σ-1 1 (x m -μ1a )+ n m=nc (x m -μ1b ) T Σ-1 1 (x m -μ1b ) 1 (2π) p det( Σ0) w 2 exp -1 2 n m=na (x m -μ0 ) T Σ-1 0 (x m -μ0 ) (52) 
where:

Σ1 = 1 w n b m=na (x m -μ1a )(x m -μ1a ) T + n m=nc (x m -μ1b )(x m -μ1b ) T (53) = n c -n a w Σ1a + n -n b w Σ1b (54) (55) 
Then (52) can be simplified using (24), such as:

Λ n = det( Σ0 ) det( Σ1 ) w 2 (56) =       det 1 w n m=na (x m -μ0 )(x m -μ0 ) T det 1 w n b m=na (x m -μ1a )(x m -μ1a ) T + n m=nc (x m -μ1b )(x m -μ1b ) T       w 2 (57) 
The above expression can be simplified, indeed:

n b m=na (x m -μ0 )(x m -μ0 ) T = n b m=na (x m -μ1a )(x m -μ1a ) T + (n c -n a )(μ 1a -μ0 )(μ 1a -μ0 ) T (58) = n b m=na (x m -μ1a )(x m -μ1a ) T + (n c -n a )(n -n b ) 2 w 2 (μ 1a -μ1b )(μ 1a -μ1b ) T (59) n m=nc (x m -μ0 )(x m -μ0 ) T = n m=nc (x m -μ1b )(x m -μ1b ) T + (n -n b )(n c -n a ) 2 w 2 (μ 1b -μ1a )(μ 1b -μ1a ) T (60)
According to (54), we obtain:

Σ0 = Σ1 + (n c -n a )(n -n b ) w 2 (μ 1b -μ1a )(μ 1b -μ1a ) T (61) 
Therefore, when substituing (61) in (57), we have:

Λ n = det( Σ1 + (nc-na)(n-n b ) w 2 (μ 1b -μ1a )(μ 1b -μ1a ) T ) det( Σ1 ) w 2 (62) =   w 2 (nc-na)(n-n b ) det( Σ1 + (nc-na)(n-n b ) w 2 (μ 1b -μ1a )(μ 1b -μ1a ) T ) w 2 (nc-na)(n-n b ) det( Σ1 )   w 2 (63) =   det( Σ1 ) w 2 (nc-na)(n-n b ) + (μ 1b -μ1a ) T Σ-1 1 (μ 1b -μ1a ) w 2 (nc-na)(n-n b ) det( Σ1 )   w 2 (64) = 1 + (n c -n a )(n -n b ) w 2 (μ 1b -μ1a ) T Σ-1 1 (μ 1b -μ1a ) w 2 (65) = (1 + g n ) w 2 (66) 
Note, when considering u = w 2

(nc-na)(n-n b ) , V = Σ1 , w = (μ 1b -μ1a ):

A = A 11 A 12 A 21 A 22 = u w T -w V (67) det(A) = det(A 11 ) det(A 22 -A 21 A -1 11 A 12 ) det(A 22 ) det(A 11 -A 12 A -1 22 A 21 ) = u det(V + 1 u w w T ) det(V )(u + w T V -1 w) (68) 
Thus,

u det(V + 1 u w w T ) = det(V )(u + w T V -1 w) (69) det(V + 1 u w w T ) det(V ) = 1 + w T V -1 w u (70) 
Informally, this likelihood ratio aims at measuring the plausibility of H 0 relative to H 1 . Therefore, if the likelihood ratio is sufficiently small, we might be inclined to reject H 0 . According to Neyman Pearson Lemma [START_REF] Giri | On the likelihood ratio test of a normal multivariate testing problem[END_REF], this is made possible by setting (66) less than γ ∈ [0, 1]. Indeed, under H 0 , we have µ 1a = µ 1b , so Λ n = 1 and under H 1 , we have µ 1a = µ 1b , so Λ n > 1. This leads to:

g n > γ 2 w -1 = h (71) 
g n corresponds to the decision function that is compared to an adjusted threshold h such as:

g n H 1 > ≤ H 0 h with g n = w n c -n a + w n -n b -1 (μ 1b -μ1a ) T Σ-1 1 (μ 1b -μ1a ) (72) 
According to (54), the decision function g n can also be expressed as:

g n H 1 > ≤ H 0 h = h × w 2 (n c -n a )(n -n b ) (73) with g n = (μ 1b -μ1a ) T ( n c -n a w Σ1a + n -n b w Σ1b ) -1 (μ 1b -μ1a ) (74) 
If an abrupt change occurs inside a sliding window of w samples at n c = n -w 2 + 1, the Hotelling's T 2 decision rules becomes: 

g n H 1 > ≤ H 0 h = h × 2 with g n = (μ 1b -μ1a ) T ( Σ1a + Σ1b ) -1 (μ 1b -μ1a ) (75) 3 
Λ n = L n,1 L n,0 = σ2 0 σ2 1 w 2 (76) =       1 w n b m=na (x m -μ0 ) 2 + n m=nc (x m -μ0 ) 2 1 w n b m=na (x m -μ1a ) 2 + n m=nc (x m -μ1b ) 2       w 2 (77) 
The above expression can be simplified, indeed:

n b m=na (x m -μ0 ) 2 = n b m=na ((x m -μ1a ) + (μ 1a -μ0 )) 2 (78) = n b m=na (x m -μ1a ) 2 +(n c -n a )(μ 1a -μ 0 ) 2 (79) = n b m=na (x m -μ1a ) 2 + (n c -n a ) μ1a - (n c -n a )μ 1a + (n -n b )μ 1b w 2 (80) = n b m=na (x m -μ1a ) 2 + (n c -n a )(n -n b ) 2 w 2 (μ 1a -μ1b ) 2 (81) 
As for (78), we have: (86)

n m=nc (x m -μ0 ) 2 = n m=nc (x m -μ1b ) 2 + (n c -n a ) 2 (n -n b ) w 2 (μ 1b -μ1a ) 2 (82) 
Where σ2 1 is commonly referred as the pooled variance [START_REF] Hotelling | A generalized T test and measure of multivariate dispersion[END_REF]. Therefore,

σ2 0 = σ2 1 + (n c -n a )(n -n b ) w 2 (μ 1b -μ1a ) 2 (87) 
Thus, when substituing (87) in (77), we have:

Λ n = σ2 1 + (nc-na)(n-n b )
w 2

(μ 1b -μ1a ) 2 σ2 (90)

g n corresponds to the Student's t-test and can be also expressed as:

g n = w n c -n a + w n -n b -1 (μ 1b -μ1a ) 2 σ2 1 (91)
By setting the likelihood ratio less than λ ∈ [0, 1] according to Neyman Pearson Lemma, we obtain:

(1 + g n ) w 2 < γ ⇒ g n > γ 2 w -1 = h (92)
The Student t-test can be expressed as: with h is a threshold value adjusted according to some desired decision probabilities. When an abrupt change is occurring at n c = n -w 2 + 1, the Student's t-test decision rules becomes:

g n = (μ 1b -μ1a ) 2 σ2 1a + σ2 1b H 1 > ≤ H 0 h = 2h (96) 
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  .3.2 Criterion derivation for a scalar case: the Student t-test The student's t-test is a generalization of Hotelling's T 2 statistic, used in univariate hypothesis testing. As for the multivariate case, we need to derive the maximum likelihood ratio test which corresponds to: