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ARTICLE

Metal-organic framework crystal-glass composites
Jingwei Hou1, Christopher W. Ashling 1, Sean M. Collins 1, Andraž Krajnc2, Chao Zhou 1, Louis Longley 1,

Duncan N. Johnstone 1, Philip A. Chater 3, Shichun Li1,4, Marie-Vanessa Coulet5, Philip L. Llewellyn5,

François-Xavier Coudert 6, David A. Keen 7, Paul A. Midgley1, Gregor Mali 2, Vicki Chen8,9 &

Thomas D. Bennett 1

The majority of research into metal-organic frameworks (MOFs) focuses on their crystalline

nature. Recent research has revealed solid-liquid transitions within the family, which we use

here to create a class of functional, stable and porous composite materials. Described herein

is the design, synthesis, and characterisation of MOF crystal-glass composites, formed by

dispersing crystalline MOFs within a MOF-glass matrix. The coordinative bonding and che-

mical structure of a MIL-53 crystalline phase are preserved within the ZIF-62 glass matrix.

Whilst separated phases, the interfacial interactions between the closely contacted micro-

domains improve the mechanical properties of the composite glass. More significantly, the

high temperature open pore phase of MIL-53, which spontaneously transforms to a narrow

pore upon cooling in the presence of water, is stabilised at room temperature in the crystal-

glass composite. This leads to a significant improvement of CO2 adsorption capacity.

https://doi.org/10.1038/s41467-019-10470-z OPEN

1 Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK. 2 Department of Inorganic Chemistry and Technology,
National Institute of Chemistry, 1001 Ljubljana, Slovenia. 3 Diamond Light Source Ltd., Diamond House, Harwell Science & Innovation Campus, Didcot,
Oxfordshire OX11 0DE, UK. 4 Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China. 5 Aix-Marseille Univ, CNRS,
MADIREL (UMR 7246), Centre de St. Jérôme, 13397 Marseille cedex 20, France. 6 Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie
Paris, 75005 Paris, France. 7 ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxon OX11 0QX, UK. 8 School of Chemical Engineering,
University of New South Wales, Sydney, NSW 2052, Australia. 9 School of Chemical Engineering, University of Queensland, St. Lucia QLD 4072, Australia.
Correspondence and requests for materials should be addressed to T.D.B. (email: tdb35@cam.ac.uk)

NATURE COMMUNICATIONS |         (2019) 10:2580 | https://doi.org/10.1038/s41467-019-10470-z | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-9528-6595
http://orcid.org/0000-0002-9528-6595
http://orcid.org/0000-0002-9528-6595
http://orcid.org/0000-0002-9528-6595
http://orcid.org/0000-0002-9528-6595
http://orcid.org/0000-0002-5151-6360
http://orcid.org/0000-0002-5151-6360
http://orcid.org/0000-0002-5151-6360
http://orcid.org/0000-0002-5151-6360
http://orcid.org/0000-0002-5151-6360
http://orcid.org/0000-0003-0218-3114
http://orcid.org/0000-0003-0218-3114
http://orcid.org/0000-0003-0218-3114
http://orcid.org/0000-0003-0218-3114
http://orcid.org/0000-0003-0218-3114
http://orcid.org/0000-0002-9178-9603
http://orcid.org/0000-0002-9178-9603
http://orcid.org/0000-0002-9178-9603
http://orcid.org/0000-0002-9178-9603
http://orcid.org/0000-0002-9178-9603
http://orcid.org/0000-0003-3663-3793
http://orcid.org/0000-0003-3663-3793
http://orcid.org/0000-0003-3663-3793
http://orcid.org/0000-0003-3663-3793
http://orcid.org/0000-0003-3663-3793
http://orcid.org/0000-0002-5513-9400
http://orcid.org/0000-0002-5513-9400
http://orcid.org/0000-0002-5513-9400
http://orcid.org/0000-0002-5513-9400
http://orcid.org/0000-0002-5513-9400
http://orcid.org/0000-0001-5318-3910
http://orcid.org/0000-0001-5318-3910
http://orcid.org/0000-0001-5318-3910
http://orcid.org/0000-0001-5318-3910
http://orcid.org/0000-0001-5318-3910
http://orcid.org/0000-0003-0376-2767
http://orcid.org/0000-0003-0376-2767
http://orcid.org/0000-0003-0376-2767
http://orcid.org/0000-0003-0376-2767
http://orcid.org/0000-0003-0376-2767
http://orcid.org/0000-0002-9012-2495
http://orcid.org/0000-0002-9012-2495
http://orcid.org/0000-0002-9012-2495
http://orcid.org/0000-0002-9012-2495
http://orcid.org/0000-0002-9012-2495
http://orcid.org/0000-0003-3717-3119
http://orcid.org/0000-0003-3717-3119
http://orcid.org/0000-0003-3717-3119
http://orcid.org/0000-0003-3717-3119
http://orcid.org/0000-0003-3717-3119
mailto:tdb35@cam.ac.uk
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Metal–organic frameworks (MOFs) are a class of hybrid
materials, composed of metal nodes and coordinating
organic linkers. The arrangement of these components

in highly regular motifs often leads to materials exhibiting ultra-
high surface areas1. Applications are therefore proposed which
utilise this porosity for reversible host–guest behaviour, for
example, in gas storage, catalysis and drug delivery2–6. Several
MOF-based products have been commercialised, such as for
delaying the over-ripening of fruit, and for harmful gas storage
(e.g., PH3) within the semiconductor industry7.

The main body of MOF research typically focuses on the dis-
covery of new materials and expanding the library of available
crystalline MOFs, which currently stands at over 70,0008.
Attempts have been made to develop existing MOFs and explore
new applications using known functionalities, and introducing
flexibility, defects and stimuli responsive behaviour9,10. Whilst
crystalline MOFs have shown exceptional properties, a number of
industrial practicability issues remain. One barrier is the inherent
difficulties in processing and shaping MOF microcrystalline
powders into mechanically robust macroscale morphologies11,12.
Conventionally, high pressure pelletisation or binders are used in
the shaping of MOF powders but these treatments have been
shown to significantly decrease material efficacy13.

The formation of composites by combining MOFs with more
processable materials such as polymers, not only engages with the
theme of new materials discovery, but also offers solutions to the
aforementioned problems in manufacturing robust bulk struc-
tures. These include core–shell structures, in which a MOF outer
layer is grown on an inner sphere of another material14,15.
Amongst these macroscale architectures, membranes and thin
films are particularly important given the requirements for con-
tinuous, defect free coverage and flexibility under pressure16.
Mixed matrix membranes (MMMs) are a prototypical case of
such materials17. Here, a crystalline MOF filler is typically dis-
persed in an organic polymer18. The disordered nature of the
polymeric organic component within MMMs provides both
structural stability and facilitates shaping. Significant penalties are
incurred however, including pore blocking by the matrix, aggre-
gation of the filler and poor adhesion between the two compo-
nents, which prevents high loading capacities19. Therefore, the
synthesis and characterisation of composite MOF materials
without these disadvantages is of great importance to bridge the
divide between advanced MOF material synthesis and practical
device fabrication.

Structural disorder is an emerging topic in the MOF field. In
particular, solid–liquid transitions upon heating in both the phos-
phonate coordination polymer and the zeolitic imidazolate frame-
work (ZIF) families are of interest20,21. The latter family contains
tetrahedral metal ions, linked by imidazolate (Im – C3H3N2

−)
derived bidentate ligands. Studies of the ZIF-zni [Zn(Im)2] structure
show that at ca. 550 °C, rapid dissociation-association of the imi-
dazolate linker around Zn2+ centres occurs, leading to formation of
a viscous liquid of identical chemical composition22.

The porous glasses formed upon quenching these high tem-
perature liquid ZIFs has been modelled by continuous random
network topologies, analogous to amorphous silica. Here, we
exploit the disordered MOF state as an analogue for the organic
matrix component of MOF–organic composites and create a class
of materials comprising crystalline MOFs embedded in a host
MOF–glass matrix. These composites, which we term MOF
crystal–glass composites (CGCs), might be expected to display
better interfacial binding between filler and matrix components
than their MMM counterparts, given their greater degree of
chemical compatibility. They may also, importantly, exhibit a
diverse array of mechanical and structural properties different to
those of either parent phase.

ZIF-62 [Zn(Im)1.75(bIm)0.25] (bIm= benzimidazolate, C7H5

N2
−) was selected as the MOF–glass matrix due to a relatively low

temperature of melting (Tm= 430 °C) and a large temperature
range over which the resultant liquid is stable before decom-
posing (at ca. 550 °C). The glass, here referred to as agZIF-62,
which is formed upon cooling the ZIF-62 liquid, is also extremely
stable against crystallisation, which is ascribed to the high visc-
osity of the liquid phase23.

The two key requirements for the crystalline component in
such a composite, are that the temperature of decomposition (Td)
should exceed the glass-forming matrix Tm, and that the chemical
(in)compatibility is such that no flux melting occurs24. The two
frameworks we chose, MIL-53(Al) [Al(OH)(O2C-C6H4-CO2)]
and UiO-66 [Zr6O4(OH)4(O2C-C6H4-CO2)6] both fulfil these
criteria25,26. MIL-53(Al) is an aluminium 1,4-benzenedicarbox-
ylate (BDC) based MOF (referred to as MIL-53 hereafter), with a
3D framework structure built with trans chains of corner-sharing
AlO4(OH)2 octahedra27,28. The as-synthesised (MIL-53-as)
structure contains unreacted H2BDC within the framework. The
removal of these guest molecules by thermal treatment leads to an
open-pore structure (MIL-53-lp)29. Physisorption of water by
MIL-53-lp causes a transition to a closed pore structure (MIL-53-
np), due to formation of framework-guest (water molecule)
interactions (Fig. 1a). UiO-66, on the other hand, consists of Zr-
centred secondary building units connected to (in a perfect
crystal) 12 BDC linkers. The crystal structure of UiO-66 is rigid
with high thermal and mechanical stability, due to the strong
Zr–O bonds and a close-packed structure30.

This paper describes the fabrication and characterisation of two
MOF crystal-glass composites (CGCs), comprised of MIL-53 and
UiO-66 dispersed in agZIF-62. A suitable preparation technique is
established, and the intra-domain structures and inter-domain
interface interactions of these materials are reported. An insight
into the composite microstructure is built up through combined
differential scanning calorimetry—thermogravimetric analysis
(DSC-TGA), in situ synchrotron powder X-ray diffraction
(XRD), 3D X-ray energy dispersive spectroscopy (EDS) tomo-
graphy, scanning electron diffraction (SED), X-ray total scattering
and pair distribution function (PDF) analysis and magic angle
spinning nuclear magnetic resonance (NMR) experiments. The
functional characteristics of the CGCs are subsequently explored
through measurement of their mechanical properties and analysis
of their gas adsorption behaviour.

Results
MOF CGC fabrication. Pure samples of ZIF-62, MIL-53 and
UiO-66 were synthesised (see Methods, Supplementary Fig. 1a–c)
and DSC-TGA experiments were carried out under an inert Ar
atmosphere to confirm the expected thermal behaviour (Supple-
mentary Fig. 2). The TGA trace of ZIF-62 was featureless between
the initial desolvation at ca. 250 °C and decomposition at ca.
550 °C. The simultaneous DSC measurement, however, showed
an endothermic response attributable to a solid–liquid transition
(melting) at 435 °C. The corresponding experiments for MIL-53
suggested a two-stage weight loss process during heating. These
are consistent with the removal of surface-adsorbed and encap-
sulated H2BDC within the large-breathing framework28. Sub-
sequent DSC traces of MIL-53 samples heated to 450 °C and
cooled back to room temperature, were featureless. For the pure
UiO-66 sample, features ascribed to desolvation below 200 °C,
dehydroxlyation of the inorganic cluster at 300 °C and thermal
degradation at ~460 °C were observed, in accordance with pub-
lished literature results30.

A fabrication process for the MOF CGC was developed
(Fig. 1b). ZIF-62 and MIL-53 (or UiO-66) were ball-milled
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together (30 Hz, 5 min) to homogenise the mixture (Supplemen-
tary Fig. 3). No significant change in crystalline structure was
observed (Supplementary Fig. 1d, e). Framework activation was
not performed prior to ball-milling, as the presence of solvent
within MOFs has been observed to stabilise against shear-induced
collapse31.

The mixtures of MIL-53 and ZIF-62 after ball milling are
referred to as (MIL-53)(ZIF-62)(X/Y), where X and Y are
percentage by mass of each component. For example, a 25 wt%
sample of crystalline MIL-53 and 75 wt% crystalline ZIF-62
sample is referred to as (MIL-53)(ZIF-62)(25/75). A series of
(MIL-53)(ZIF-62)(X/Y) samples were then heated in flowing Ar
to 450 °C, i.e., above the melting temperature of ZIF-62, but
below that of the thermal decomposition temperature of MIL-53.
The samples were held at 450 °C for 10 min and then cooled back
to room temperature under Ar protection, over a period of
approximately 90 min. In keeping with prior terminology on
blended ZIFs, the resultant CGCs obtained upon cooling are
referred to as (MIL-53)X(agZIF-62)Y32.

The first TGA trace of (MIL-53)(ZIF-62)(25/75) had a two-
stage weight loss, consistent with the desorption of H2BDC from
MIL-53 (Fig. 1c). The accompanying DSC indicated a broad
endotherm at the expected melting temperature of ZIF-62
(Supplementary Figs. 2 and 4), which is expected given the
overlapping proximity in temperature ranges of both ZIF-62
melting and MIL-53 desorption phenomena. DSC-TGA heating
experiments of the formed (MIL-53)0.25(agZIF-62)0.75 CGC
demonstrated a glass transition, Tg, of ~310 °C (Fig. 1c) and the

melted samples, when cooled under Ar protection, appeared
glassy with significant morphological changes due to vitrification.
Optically transparent glasses could be obtained by clamping the
crystalline powder mix between two glass sides during heating
(Supplementary Fig. 5). Scanning electron microscopy (SEM)
performed on (MIL-53)0.25(agZIF-62)0.75 (Fig. 1d) suggested good
interfacial compatibility for the two different phases within the
composite glass. Coherent and continuous composite morphol-
ogies were also obtained at higher MIL-53 loadings (Supplemen-
tary Fig. 6), up to 75 wt%. Ambient temperature powder XRD
data from the CGCs showed that the Bragg scattering from the
MIL-53-lp phase was preserved in all cases. This was also true for
a sample of (MIL-53)0.25(agZIF-62)0.75 that was heat treated at
450 °C for 3 h (Supplementary Fig. 7).

An identical methodology was used in attempts to fabricate an
equivalent MOF CGC using UiO-66. Broadened melting peaks
from ZIF-62 were observed in the TGA-DSC (Supplementary
Fig. 8), which we ascribe to the simultaneous onset of UiO-66
decomposition. For the second upscan, the glass transition
temperature (Tg) of ZIF-62 overlapped with the dehydroxlyation
of the UiO-66 inorganic cluster in the same temperature region,
obfuscating exact Tg determination. Bragg diffraction from the
UiO-66 component within the recovered composite product was
observed after isothermal treatment of the sample for 10 min at
450 °C. No Bragg diffraction was, however, observed in recovered
samples held for 3 h at 450 °C, due to the gradual decomposition
of the crystal phase (Supplementary Fig. 9). SEM imaging of the
samples with different UiO-66 loadings, held for 10 min at
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450 °C, demonstrated the formation of macroporous CGC
structures upon heating. We attribute this to partial decomposi-
tion (Supplementary Fig. 10), though the nature of this lies
outside of the scope of the current publication.

Component integrity and distribution. The melting and struc-
tural collapse of ZIF-62 was further investigated by in situ syn-
chrotron variable temperature powder diffraction. Bragg
diffraction from ZIF-62 became weaker after the removal of ZIF-
62 solvent, and disappeared completely above the Tm of 435 °C.
The emergence of diffuse scattering at q ~0.9–1.2 Å−1 at this
temperature indicated melting, consistent with prior literature
(Supplementary Fig. 11a, b)32.

Identical experiments were performed on (MIL-53)(ZIF-62)
(25/75) and (UiO-66)(ZIF-62)(25/75). As in the experiment
performed on pure ZIF-62, Bragg diffraction from ZIF-62
ceased at 435 °C (Fig. 2a and Supplementary Fig. 11c–f). For
the (MIL-53)(ZIF-62)(25/75) sample, although an abrupt change
at ca. 160 °C is observed in the diffraction patterns, indicating
a transition between the initial MIL-53-as and the final MIL-53-
lp phase, both phases coexist for a further ca. 260 °C. For
example, above ca. 160 °C, the MIL-53-lp (011) Bragg peak at
0.62–0.65 Å−1 grows in intensity, accompanied by a reduction in
intensity of the MIL-53-as (101) Bragg peak at 0.61–0.62 Å−133.

Peaks from both phases remain until 420 °C, when only Bragg
peaks arising from MIL-53-lp are observed. We ascribe this broad
transition to the constant heating rate used and the need to
perform the experiment in a sealed capillary under Ar.

Unit cell parameters for the MIL-53 and ZIF-62 components
were refined by fitting each diffraction pattern in Supplementary
Fig. 11 using Pawley fitting across the temperature range
(Supplementary Fig. 12, Supplementary Table 1). A large increase
in cell volume for MIL-53-lp was noted above 350 °C, i.e., above
the temperature at which H2BDC is desorbed from the pores. The
area of the rhombic pores was also calculated, using the distances
between the four Al ions surrounding this opening (Supplemen-
tary Fig. 12e) which are uniquely determined by the unit cell
parameters. Importantly, the high temperature cell parameters
(and hence pore opening area) are broadly unchanged upon
cooling the sample to room temperature, and confirm that the
MIL-53-lp phase pores do not close upon cooling and atmo-
spheric water sorption. Meanwhile, during the thermal treatment
process the glass-forming phase (ZIF-62) in (MIL-53/ZIF-62)(25/
75) behaves similarly to that of pure ZIF-62 (Supplementary
Fig. 12f, Supplementary Table 1).

Electron microscopy was used to investigate the crystal–glass
microstructure in both (MIL-53)0.25(agZIF-62)0.75 and (UiO-
66)0.25(agZIF-62)0.75 CGCs. STEM electron energy loss spectro-
scopy (STEM-EELS) measurements demonstrated characteristic
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signatures corroborating the co-location of carboxylate and
imidazolate ligands in the respective MIL-53 (or UiO-66) and
ZIF-62 glass domains (Supplementary Figs. 13 and 14)34. STEM-
EDS was also used to map the elemental distribution of the metal
centres, demonstrating a mixture of the two separated phases
in the (MIL-53)0.25(agZIF-62)0.75 CGC. Experiments on a (UiO-
66)0.25(agZIF-62)0.75 CGC also revealed two separated phases at
the nanoscale level (Supplementary Figs. 15 and 16).

Two-dimensional STEM-EDS mapping indicated near-
homogeneous mixing of the two phases, though the distribution
in three-dimensional space remained unknown. STEM-EDS
tomography was used to reconstruct a complete shard of (MIL-
53)0.25(agZIF-62)0.75 CGC (Fig. 2b and Supplementary Fig. 17).
This revealed MIL-53 particles of between 30 and 300 nm in size,
evenly embedded within the ZIF-62 glass substrate. The degree of
surface-facing MIL-53 phase in the reconstructed particles may
indicate increased preference for fracturing at MIL-53/ZIF-62
interfaces (Supplementary Fig. 17). Similar results were also
obtained with the (UiO-66)0.25(agZIF-62)0.75 CGC (Supplemen-
tary Fig. 18).

SED has recently emerged as an effective way to obtain
nanoscale structural insight from beam sensitive materials35.
Here, the number of Bragg diffraction discs found in the
diffraction pattern recorded at each probe position was plotted
to reveal the location of crystalline phases, as shown in Fig. 2c and
Supplementary Fig. 19. These crystallinity maps demonstrated
close contact between crystalline and non-crystalline regions
within the composites. Comparison with compositional maps
obtained via STEM-EDS mapping of the same particles, showing
the distribution of the metal centres, confirm that the crystalline
regions correspond to the metal-centres expected for the MIL-53
and UiO-66 crystals in each CGC material.

Synchrotron X-ray total scattering measurements were also
performed ex-situ on both crystalline mixtures and CGC samples
(Supplementary Fig. 20). Both crystalline mixtures studied
contained extensive Bragg diffraction in their structure factors,
which reduced upon crystal-glass formation. The X-ray PDFs,
D(r), were extracted after appropriate data corrections (Fig. 3a
and Supplementary Fig. 21)36. The PDFs of (MIL-53)(ZIF-62)
(25/75) and (MIL-53)0.25(agZIF-62)0.75 CGC were very similar
below 7.5 Å, i.e., in their short range order. The similarity in
short-range Al and Zn correlations, between both crystalline
mixtures and CGC confirms the structural integrity of each
component. As expected, the PDFs of the composite retain the
longer-range oscillations due to Al-Al correlations in MIL-53
exceeding 8 Å. However, the majority of the long-range
interatomic correlations broaden and weaken after melting and
vitrification of ZIF-62, which is the dominant-scattering compo-
nent of the CGC. The contribution to the X-ray scattering from
UiO-66 is greater than that of MIL-53 in their respective CGCs
with ZIF-62 because of the heavier Zr atoms in UiO-66 and hence
changes to the correlations from UiO-66 are more clearly seen in
the PDF. We observe that the PDF of (UiO-66)0.25(agZIF-62)0.75
CGC contains weaker features above 6.4 Å compared to the
PDF from (UiO-66)(ZIF-62)(25/75), which is broadly consistent
with a partial structural degradation of the UiO-66 component.

To confirm the STEM observationsof a homogeneous dis-
tribution of MIL-53 particles within the agZIF-62 matrix, 1H and
13C magic angle spinning (MAS) solid state NMR spectroscopic
measurements were performed on the (MIL-53)(ZIF-62)(25/75)
crystal mixture and (MIL-53)0.25(agZIF-62)0.75 CGC (Supplemen-
tary Fig. 22). Peaks assigned to the bIm and Im linkers in ZIF-62,
as well as the peaks of the BDC linker in MIL-53, are broadly
similar for both samples. Peaks belonging to the hydrated form of
MIL-53 (MIL-53-np) were not observed in the NMR spectrum of
(MIL-53)0.25(agZIF-62)0.75 CGC, suggesting only the dehydrated

open pore form of MIL-53 (MIL-53-lp) is present within the
MOF CGC28,37.

In previous work38, we have used spin-diffusion NMR
spectroscopy in order to investigate the distribution of organic
components within mixed-linker MOF systems. This technique
makes use of the differential rates of proton polarisation transfer
between species on the same, or separate, organic linkers
(Supplementary Fig. 23). Analysis of two series of spin-
diffusion NMR spectra of (MIL-53)(ZIF-62)(25/75) crystal
mixture and (MIL-53)0.25(agZIF-62)0.75 CGC (Fig. 3b, c) shows
a significant difference between the two samples (Fig. 3b). Within
the figure, blue lines represent the slices through the spectra
measured at spin-diffusion mixing time of 1 ms, red lines
correspond to mixing time of 1000 ms, and grey lines correspond
to mixing times of 2, 5, 10, 20, 50, 100, 200 and 500 ms. In both
samples, a peak at about 8 ppm is due to protons on BDC linkers,
and a peak at close to 3 ppm is due to protons of the bridging OH
groups of the inorganic chains of MIL-53. The proton peak of
ZIF-62 appears at 6.8 ppm. Whereas in the crystal mixture no
proton polarisation transfer between MIL-53 and ZIF-62 is
detected, transfer of polarisation between the OH protons of
MIL-53 and the imidazolate-based protons of agZIF-62 is
observed in the CGC. The fast polarisation transfer (steep curve)
for short mixing times is indicative of the close contacts between
MIL-53 and ZIF-62 domains in the CGC (Fig. 3c). The fact that
the curve shown does not reach a plateau, and is in fact still rising
at mixing times as long as 1 s, suggests that the OH groups in
MIL-53 crystals and imidazolate linkers in agZIF-62, are present
within distinct domains. If they were present within the same
framework, the polarisation–transfer curve would resemble the
one that describes transfer between the OH groups and BDC
linkers of MIL-53, which reaches a plateau at about 200 ms
(Fig. 3c).

Results of NMR measurements were less informative for the
UiO-66 derived samples. 1H and 13C MAS NMR spectra
detected some changes induced by melting (Supplementary
Fig. 24): in the proton spectrum the OH peak at 0.3 ppm
disappeared, and in both the proton and the carbon spectra,
the BDC peaks became considerably broader, confirming the
partial degradation of UiO-66 in contact with the ZIF-62 liquid.
13C-detected proton-spin-diffusion NMR experiments on both
UiO-66 derived samples did not indicate close proximity of
BDC and imidazolate linkers.

Density and mechanical properties. One benefit of the CGC is
their processability, which will enable the material to be shaped
for different applications. The density and mechanical properties
can provide important information on whether these materials
will withstand industrial conditions11. The densities of the crys-
talline mixtures, and of the CGC samples, were measured with
gas pycnometry. The densities of the CGCs were all higher than
the corresponding initial crystal powder mixtures, e.g., from 1.62
± 0.03 to 1.78 ± 0.08 g/cm3 for (MIL-53)(ZIF-62)(25/75) crystal
and (MIL-53)0.25(agZIF-62)0.75 CGC, respectively (Supplementary
Fig. 25). The mechanical properties of the composite glass sam-
ples were probed by nanoindentation on polished surfaces
(Supplementary Figs. 26 and 27). The Young’s modulus (E)
increased for both (MIL-53)0.25(agZIF-62)0.75 (E ≈ 7.7 GPa) and
(UiO-66)0.25(agZIF-62)0.75 (E ≈ 7.9 GPa) compared with the
pure agZIF-62 counterpart (E ≈ 5.8 GPa), which correlates well
with their densities, as well as the larger (obtained through
quantum chemistry calculations) elastic moduli of both MIL-53
(E= 25 GPa) and UiO-66(Zr) (E= 49 GPa)39,40. This observa-
tion suggests the composite glass has improved mechanical
rigidity against irreversible plastic deformation.
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Stabilisation of open pore MIL-53 and CGC porosity. The close
interaction observed between MIL-53 crystallites and the ZIF-62
glass matrix in (MIL-53)0.25(agZIF-62)0.75 CGC led us to probe
the effect of encapsulation upon stabilisation of MIL-53-lp
structure. The XRD pattern of (MIL-53)0.25(agZIF-62)0.75 CGC
indicated that only the open-pore MIL-53-lp was present, i.e., that
rehydration and transition to close-pore MIL-53-np, does not
occur, even after 1-year storage at ambient conditions (Fig. 4a).
This confirms that the formation of the open pore structure of
MIL-53 within the CGC is not accompanied by hysteresis33. This
is not the case for pure samples of MIL-53(Al)-lp, which rever-
sibly adsorb water molecules at room temperature and undergo
pore shrinkage to the closed pore phase (MIL-53-np) within an
hour28.

The fact that the MIL-53-lp to MIL-53-np transition does not
occur, even when exposed to air at ambient conditions, provides a
distinct advantage for the use of MOF CGCs. The effect was
previously predicted, both from analytical mechanics and
numerical finite-element methods41,42, but has not, thus far,
been experimentally observed. If a composite is formed that
includes a soft porous framework, such as the breathing MIL-53,
and a compatible polymeric phase featuring normal mechanical
properties with no possibility for guest-induced structural
transitions (here represented by agZIF-62), the resulting beha-
viour of the composite will be dominated by the polymeric phase
and the capacity for breathing of the MIL-53 crystals embedded
in it will be lost.

A range of gas adsorption isotherm experiments were
performed on the MIL-53 CGC samples to determine the effect
of encapsulation on gas adsorption behaviours. agZIF-62 has been
previously demonstrated to possess accessible, permanent
porosity toward both H2 and CO2

43, with uptake capacities of
0.40 mmol H2/g at 77 K and 0.90 mmol CO2/g at 273 K,
respectively. Measurements were repeated here, and, as expected,
the ZIF-62 glass is porous to small gas molecules (with H2 of 2.9
Å kinetic diameter uptake of 0.62 mmol/g at 1 bar and 77 K,
Fig. 4b). The incorporation of crystalline MIL-53 improves the H2

uptake of agZIF-62 to ca. 1.9 mmol/g at 1 bar. This can be
attributed to the high measured gas adsorption capacity of pure
MIL-53 (open pore structure) at 3.55 mmol/g, which aligns with
the reported values44,45. In comparison, N2 adsorption isotherms
at 77 K of the agZIF-62 and the MOF–crystal composite glass
show very little adsorption relative to that of crystalline MIL-53,
as the analyte gas appears too large (3.6 Å kinetic diameter) to
penetrate through the agZIF-62 network (Fig. 4c). This is in
accordance with previous literature on agZIF-6243. Ar (3.4 Å
kinetic diameter) adsorption experiments were carried out at 87
K, (Supplementary Fig. 28), and demonstrate similar inaccessi-
bility of the glass component to large analyte molecules. Though
the low adsorption severely limits precision, pore size distribu-
tions gained from Ar isotherms on (MIL-53)(ZIF-62)(25/75) and
(MIL-53)0.25(agZIF-62)0.75 CGC demonstrate pores at 5–6 Å for
both crystalline mixture and CGC (Supplementary Fig. 29), in
addition to one at ca 11 Å for the CGC.
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Using an analyte gas with a slightly smaller critical diameter,
CO2 (3.3 Å kinetic diameter), we find that the gas adsorption
capacity of (MIL-53)0.25(agZIF-62)0.75 CGC approaches the
capacity of a sample of pure MIL-53 at the same condition
(273 K, 1 bar, Supplementary Fig. 30). High-pressure CO2

adsorption experiments were performed on both (MIL-53)(ZIF-
62)(25/75) and (MIL-53)0.25(agZIF-62)0.75. The CGC demon-
strated an improvement of ca. 30% in CO2 adsorptive capacity at
303 K and 50 bar (Fig. 4d). This phenomenon can be explained by
considering the breathing behaviour of MIL-53. Below pressures
of 3 bar, the adsorption of CO2 results in weak dipolar or
quadrupolar host–guest interactions. This interaction causes the
unit cell to contract to a narrow pore structure with a relatively
low adsorption capacity of ca. 2.5 mmol/g46. At higher pressures
above 10 bar, the pores of the framework are re-opened,
increasing the CO2 adsorption capacity to 8–9 mmol/g47. In
comparison, the stabilisation of open-pore MIL-53 within the
composite glass readily allows a high CO2 adsorption quantity
even at low pressure conditions (up to 1 bar)—although the
narrow pore phase has higher affinity for CO2, as can be seen
in the very low pressure region (<100 m bar). Based on the
composition of the CGC, the estimated CO2 adsorption is 2.71
mmol/g, which is lower than the experimental results. This
suggests that the excess CO2 uptake observed here may be
partially ascribed to a small amount of mesopores within CGC,
arising from the interface between crystal and glass components
(Supplementary Fig. 31). CO2 isotherms measured on the CGC
samples at 273 K were accompanied with hysteresis for the
desorption cycles, which has also been observed previously in
pure agZIF-62 samples43.

Water adsorption experiments were also performed on both
(MIL-53)(ZIF-62)(25/75) and (MIL-53)0.25(agZIF-62)0.75 CGC

(Supplementary Fig. 32). An abrupt uptake at 60% relative
humidity is noted for both samples during the first cycle, whilst
subsequent cycles showed a better cyclability and higher amount
adsorbed for the (MIL-53)0.25(agZIF-62)0.75. The uptake of H2O
here implies that the stabilisation of MIL-53-lp does not arise
because it is excluded from entering the composite CGC material.
Instead, we suggest that the polymeric phase is not soft enough
to accommodate a large-scale change of the crystal phase
structure, while the interfacial contact between the two phases
is maintained.

Discussion
Composite formation has been used to exert control over the
chemical functionality and physical properties of materials such
as molecular crystals48. Here, this approach has been adapted to
metal–organic frameworks. We believe this to be a prototypical
example of a MOF-CGC, here formed by embedding a MIL-53
within a MOF–glass matrix. The structural integrity of both the
crystalline and glass components of the materials has been
demonstrated for samples both before and after vitrification. In
this material, two separated phases are in close proximity and well
mixed at a nanoscale. The glass matrix stabilises the phase
transition of flexible MIL-53, maintaining its open pore structure
at ambient conditions, which leads to significant improvement of
gas adsorption at room temperature. We, therefore, hypothesise
that a glass matrix support may hinder temperature-dependent
structural rearrangements in other MOFs. In addition, this family
of composite materials may also facilitate the assembly of discrete
MOF crystal particles into thermally and mechanically stable
devices with various shapes, such as adsorption column or
molecular separation membranes.
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Methods
Synthesis. ZIF-62: Zinc nitrate hexahydrate (1.65 g, 5.54 × 10−3 mol) and imida-
zole (8.91 g, 0.13 mol) were added to a 200 mL screw top jar, dissolved in N,N-
dimethylformamide (DMF, 75 mL) and stirred for 1 h. Once complete dissolution
was achieved, benzimidazole (1.55 g, 1.31 × 10−2 mol) was added and heated to
130 °C for 48 h. The product was allowed to cool to room temperature and crystals
were separated by vacuum assisted filtration and washed with DMF (60 mL) and
dichloromethane (DCM) (40 mL) before being dried in a vacuum oven at 150 °C
for 24 h23.

MIL-53: Aluminium nitrate nonahydrate (26.00 g, 6.93 × 10−2 mol) and
terephthalic acid (5.76 g, 4.96 × 10−2 mol) were dissolved in water (100 ml) and
placed into a Teflon-lined autoclave and placed in an oven at 220 °C for 72 h.
The resulting powder was washed with deionised water (3 × 30 ml) and dried in
a vacuum oven at 150 °C for 24 h28.

UiO-66: Zirconium(IV) chloride (0.59 g, 2.53 × 10−3 mol) and terephthalic acid
(0.63 g, 3.79 × 10−3 mol) were dissolved in DMF (75 ml) with hydrochloric acid
(37 wt%, 0.37 ml) and glacial acetic acid (99.99%, 0.75 ml) and placed into a
Teflon-lined autoclave. The mixture was then placed in an oven at 120 °C for 96 h.
The product was allowed to cool to room temperature and crystals were separated
by vacuum assisted filtration and washed with DMF (60 mL) and DCM (40 mL)
before being dried in a vacuum oven at 150 °C for 24 h30.

Fabrication of composite crystal–glass. A series of CGCs with different con-
centrations of MIL-53 or UiO-66 were prepared. Different compositions were
made and the resultant mixtures are referred to as (Crystal)(Glass–former)(X/Y),
where X and Y are percentage by mass of each component. For example, a 25 wt%
sample of crystalline MIL-53 and 75 wt% crystalline ZIF-62 sample is referred to
as (MIL-53)(ZIF-62)(25/75).

The separate crystalline components were mixed by ball milling at 30 Hz for
5 min with a 7 mm stainless steel ball. The short milling time was applied to avoid
crystal amorphisation caused by the mechanical stress. Subsequently, the crystal
mixtures were placed in a tube furnace for thermal treatment with a ramping
rate of 10 °C min−1 under argon (Ar) protection. The sample was held at 450 °C
for 10 min and then cooled back to room temperature under Ar protection. The
CGCs are referred to as (Crystal)X(agGlass–matrix)Y, in line with our previous
publication32. Pure phase crystals were also subjected to the same ball milling and
thermal treatment as a benchmark32.

Powder XRD analysis. Room temperature powder XRD analysis (2θ= 5°–40°)
were collected with a Bruker-AXS D8 diffractometer using Cu Kα (λ= 1.540598 Å)
radiation and a LynxEye position-sensitive detector in Bragg–Brentano parafo-
cusing geometry. The 2θ step size was 0.02°, with 10 s per step.

Thermogravimetric and calorimetric analysis. Thermogravimetric analysis
(TGA) and DSC analysis were conducted using a TA instrument STD Q600. The
MOF powder samples were placed in a ceramic crucible situated on a sample
holder, and then heated at 10 °Cmin−1 to above the melting temperature of ZIF-62
under an Ar environment. For the two-cycles of TGA/DSC upscan, after the first
upscan the sample was cooled back to 30 °C at 10 °C min−1 under an Ar envir-
onment, and then ramped up to the targeted temperature at the rate of
10 °C min−1 for the second upscan.

Scanning electron microscopy. The surface morphologies of the crystal mixture
and composite glass samples were investigated using a high-resolution scanning
electron microscope, FEI Nova Nano SEM 450, under the backscattering mode. All
samples were dried at 30 °C followed by chromium coating prior to imaging.

In situ synchrotron powder diffraction. In situ synchrotron data were collected
at the SAXS beamline of the Australian Synchrotron facility. Dried crystal
powder samples were loaded into 1.0 mm quartz capillaries under Ar protection
in a glove box. The in situ synchrotron powder diffraction was investigated with
SAXS beamline at 16 keV, 2675 mm camera length using a Pilatus 1M detector
in transmission mode. For each analysis, a line scan of 3 mm at 0.3 mm s−1 was
conducted. The background of the empty capillary was subtracted. The data were
processed using in-house developed Scatterbrain software for averaging and
background subtraction.

Scanning transmission electron microscopy. STEM EDS, EELS and tomography
were performed using an FEI Osiris microscope (Thermo Fisher Scientific)
equipped with a high-brightness X-FEG electron source and operated at 80 kV.
The beam convergence semi-angle was set to 11.0 mrad. For EELS, the collection
semi-angle was estimated as 40.8 mrad. EDS was acquired using a Super-X EDS
detector system with four detectors mounted symmetrically about the optic axis
of the microscope. For STEM-EDS tomography, EDS spectrum images were
acquired over a tilt-series from −65° to 75° in 10° increments using a Fischione
tomography holder, with a probe current estimated at <450 pA. Pixel dwell times
were increased at high tilt due to the large number of copper counts at increasing
tilt-angle.

Data were processed using Hyperspy49, an open-source software coded in
Python. Maps of each X-ray emission line of interest (Zr Lα, Al Kα, Zn Kα) were
first extracted by integrating in an energy window, background subtracted by linear
interpolation from adjacent regions of the spectrum without other X-ray peaks
present. Map intensities were then re-normalised such that the total intensity of
each element was constant throughout the tilt-series, a valid assumption for
particles where the mass of the element in the field of view is constant throughout
the tilt-series. The re-normalised maps were then aligned by centre-of-mass, and
the tilt-axis was adjusted using Scikit-Image, an open source image processing
software coded in Python, by applying shifts and rotations to minimise artefacts in
back-projection reconstructions. A compressed sensing reconstruction algorithm
coded in MATLAB (Mathworks) was used to perform independent reconstructions
of the metal-centre spatial distributions. This compressed sensing tomography
implementation used three-dimensional total generalised variation50 regularisation
in conjunction with a real-space projector from the Astra toolbox51 and using
the primal-dual hybrid gradient method52 to solve the reconstruction problem.
Reconstructions were visualised in Avizo (Thermo Fisher Scientific) software
without any further image processing. Visualisations are presented as volume
renderings where each volume element is assigned a colour and relative solid
appearance based on the intensity at the corresponding volume elements of the
reconstruction. Visualisations for each independent element reconstruction were
superimposed in the final visualisations and a selection of cuts through the volume
were used to examine sub-surface features.

SED involves the acquisition of a two-dimensional electron diffraction pattern
at every position as a narrow electron probe is scanned across the specimen. When
the electron probe is positioned on a crystalline region of material, strong
diffraction to Bragg reflections will typically be observed, whereas when the
electron probe is positioned on non-crystalline material no sharp Bragg reflections
will be measured. Determining probe positions at which sharp diffraction peaks
are recorded therefore provides a way to directly observe crystalline and non-
crystalline regions. This was achieved by finding diffraction peaks in every
measured diffraction pattern using a difference of Gaussians method, which
involves subtracting a blurred version of the diffraction pattern from a less blurred
version of the diffraction pattern, as implemented in the pyXem library.

SED was performed using a JEOL ARM300F at the Diamond Light Source,
UK fitted with a high-resolution pole piece, cold field emitter, and JEOL spherical
aberration correctors in both the probe forming and image forming optics. The
instrument was operated at 200 kV and aligned in a nanobeam configuration
using the corrector transfer lenses and a 10 µm condenser aperture to obtain a
convergence semi-angle of ~1.6 mrad and a diffraction limited probe diameter
~1.6 nm. Data were acquired with a scan step size of ~4 nm and a camera length
of 15 cm. The probe current was ~14 pA. A Merlin-medipix direct electron
detector53,54, which is a counting type detector, was used to record the electron
diffraction pattern at each probe position with an exposure time of 0.5 ms per
probe position leading to a total electron fluence of ~200 eÅ−1 based on the probe
current, exposure time, and assuming a disk-like probe of the diameter above.
SED was acquired over a raster pattern comprising 256 × 256 probe positions
and each diffraction pattern comprised 256 × 256 pixels. X-ray EDS maps were
acquired from the same regions, following SED acquisition, using a larger probe
current, obtained using a 150 μm condenser aperture, in order to generate
sufficient X-ray counts.

X-ray total scattering and PDF. XRD data were collected on the I15-1 beamline
at the Diamond Light Source, UK using an X-ray wavelength λ= 0.161669 Å
(76.7 keV). Crystal mixture and CGC samples were loaded into borosilicate glass
capillaries of 1.5 mm (outer) diameter. Data from the samples, empty instrument
and empty capillary were collected in the region of ~0.4 <Q < ~ 26 Å−1. Correc-
tions for background, multiple scattering, container scattering, Compton scattering
and absorption were performed using the GudrunX programme55.

Solid-state NMR. The solid-state NMR experiments were performed on a
600MHz Varian NMR system equipped with a 1.6 mm HXY MAS probe. All
samples were spun at MAS rate of 40 kHz. Larmor frequencies for 1H and 13C were
599.47 and 150.74 MHz, respectively. The frequency axes of the recorded spectra
were calibrated against the resonance frequencies of tetramethylsilane. 1H MAS
NMR spectra were collected using Hahn-echo pulse sequence with the 90° pulse
width of 1.5 μs and echo delay of a single rotation period. Sixteen scans were
accumulated with the repetition delay of 5 s. 1H-13C cross-polarisation (CP) MAS
NMR spectra were recorded by first exciting protons and transferring polarisation
to carbon nuclei using the amplitude-ramped CP block with a duration of 4 ms.
During the acquisition, a high-power two-pulse phase-modulated heteronuclear
decoupling was applied56,57. 2D 1H-1H double-quantum single-quantum (DQ-SQ)
homonuclear-correlation NMR spectrum was obtained by employing the back-to-
back recoupling sequence (BABA)58. One BABA cycle was used for double-
quantum coherence excitation and one for reconversion. A delay of 25 µs was
added prior to the 90° read-out pulse of 1.65 µs. The spectral width in the indirect
dimension was 40 kHz and 150 slices were accumulated along indirect dimension
with 32 transients each. 1H-detected 2D proton spin-diffusion (PSD) spectra were
measured for spin-diffusion mixing times ranging between 1 and 1000ms. Each
measurement consisted of 160 increments along t1 with 128 scans per increment
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and repetition delay of 0.5 s. To suppress broad peaks in the direct dimension, T2
filter was added at the end of the PSD pulse sequence. Delays before and after the
180°-pulse both lasted 2 ms. 13C-detected 2D PSD spectra were measured for spin-
diffusion mixing times of 0 and 10 ms. Prior to the 13C acquisition, the polarisation
was transferred between protons and carbons by utilising 1 ms CP block59. In this
experiment, 10 increments were taken with 4096 transients each and repetition
delay of 0.5 s.

Gas pycnometry (density) and gas adsorption. Pycnometric measurements were
conducted with a Micromeritics Accupyc 1340 helium pycnometer. The typical
mass used for each test was around 100 mg, and the reported value was the mean
and standard deviation from a cycle of 10 measurements. N2 and CO2 (at 273 K)
gas adsorption isotherm measurements were conducted on a Micromeritics ASAP
2020 instrument. Around 50 mg sample was used for each measurement. All
samples were degassed at 200 °C overnight prior to the adsorption/desorption test.

The argon physisorption experiments were carried out at 87 K on a BEL max
apparatus (Microtrac BEL) coupled with a helium cryostat. After weighing (approx.
100 mg), the samples were outgassed to 200 °C for 10 h prior to temperature
equilibration for the experiments at 87 K. A stepwise introduction of gas (argon
purity 99.9999%) was employed. Helium was used for dead space calibration after
the argon adsorption measurement. The micropore size distribution was calculated
using the Horwath-Kawazoe method via the Saito-Foley approach.

High pressure CO2 adsorption at 303 K was carried out on a Rubotherm
electromagnetic balance set-up (Rubotherm gmbh). After weighing (approx.
200 mg), the samples were outgassed to 200 °C for 16 h prior to temperature
equilibration for the experiments at 303 K. A stepwise introduction of gas (CO2

purity 99.998%) was employed. Helium was used for dead space calibration prior
to the CO2 adsorption measurements.

Water adsorption was carried out on a Hiden balance set-up (Hiden) at 298 K.
After weighing (approx. 30 mg), the samples were outgassed to 200 °C for 16 h
prior to equilibration at the set temperature of the experiments at 298 K. A carrier
gas of nitrogen was used in which the water relative humidity was controlled
between 2 and 98% in stepwise increments.

Nanoindentation measurement. The elastic modulus (E) of the composite glass
samples was measured using an MTS Nanoindenter XP at ambient conditions. All
samples were mounted in an epoxy resin and polished using increasingly fine
diamond suspension liquids. Nanoindentation experiments were conducted under
the dynamic displacement controlled mode at a constant strain rate of 0.05 s−1. A
three-sided pyramidal (Berkovich) diamond indenter tip was applied with the
testing penetration depth of 500 nm. The load-displacement data collected were
analysed using the Oliver and Pharr method60. A Poisson’s ratio of 0.4 was applied.

Data availability
All data generated in this study are included in this Article and the Supplementary
Information, and are also available from the corresponding authors upon request.

Code availability
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