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Abstract 13 

Diatom teratologies have intrigued scientists since the XIXth century, with respect to their 14 

causes and origins. These deformities, mainly observed in long-term cultures or under high 15 

levels of pollution, were poorly considered, until they were recently found to be potential 16 

indicators of toxic impairment of freshwaters. However, very little is known about their 17 

ecology. 18 

In this study, the growth and fitness of morphologically distinct descendants of the same cell 19 

line of Gomphonema gracile (teratological vs. non teratological forms) were compared over a 20 

typical growth cycle. Contrary to expectations, teratological populations grew slightly faster, 21 

at a rate of 0.47 ± 0.03 divisions.day-1, versus 0.41 ± 0.04 for the normal morphotype. They 22 

had similar physiological performances as non-teratological forms. They did not differ in their 23 

movement velocities, but the trajectory of teratological forms was more linear, likely as a 24 

consequence of their elongated outline. Under the same culture conditions, no competitive 25 

exclusion of one phenotype over the other was demonstrated on the time scale of an 26 

exponential growth cycle (9 days). Moreover, the deformities were faithfully reproduced over 27 

time, and no evidence of decreased viability in teratological forms was provided.  28 

These new insights call into question the common hypothesis that deformed diatoms are 29 

altered individuals produced by unfavorable conditions and thus highlight ecosystem 30 

dysfunction. They call for further investigations of their ecology. 31 
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 Teratological diatoms were able to survive and reproduce. 40 

 Teratology was faithfully passed on with cell division over 9 days. 41 

  Deformed individuals performed similarly to normal ones. 42 

 43 

 44 

1. Introduction 45 

Diatoms are unicellular brown microalgae with an important ecological role in the functioning 46 

of freshwaters (Morin et al., 2016). Diatom species identification is based on the 47 

morphological features of their siliceous cell wall, the frustule: valve shape and symmetry, 48 

cell dimensions, length:width ratio, specific ornamentations (presence and number of raphes, 49 

orientation and density of striae, etc.). Practically, diatom identification assumes that the 50 

features of the frustule are constant for a given species. A range of length and width 51 

variability exists, as the result of the natural morphological variation in diatoms occurring over 52 

their life cycle, consequence of their peculiar reproduction cycle (Mann, 2011).  53 

Besides morphological variations associated with development, polymorphism can also 54 

result from environmental stress (phenotypic variation) or natural genetic variability 55 

(Håkansson and Chepurnov, 1999). Notably, Rose & Cox (2014) documented morphological 56 

changes over the life cycle in clones of Gomphonema parvulum, complicating the definition 57 

of clear species boundaries. Continued culturing resulted in cell size reduction and changes 58 

in morphology, potentially leading to the identification of 3 different species. Polymorphism 59 

can be an adaptive response of diatom species to a shift in environmental conditions and can 60 

result from changing selective pressures (Kociolek and Stoermer, 2010). Trobajo (2007) also 61 

detected changes in the morphology of Nitzschia frustulum stemming from environmental 62 

variations; diatoms were significantly more elongate under increasing salinities and nitrogen 63 

concentrations. Frustule deformities or teratologies (abnormal outline or ornamentations) are 64 

beyond normal phenotypic variations. They can be induced during valve formation, either by 65 

inimical conditions or under long-term artificial culture conditions (see review in Falasco et 66 

al., 2009a). Numerous observations of deformed diatoms in laboratory cultures were 67 

attributed to cell crowding (Barber and Carter, 1981) or culture senescence  (Falasco et al., 68 

2009a). Recently, Windler et al. (2014) reported the major influence of bacteria associated 69 

with diatoms in the long-term maintenance of laboratory cultures. They found that cultivation 70 

under axenic conditions reduced population growth and promoted morphological changes 71 

(cell size reduction, frustule aberrations) in pennate diatoms, compared to xenic cultures.  72 

The teratological character is, thus, commonly accepted to result from unhealthy conditions, 73 

as discussed in Lavoie et al. (2017), either in laboratory cultures (lack of essential 74 

accompanying bacteria, Windler et al., 2014) or in the field (induction by toxic contamination, 75 

Falasco et al., 2009a). For this reason, lower fitness is expected in teratological diatoms, and 76 

some types of deformities are even suspected to be lethal (Arini et al., 2013). The 77 

assumption that abnormal diatoms may be outcompeted by normal phenotypes under 78 

optimal conditions, and ultimately eliminated from the populations, is based on the following 79 

empirical observations. First, their rare occurrences: teratologies are infrequent and generally 80 

recorded at relative abundances not exceeding 1% (Morin et al., 2012a), in particular under 81 

field conditions. Second, they generally appear under altered environments, and were shown 82 

to progressively disappear with a return to normal conditions. For instance, Arini et al. (2013) 83 

observed that the abundances of cadmium-induced teratologies in Planothidium 84 

frequentissimum decreased with decontamination. Consistently, the recovery of normal 85 

morphology after sexual reproduction in deformed diatoms from long-term cultures suggests 86 

Code de champ modifié
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that teratologies do not result from genetic drift (Granetti, 1968). Still, the fact that 87 

teratological forms are rarely dominant in samples has until now limited the possibility to 88 

experimentally validate the hypothesis of competitive exclusion of deformed phenotypes over 89 

time. 90 

Given this background, an experiment was carried out to assess the heritability of the 91 

teratological character and the viability of abnormal cells. To this end, cell lines descending 92 

from laboratory-cultured Gomphonema gracile which had diverged into two morphological 93 

variants were used: a normal phenotype and a markedly deformed one. The objectives of 94 

this study were: 1) to compare the fitness of both phenotypes under the same culture 95 

conditions, and 2) to assess the heritability of the teratological character in diatoms, taking 96 

into account the potential influence of closely-associated bacteria. To reach these objectives, 97 

both cultures were assessed over 9 days for population dynamics (viability, growth kinetics), 98 

cell morphology (cell dimensions, altered frustule), physiology (photosynthesis) and behavior 99 

(mobility features). The first hypothesis was that the deformities would be reproduced with 100 

cell duplications, while normal phenotypes would be restored with sexual reproduction. The 101 

second hypothesis was that the teratological character, even if heritable, would alter the 102 

global metabolism of the species, which would be observable through reduced performances 103 

in the endpoints studied.  104 

2. Materials & Methods 105 

2.1. Biological material.  106 

A pennate diatom was isolated from a field sample (Rebec, upstream section of the Leyre 107 

river, Southwest France) in December 2013 and established in culture (Coquillé et al., 2015). 108 

During the first month that they were cultured (March 2014), cells exhibited typical features of 109 

Gomphonema gracile Ehrenberg (Reichardt, 2015). Approximately one year later, the 110 

parental line of G. gracile (further named GGRA) gave rise to two morphologically distinct 111 

(but homogenous within one culture) descendant cell lines continuing to reproduce 112 

vegetatively. The first phenotype, called GNF (Gomphonema normal form), was smaller than 113 

the parent culture, less lanceolate and had more rounded apices. The second one, called 114 

GTF (Gomphonema teratological form), was 2-fold larger than GNF, and all cells exhibited a 115 

typical deformity in valve outline (“boomerang shaped”, Type 1 deformity in Falasco et al., 116 

2009b).  117 

Before the experiment, GNF and GTF populations were almost pure. They were maintained 118 

in separate cultures in sterile Dauta medium (Dauta, 1982) at 17°C in a thermostatic 119 

chamber 610 XAP (LMS LTD®, UK) at 67 ± 0 µmol.m-2.s-1 with a dark:light cycle of 8:16 h. 120 

Non-axenic cultures were grown in 100-mL round borosilicate sterile glass flasks previously 121 

heated to 450°C for 6 h and autoclaved 20 min at 121°C. 122 

2.2. Experimental design.  123 

The experiment, carried out in March 2015, was run during nine days under the conditions 124 

affording Gomphonema’s growth without nutrient depletion over time, as used in Coquillé et 125 

al. (2015). GNF and GTF cultures were inoculated at 30,000 cells.mL-1 in sterile Dauta 126 

medium (40 mL final volume). As it was likely that a small percentage of the other phenotype 127 

would be found in those cultures, the experimental cultures were labelled Ctrl (control) and 128 

Trtg (teratological), respectively, in order to avoid confusion between phenotypes and 129 

treatments. Triplicate cultures were used for each treatment (Ctrl and Trtg) and incubated 130 

simultaneously in a thermostatic chamber 610 XAP (LMS LTD®, UK), under the same 131 

environmental conditions as the mother cultures.  132 
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On days 1, 2, 3, 6, 7, 8 and 9, population dynamics (viability, growth kinetics), cell 133 

morphology (cell dimensions, deformities), physiology (photosynthesis) and behavior 134 

(mobility features) were analyzed. On each sampling day, parameters derived from 135 

chlorophyll-a fluorescence were first measured, directly on the cultures. Then, the flasks 136 

were gently shaken to homogenize the suspensions before sampling 1 mL of culture under 137 

the flame. The sample was then aliquoted as follows: 125 µL for the quantitative analysis of 138 

live and dead diatoms, 100 µL for mobility measurements, and 200 µL to prepare permanent 139 

diatom slides. On the last day of the experiment (day 9), 3 mL of homogenized suspension 140 

was used to perform Rapid Light Curves and the remaining volume of culture was softly 141 

filtered on previously ashed Whatman GF/C® filters that were immediately frozen at -20°C 142 

before molecular analyses of the associated bacteria.  143 

2.3. Chlorophyll-a fluorescence-related endpoints.  144 

Parameters derived from chlorophyll-a fluorescence were measured on the intact biofilms, by 145 

means of a PHYTO-PAM (Heinz Walz, GmbH, Germany) equipped with an emitter-detector 146 

unit (PHYTO-EDF). Benthic settlement potentially leads to the formation of cell aggregates; 147 

therefore ten randomly selected measurements of the effective quantum yield 148 

(photosynthetic efficiency) and chlorophyll-a content estimated by chlorophyll-a fluorescence 149 

were performed. To do this, a home-made system was used for reproducible direct 150 

measurements on the bottom of the flasks. The median of 10 values per sample was then 151 

used for statistical analyses. 152 

On day 9, 3 mL of suspension were used to perform Rapid Light Curves (RLC, White and 153 

Critchley, 1999) generated with the PHYTO-PAM in ED mode. Briefly, samples adapted to 154 

low light irradiance (50 μmol.m-2.s-1) for 20 minutes were sequentially exposed to increasing 155 

actinic irradiances (9 light levels ranging from 64 to 1,964 μmol.m-2.s-1) for 10 seconds, 156 

separated by a saturating flash. The relative electron transport rate of photosystem II in 157 

response to the light pulse was then plotted against irradiance. The following parameters 158 

were extracted from the curves fitted on the model of Eilers & Peeters (1988): photosynthetic 159 

efficiency at low light intensity (initial slope of the curve), maximal electron transport rate and 160 

onset of light saturation.  161 

2.4. Determination of population growth kinetics.  162 

Diatom counts were carried-out on fresh material in a Nageotte counting chamber, using light 163 

microscopy at 400x magnification (Olympus BX51, Olympus Optical Co. GmbH, Germany). 164 

Diatom cell density and mortality were estimated for each replicate sample as described in 165 

Morin et al. (2010). Solitary cells and those forming associations in the counts were 166 

distinguished. Density data were recorded as cells.mL-1 and the logarithmic increase in 167 

population was plotted as a function of time unit, to calculate growth rates (GR, expressed in 168 

divisions.day-1 during exponential growth) following the formula provided in Morin et al. 169 

(2008), and the carrying capacity (i.e. maximum size reached during the stationary phase) of 170 

the cultures.  171 

2.5. Mobility features.  172 

The percentage of motile cells, as well as their velocity and trajectory, were determined using 173 

CASA (computer-assisted sperm analysis) plug-in (Wilson-Leedy and Ingermann, 2007) of 174 

ImageJ software under the specific measurement conditions adapted to G. gracile by 175 

Coquillé et al. (2015). A 20-µL drop of sample was deposited onto a microscope slide and 176 

video acquisition (ArchimedTM, Microvision Instruments) was performed after 2–3 min. 177 

Velocity average path (VAP), velocity curvilinear (VCL), velocity straight line (VSL) and 178 
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linearity (LIN = VSL/VAP, describing the curvature of the trajectory) (Rurangwa et al., 2004) 179 

were then calculated from 260 frames corresponding to 10 seconds of film in total. 180 

2.6. Diatom cell morphology.  181 

Organic matter in the samples was removed by adding hydrogen peroxide to the diatom 182 

suspensions and kept overnight at room temperature. They were then rinsed with distilled 183 

water and centrifuged, before preparing permanent slides according to EN 14407:2014, by 184 

mounting the clean samples in Naphrax (provided by Brunel Microscopes Ltd, UK). Then, 185 

they were observed at 1,000x magnification (Leica DMRB, Germany), for the determination 186 

of the percentage of normal (symmetrical) and deformed (asymmetrical) Gomphonema 187 

individuals, based on >100 individuals per replicate sample. Additionally, at least 10 188 

measurements of cell linear dimensions (length, width, thickness) and of striae density were 189 

performed in each replicate sample. Average cell biovolume was then calculated using the 190 

mathematical equation of Hillebrand et al. (1999) for weakly heteropolar forms (elliptic 191 

cylinder). 192 

A return to the origin material (i.e. samples from Coquillé et al., 2015) was made in order to 193 

measure, in the same way, the morphological characters of GGRA cells, thus providing 194 

elements for comparison and understanding of the morphological range of variation of this 195 

culture after 1 year.  196 

2.7. Bacterial fingerprinting.  197 

Each replicate filter collected on day 9 was used to analyze the bacterial communities closely 198 

associated with the diatoms, i.e. embedded in their extracellular polysaccharides (EPS). 199 

Nucleic acids were extracted with the FastDNA SPIN kit for soils (MP Biomedicals, France) 200 

and the 16S–23S intergenic spacer region from the bacterial rRNA operon was amplified as 201 

described in Pesce et al. (2016), using the universal primers S-D-Bact-1522b-S-20 and L-D-202 

Bact-132-a-A-18. Automated ribosomal intergenic spacer analyses (ARISA) were performed 203 

on an Agilent 2100 Bioanalyzer (Agilent Technologies, France) and the resulting profiles 204 

were exported from the Agilent 2100 Expert software. 205 

2.8. Data analysis.  206 

All statistical analyses were performed with R 3.2.2 (Ihaka and Gentleman, 1996). 207 

After having checked for normality and homogeneity of variances, linear models for fixed 208 

effects (lm) were implemented (nlme package). For each endpoint, the effect of culture (Ctrl 209 

vs. Trtg), date, and their interaction, were tested sequentially by the model. The results are 210 

illustrated as figures in the manuscript. Detailed values and statistics output can be found in 211 

Appendix 1. 212 

A t-test was used to compare the parameters extracted from the curves fitted for growth 213 

kinetics and RLC between cultures. Additionally, for growth, the kinetics of the two 214 

phenotypes in each culture were compared. 215 

For all analyses, a p-value below 0.05 was considered statistically significant. 216 

The endpoints raising significant culture and/or date effects were plotted in a Principal 217 

Component Analysis (PCA), followed by Hierarchical Clustering to identify the main groups of 218 

data, using the FactoMineR package (Lê et al., 2008). 219 

 220 
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3. Results 221 

3.1. Diatom morphology: cell dimensions and teratology 222 

During the first months of culture (2014), cells from the original material (GGRA) were 223 

identified as small specimens of Gomphonema gracile. Valves were quite isopolar in outline 224 

and were 28.91 ± 0.12 µm long and 5.94 ± 0.04 µm wide (Figure 1). Striking differences were 225 

observed between the parental line (GGRA) and the cultures used in this study (Figure 1). 226 

Indeed, GNF individuals were slightly more heteropolar with more rounded apices and valves 227 

were smaller (21.92 ± 0.09 µm long and 5.92 ± 0.03 µm wide). Moreover, GTF cells were 228 

more lanceolate (33.88 ± 0.10 µm long and 6.17 ± 0.03 µm wide) but showed a deformed 229 

valve outline (boomerang shape, Figure 2). In all cases, the invagination of the frustule was 230 

located opposite to the stigma present in the central area. No difference in the density of 231 

striae was found, with average values of 17.00 ± 0.09 striae in 10 µm (n=200). 232 

As a consequence of these differences in linear dimensions, the cell biovolumes calculated 233 

over the duration of the experiment (7 days for GGRA and 9 days for GTF and GNF) showed 234 

significant differences (p<0.001) between GGRA (457 ± 14 µm3, n=150), GNF (334 ± 11 µm3, 235 

n=210) and GTF (543 ± 16 µm3, n=210). Cell biovolume of both descendant cell lines tended 236 

to slightly decrease with time, and significantly smaller cell sizes were found on days 6 and 9 237 

(p<0.05) (Figure 3A).  238 

Very few deformed individuals were observed in the Ctrl cultures (0.34 ± 0.12%, n=2617) 239 

(Figure 4). Cells were in the size range of GNF individuals, but the deformity was similar in 240 

location as in GTF (Figure 4). In Trtg cultures, only 7.7 ± 0.7% of the cells (n=2693) were not 241 

deformed, and were morphologically very close to GNF individuals (21.07 ± 0.38 µm long, 242 

6.00 ± 0.07 µm wide; n=65).  243 

3.2. Growth kinetics 244 

Significant differences in cell densities were observed as a function of time in both cultures, 245 

featuring typical growth kinetics with the stationary phase reached from day 6 (Figure 3B). 246 

The percentage of dead diatoms decreased continuously on the first dates, simultaneously to 247 

the exponential cell increase. Then, mortality increased when the stationary phase was 248 

reached (culture x date interaction, p<0.05, Figure 3C). 249 

Despite the absence of any statistical difference in overall growth rates between Ctrl 250 

(GR=0.46 ± 0.01 divisions.day-1) and Trtg cultures (GR=0.49 ± 0.04 divisions.day-1) in the 251 

exponential growth phase (p=0.63), t-tests revealed statistical differences in the specific 252 

growth rates of GNF and GTF phenotypes in Ctrl and Trtg cultures (Figure 5, p<0.001 in both 253 

cases). Indeed, GNF populations grew faster in the Ctrl units (0.46 ± 0.01 divisions.day-1) 254 

than in the Trtg ones (0.37 ±0.08 divisions.day-1), where they reached their stationary phase 255 

one day later (day 8 instead of day 7). GTF had the same growth characteristics as GNF in 256 

the Ctrl (GR= 0.45 ± 0.06 divisions.day-1, stationary phase starting on day 7). Conversely, in 257 

the Trtg units, they showed higher division rates (0.49 ± 0.04 divisions.day-1 vs. 258 

0.37 ±0.08 divisions.day-1 for GNF) and consequently attained their maximal cell density 259 

earlier (on day 6, Figure 3B). Therefore, significant interaction between culture and date was 260 

highlighted for cell densities, as a result of the delay in reaching maximal cell numbers in 261 

GNF (on day 7, Figure 3B).  262 

The carrying capacity (maximum population size) in cell density was about one third lower for 263 

Trtg cultures (397,800 ± 31,700 cell.mL-1, average values for days 7 to 9) compared to Ctrl 264 

cultures (616,200 ± 44,400 cell.mL-1, average values for days 7 to 9) (Figure 3B). However, 265 
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the total biovolume occupied (i.e. cell densities x individual biovolume) did not differ between 266 

experimental units from day 7, with an average of 197 ± 12.106 µm3.mL-1 (Figure 3D). 267 

3.3. Physiology  268 

No significant difference was observed in chlorophyll-a derived parameters between Ctrl and 269 

Trtg (p=0.42). Chlorophyll-a fluorescence followed a bell-shaped curve and peaked on day 6 270 

(Figure 3E). Photosynthetic activity (Figure 3F) increased on the first days of exponential 271 

growth, and then slightly decreased over time (from day 6).  272 

The RLC did not highlight any differences between treatments in the use of light by the 273 

cultures (Appendix 2). Indeed, similar values were obtained for Ctrl and Trtg photosynthetic 274 

efficiency at low light intensity (0.23 ± 0.00 in average, p=0.09), as well as the maximum 275 

electron transport rate (95.1 ± 7.6 μmol electrons.m-2.s-1, p=0.83), reached from the 276 

saturating irradiance of 415.9 ± 30.1 μmol.m-2.s-1 (p=0.90).  277 

3.4. Behavior 278 

In both cultures, cells grew benthically, and were mostly solitary. Up to 40 ± 2% cells (Ctrl, 279 

day 2) had the potential to form aggregates, principally forming star-shaped associations 280 

(Figure 3G). The abundance of cell clumps was always higher in Ctrl cultures (p<0.001) and 281 

decreased over time whatever the culture from day 2 (p<0.01). For this reason, on the first 282 

days, the percentage of mobile diatoms was so low that mobility parameters could not be 283 

determined appropriately. When the cultures reached their stationary phase, the percentage 284 

of cells forming aggregates drastically decreased and the percentage of mobile cells 285 

increased significantly (Figure 3H), simultaneously to a decrease of benthic forms (as 286 

assessed through the chlorophyll-a settled on the bottom of the flasks, Figure 3E). Striking 287 

differences in motility were observed between cultures (p<0.001): in the Ctrl, the percentage 288 

of mobile cells gradually increased from <5% (day 6) to 18.9 ± 3.4% (day 9). Oppositely, 289 

36.8 ± 2.7% cells were mobile in the Trtg cultures from day 6 to 8, then decreased to 290 

21.5 ± 3.4% on the last day of the experiment. On the last days, the percentage of 291 

associated cells was low (5.6 ± 2.6% in Ctrl and 1.3 ± 0.5% in Trtg cultures), and the cells 292 

grew mostly in suspended, loose agglomerates, potentially indicating biofilm senescence. No 293 

significant difference was found between cultures with respect to movement velocity; 294 

however, the trajectory was more linear in Trtg (p<0.05) (Appendix 1). 295 

3.5. Global patterns in sample variation 296 

The two first dimensions of the PCA explained the same amount of data variability, reaching 297 

68.43% of combined variance (Figure 6A). The optimal clustering reached after applying the 298 

PCA discriminated four groups (Figure 6B). 299 

The first component of the PCA expressed a temporal gradient. It discriminated between 300 

samples collected on the first days of sampling (exponential growth phase), located on the 301 

left half-panel, and cultures corresponding to the stationary phase (last sampling days), 302 

located on the right half-panel. Positive values along this dimension were correlated with 303 

increasing carrying capacity (total cell biovolume, cell density) as well as other endpoints 304 

related to termination of growth: higher mortality, increasing percentages of mobile cells 305 

associated with decreasing cell aggregation.  306 

The second PCA component separated treatments, with Ctrl clustered on the lower half-307 

panel and Trtg on the upper half-panel. Sample discrimination was mostly related to the 308 

morphological descriptors (cell dimensions, biovolume, percentage of teratologies), and with 309 

more linear trajectories in Trtg on the last days of sampling.  310 
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3.6. ARISA profiles  311 

Amplification of the 16S rDNA genes on the filters did not give rise to banding patterns in one 312 

replicate sample of Ctrl (likely due to an experimental error), which was consequently 313 

discarded. Fingerprinting of bacterial communities (Appendix 3) highlighted that Ctrl and Trtg 314 

cultures shared 3 major peaks (above a threshold of 100 relative fluorescence units in height 315 

from the baseline), and that no major differences were found between Ctrl and Trtg. 316 

However, a minor peak (below 50 fluorescence units) was detected around 623bp, but only 317 

in the Trtg samples.  318 

4. Discussion 319 

4.1. Implications of deformities for fitness and survival 320 

4.1.1. Teratologies did not impact performance in GTF populations 321 

Results of this study are in complete disagreement with common assumptions that deformed 322 

individuals are impaired. Indeed, the deformed culture of Gomphonema gracile (GTF) did not 323 

exhibit a longer lag phase compared to the controls and growth rates of the GTF populations 324 

were similar or higher than those of GNF (Figure 5). Growth rates of the GTF population 325 

were higher than that of GNF in Trtg cultures, and similar in Ctrl cultures, possibly resulting in 326 

higher competitive abilities of GTF individuals, compared to GNF ones, under specific 327 

conditions. This is in contradiction with the observations made by Windler et al. (2014), 328 

where teratological cultures had grown more slowly than normal cultures. However, it is 329 

worth noting that, in their study, teratologies were suspected to result from axenicity, which 330 

was not the case here.  331 

The carrying capacity (maximum cell density in the stationary phase) was certainly lower in 332 

Trtg than in Ctrl (~400,000 cells.mL-1 vs. ~600,000 cells.mL-1). However, these differences 333 

were likely caused by space availability more than growth abilities: total biovolume occupied 334 

in the stationary phase was similar in Ctrl and Trtg cultures. In the same way, Windler et al. 335 

(2014) observed that their normal and teratological cultures of Achnanthidium minutissimum 336 

reached similar chlorophyll concentrations in the stationary phase. Thus, competition for 337 

space (and subsequent access to resources such as nutrients and/or light) was probably the 338 

main driving factor in kinetics for both cultures in this experiment.  339 

Besides growth kinetics, the physiological and behavioral endpoints assessed did not show 340 

lower performances of GTF populations, contrarily to what was expected. Photosynthetic 341 

efficiency was similar in Trtg compared to Ctrl cultures and fell into the range of other 342 

measurements carried-out on G. gracile (Coquillé et al., 2015; Table 1). In this experiment, 343 

the mobility features (percentage of mobile cells and velocities) of GNF and GTF individuals 344 

were below the values reported by Coquillé et al. (2015). Nevertheless, differences were 345 

found between Ctrl and Trtg: more mobile individuals were found within GTF populations and 346 

they moved more linearly than GNF cells (Figure 6). This may be a consequence of their 347 

more elongated valve outline. No differences were found, however, in movement velocity, in 348 

agreement with Bertrand’s work on the motility of several diatom species (1990, 1999). 349 

Based on analyses of five distinct populations, he also demonstrated that velocity was 350 

independent of cell size within a species (Bertrand, 1990).  351 

To sum up, the morphological changes that occurred in Gomphonema gracile did not impair 352 

its performance, based on the endpoints assessed, when cultured alone. The fact that GNF 353 

and GTF displayed similar responses in cultures where they were dominant does not 354 

prejudge their behavior when found together. Superseding of GTF by GNF would be 355 
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expected based on Arini et al. (2013)’s work, arguing for a relative decrease in the 356 

percentage of deformed diatoms under optimal growth conditions. 357 

4.1.2. Coexistence of GNF and GTF morphotypes 358 

The teratological forms had higher growth rates and higher cell dimensions, thus higher cell 359 

surface in contact with their environment for nutrient uptake. Moreover, the cells tended to 360 

form large floating bulks of solitary individuals, whereas they formed benthic mats in Coquillé 361 

et al. (2015). This may stem from ageing with long-term culturing, as well as from the 362 

morphological changes over time in G. gracile. These associations were more striking in the 363 

GTF cultures; deformed diatoms may thus be less adhesive than the normal forms. This 364 

slightly distinct lifestyle can be an adaptation of this phenotype, larger than GNF and more 365 

silicified, to modify its sinking rates and/or maximize its access to resources (nutrients, light). 366 

Such adaptive mechanisms have been observed in small lacustrine Stephanodiscus species 367 

(Kociolek and Stoermer, 2010). Therefore, these adaptations may confer a competitive 368 

advantage to GTF individuals over the normal morphotype under certain circumstances. The 369 

low percentage of non-teratological forms in GTF, stable over time, tends to confirm this 370 

hypothesis.  371 

The percentage of deformed individuals in Ctrl fell into the range of the abundances 372 

occurring “naturally” in the field, i.e. below 0.35% (Morin et al., 2012a). The GTF phenotype 373 

did not significantly increase over time in Ctrl cultures, indicating that GNF was not 374 

outcompeted (in agreement with the GR values of GNF and GTF in Ctrl units, Figure 3). 375 

However, the differential growth of GNF and GTF in Trtg units suggests that a massive 376 

outbreak of teratological individuals, owing to an extreme event and/or repeated toxic 377 

exposure, could lead to competitive exclusion of their normal congeners. Neury-Ormanni et 378 

al. (2017) performed a competition experiment with a balanced GNF:GTF inoculum under the 379 

same physicochemical conditions as in the present study. In their experiment, no significant 380 

differences in growth were found, compared to the individual kinetics of GNF and GTF, and 381 

both phenotypes co-occurred at a 1:1 ratio until the stationary phase was reached. 382 

Therefore, dedicated competition experiments using several GNF:GTF ratios would 383 

constitute a potential way to confirm this theory and determine a threshold above which 384 

teratological diatoms would irreversibly dominate over normal ones. However, there is 385 

evidence from translocation experiments (Tolcach and Gómez, 2002) and laboratory 386 

investigations (Morin et al., 2012b) that diatom immigration may contribute to re-colonization 387 

when toxic contamination is removed, and mask a small population of deformed individuals 388 

kept alive. Indeed, in the field, continuous immigration of normal morphotypes and 389 

competition with several other species likely impedes the sustainable presence of 390 

teratological diatoms under uncontaminated conditions. 391 

4.2. Transmission of the teratological character over time  392 

4.2.1. Consistency in the teratological feature 393 

In this study, the culture of deformed Gomphonema gracile (GTF) was maintained with 394 

classical growth kinetics at abundances exceeding 90%, suggesting that the deformity was 395 

non-lethal. In long-term cultures, frustule aberrations were demonstrated to increase as 396 

valves decrease in length in several diatom species (e.g. Hostetter and Rutherford, 1976; 397 

Torgan et al., 2006). In this study, on the contrary, GTF cells were larger than the other 398 

population, although at the same development stage as the non-teratological populations 399 

(GNF). All deformed diatoms from Trtg and Ctrl exhibited a typical deformed valve outline 400 

with symmetry loss (Figure 1 and Figure 2), although the few deformed diatoms in Ctrl were 401 

smaller than the GTF populations (Figure 2).  402 
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Valve asymmetry is the most frequent type of deformity in Gomphonema species (Falasco et 403 

al., 2009b). Similarly incised valves have been described as abnormal G. parvulum (Victoria 404 

and Gómez, 2010) and G. gracile (Morin and Coste, 2006) in natural communities under 405 

toxic contamination, where they were associated with normal specimens. Indeed, the 406 

consistency of this feature reproduced over time in the Trtg units suggested either that a new 407 

species emerged (with another strain of associated bacteria as suggested by ARISA profiles; 408 

Appendix 3), or that boomerang-shaped outline deformation preferentially occurs in 409 

Gomphonema. 410 

4.2.2. Heritability of the teratology throughout the experiment 411 

Heritability of teratologies was empirically demonstrated through the reproduction of 412 

deformed Gomphonema gracile in the Trtg cultures over the 9-day experiment. Indeed, the 413 

percentage of GTF cells was stable through time, although cultures grew in cell numbers. 414 

This may have resulted from i) mechanical transmission through generations by vegetative 415 

division (Round et al., 1990; Von Dassow et al., 2006) of the deformed clones and/or ii) 416 

higher growth rates in GTF cultures, potentially masking the recovery of normal forms (with 417 

lower growth rates, as inferred by GNF growth kinetics in Trtg cultures; also see section 418 

4.1.1). Restoration of maximal size in GTF on day 7 (Table 1), coinciding with stabilization of 419 

cell numbers (plateau phase) and the decrease of benthic cells suggested that they 420 

underwent sexual reproduction at the timescale of the 9-day experiment. Even though a 421 

slight decrease in the percentages of deformities was observed in GTF after sexual 422 

reproduction (89.4 ± 4.0% on day 8, Figure 4), it seems that the genetic and/or epigenetic 423 

cause of teratologies is most likely. 424 

Reversibility of teratologies is generally assumed; for instance Granetti (1968) observed in 425 

long-term cultures that deformed Navicula species restored their normal morphology after 426 

sexual reproduction, leading him to discard the genetic cause of teratologies. However, 427 

McLaughlin (1988) stated that, if the variation of morphology is well defined, consistent and 428 

reproducible, teratologies should be considered as varieties of the species. In line with this, 429 

Jüttner et al. (2013) described a Gomphonema with a deflection in the head and foot poles 430 

as a new species, based on its frequent occurrence and large geographical distribution, thus 431 

assuming genetic distinctness. As generally observed in long-term cultures, continuous 432 

culturing resulted in a decrease in cell size over time for both phenotypes. Size differences 433 

between GNF and GTF populations were perpetuated and maintained for 6 extra months 434 

(Ezzedine and Vedrenne, 2015): in August 2015, GNF cells averaged 17.35 ± 0.15 µm 435 

(n=160) in length. In the same way, continuous decrease also occurred in GTF populations 436 

that were 29.59 ± 0.14 µm (n=320) long. The deformities were not reversed after the 437 

predictable rounds of sexual reproduction over this extra 6-month period. The continuity of 438 

the teratological feature, repeated throughout the GTF population in varying sizes of 439 

individuals, also argues in favor of a new variety (McLaughlin, 1988). Further investigations 440 

would thus be required (i) to characterize both GNF and GTF genomes in depth in order to 441 

identify the potential mutations, to discard or not the genetic causes of diatom teratologies 442 

and (ii) to characterize the two epigenomes via the study of DNA methylation and epigenetic 443 

causes of diatom teratologies. 444 

4.2.3. Long term persistence of the teratological feature suggests genetic and/or 445 

epigenetic control 446 

In this study, both Ctrl and Trtg cultures were issued from a unique parental line which had 447 

diverged morphologically. Initially (i.e. when GTF appeared), deformation of this cell line may 448 

have been induced by mechanical causes such as crowding in the cultures or by changes in 449 
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the accompanying bacteria (rather than axenicity, as bacteria were found in both cultures at 450 

the end of the experiment). The ARISA profiles differed slightly between cultures by the 451 

presence of one small peak in Trtg, suggesting that another strain of bacteria was present in 452 

these cultures. Hypotheses regarding a previous exposure to chemical insults or 453 

inappropriate culture conditions can be discarded. Indeed, the diatom was isolated from a 454 

pristine site in Rebec tributary, and then cultivated using a culture medium under laboratory 455 

conditions that were previously shown to be adapted to G. gracile’s growth (Coquillé et al., 456 

2015). Besides, both GNF and GTF morphotypes were cultivated under identical conditions 457 

that proved to be appropriate given their growth kinetics, thus endorsing the deformity as 458 

teratological.  459 

Although the body of work dealing with diatom teratologies is vast (Falasco et al., 2009a), 460 

Lavoie et al. 2017), the processes involved in the formation of abnormal cells are still unclear 461 

and it has never been proved whether they resulted or not from epigenetic mechanisms or 462 

genetic alteration.  Better knowledge at the molecular level and more specifically at the 463 

epigenetic level is necessary because of the conservation of the epigenetic machinery in 464 

diatoms, its potentially role in phenotypic modification (Tirichine et al., 2017) and, contrary to 465 

genetic factors, ease in evaluating some parameters such as DNA methylation. Indeed, the 466 

identification of genetic alteration is hardly assessable directly since few genomes have been 467 

sequenced and annotated, making it difficult to target the genetic loci responsible for frustule 468 

morphology and to identify potential alterations.  469 

5. Conclusions 470 

The phenotypic plasticity in diatoms makes heritability difficult to assess, but thanks to 471 

unexpected changes in cultures from the same parental line, cultures of morphological 472 

variants of Gomphonema gracile (normal and abnormal phenotypes) made it possible to 473 

comparatively study them. The results of this study showed that teratologies were 474 

reproduced over time in both Ctrl and Trtg cultures, to variable extent depending on the 475 

experimental units considered. Moreover, teratology did not significantly affect physiology nor 476 

behavior, disputing the previous assumptions that abnormal diatoms are not competitive and 477 

are only found as a transient state, useful to point out extremely adverse environmental 478 

conditions. Thus, the similarity in the performance of GTF individuals, compared to normal 479 

forms (GNF), has implications for the improvement of knowledge about the ecology of 480 

teratological diatoms, and for the environmental interpretations made in hydrosystems where 481 

they are found. Indeed, this study provides evidence that abnormal diatoms, likely to appear 482 

by chance, are viable individuals and may hold out against normal forms under “favorable” 483 

conditions. Consequently, much care must be paid to them in biomonitoring studies, before 484 

stating that the presence of teratologies reflects the degradation of water quality. 485 

Apart from the ability to transmit teratological characters as seen in the microscopical 486 

observations of diatom morphology and discussed in this paper, the growth and physiology 487 

data strongly advocate for a genetic and/or epigenetic origin in GTF. In future, special 488 

attention should be given to diatom teratologies from the genetic and epigenetic standpoint to 489 

understand if they result from alterations in genome and/or epigenetic modifications, to their 490 

ecological preferences. 491 
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Figure captions: 625 

Figure 1. Diatom cell dimensions (length and width, in µm) in the Ctrl (white diamonds, n=210) and 626 

Trtg (black diamonds, n=210) cultures, compared to the parental culture (GGRA, grey diamonds, 627 

n=150). Significant differences in length were found between Ctrl and Trtg (p<0.001). 628 

Figure 2. External (left) and internal (right) views of teratological valves from GTF cultures (SEM 629 

microphotographs). 630 

Figure 3. Temporal evolution in Ctrl (white diamonds) and Trtg (black diamonds) cultures of A- 631 
Individual cell biovolumes (µm

3
), B- Diatom cell densities (cells.mL

-1
), C- Mortality (%), D- Total cell 632 

biovolume (µm
3
 per mL), E- Photosynthetic efficiency (relative units r.u.), F- Chlorophyll-a measured 633 

on the bottom of the flasks (µg.cm
-2

), G- Percentage of cells forming associations (%) and H- 634 
Percentage of mobile cells (%, n.d. = not determined because the number of mobile individuals was 635 
too low). Linear mixed-effects models highlight a significant culture effect (*) for individual biovolumes 636 
(A, p<0.001), significant date effects (†) for individual biovolumes (A, p<0.05), photosynthetic 637 
efficiency (E, p<0.05) and chlorophyll-a content (F, p<0.001), while interactive effects between culture 638 
and date (‡) are found for growth kinetics (cell densities B, p<0.001; total cell biovolume C, p<0.001 639 
and mortality D, p<0.05) and the percentage of cells in associations or motile (G and H, p<0.01). 640 

Figure 4. Teratological forms. Left panel: Percentage of deformed individuals (%) in Ctrl (white 641 

diamonds, n=2617) and Trtg (black diamonds, n=2693) cultures. * denotes a significant culture effect 642 

(p<0.001) identified by the linear mixed-effects model. Right panel: Light microscopy 643 

photomicrographs of the teratological Gomphonema found in Ctrl (down) and in Trtg cultures (top). 644 

Scale bar: 10 µm. 645 

Figure 5. Population dynamics of GNF and GTF phenotypes during the experiment, in the Ctrl (A) and 646 
Trtg (B) cultures. Experimental results are shown by: open symbols, GNF; solid symbols, GTF. The 647 
dashed and solid lines indicate the best-fitting growth curves for normal (GNF) and teratological (GTF) 648 
forms, respectively; growth rates (GR, in divisions.day

-1
) and duration of exponential phase considered 649 

are specified for each data series. Note the logarithmic scale on the Y-Axis. 650 

Figure 6. Principal component analysis (PCA) based on the endpoints significantly affected by 651 
treatment (culture) and/or date. A- Variables factor map. B- Projection of the individuals, labelled 652 
according to a posteriori clustering outputs. Grey arrows show temporal changes for both cultures. 653 
 654 

 655 
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Fig. 1 658 
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Fig. 2 661 
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Fig. 3 665 
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Fig. 4 671 
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Fig. 5 676 
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Fig. 6 680 
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Appendix 1. Characteristics of the diatom cultures analyzed in this study (Ctrl and Trtg) compared to the control cultures (GGRA) used in  Coquillé et al. 
(2015). All values are mean ± standard error over the experiment, except * corresponding to the stationary phase and 

†
 that were only measurable on days 6 

to 9; n=number of individuals measured/counted, N= number of samples. 
£
: GGRA values are from Coquillé et al. (2015; control cultures). Effects of Culture, 

Date and Interaction between culture and date result from modelling; n.s.: not significant. 

 Ctrl Trtg Culture effect  Date effect Interaction GGRA 

Morphology 

Length (µm) 21.92 ± 0.09  
(n=420) 

33.88 ± 0.10  
(n=420) 

p<0.001 n.s. n.s. 28.91 ± 0.12  
(n=300) 

Width (µm) 5.92 ± 0.03  
(n=210) 

6.17 ± 0.03  
(n=210) 

n.s. p<0.05 n.s. 5.94 ± 0.04  
(n=150) 

Cell biovolume (µm
3
) 334 ± 11  

(n=210) 
543 ± 16  
(n=210) 

p<0.001 p<0.05 n.s. 457 ± 14  
(n=150) 

Cells with abnormal outline (%) 0.34 ± 0.12 
(n=2617) 

92.32 ± 0.74  
(n=2693) 

p<0.001 n.s. n.s. 0.25 ± 0.12  
(n=1571) 

Population dynamics 

Cell density (10
3
cells.mL

-1
) 616.2 ± 44.4* 

(N=9) 
397.8 ± 31.7* 

(N=9) 
n.s. p<0.001 p<0.001 421.0 ± 42.7*  

(N=3) 

Total biovolume (10
6
µm

3
.mL

-1
) 195.3 ± 20.3*  

(N=9) 
198.6 ± 23.4*  

(N=9) 
n.s. p<0.001 p<0.01 210.1 ± 31.1*  

(N=3) 

Mortality (%) 2.9 ± 0.4  
(N=21) 

4.5 ± 0.4 
(N=21) 

n.s. p<0.05 p<0.05 1.1 ± 0.7  
(N=24)

£
 

Physiology 

Photosynthetic efficiency (r.u.) 0.38 ± 0.00  
(N=21) 

0.41 ± 0.00  
(N=21) 

n.s. p<0.05 n.s. 0.37 ± 0.00
£
  

(N=24) 

Chlorophyll-a concentration (µg.cm
-2

) 561 ± 143  
(N=21) 

410 ± 87  
(N=21) 

n.s. p<0.001 n.s. 732 ± 155
£
  

(N=24) 

Behaviour 

Cells in association (%) 19.6 ± 5.4  
(N=21) 

10.3 ± 4.3  
(N=21) 

p<0.001 p<0.01 p<0.01 9.76 ± 1.47
£
  

(N=24) 

Mobile cells (%) 10.1 ± 2.2
†
 

(N=12) 
33.0 ± 2.9

†
 

(N=12) 
p<0.001 p<0.05 p<0.01 36.2 ± 4.6

£
 

(N=24) 

Linearity  0.85 ± 0.02
†
 

(N=10) 
0.90 ± 0.02

†
 

(N=12) 

p<0.05 n.s. n.s. 0.91 ± 0.01
£
 

(N=24) 

VAP (µm.s
-1

)  2.7 ± 0.2
†
 

(N=10) 
3.5 ± 0.2

†
 

(N=12) 
n.s. n.s. n.s. 7.9 ± 0.2

£
 

(N=24) 

VSL (µm.s
-1

)  2.3 ± 0.3
†
 

(N=10) 
3.1 ± 0.3

†
 

(N=12) 
n.s. n.s. n.s. 6.8 ± 0.2

£
 

(N=24) 

VCL (µm.s
-1

)  2.9 ± 0.2
†
 

(N=10) 
3.7 ± 0.2

†
 

(N=12) 
n.s. n.s. n.s. 8.5 ± 0.2

£
 

(N=24) 
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Appendix 2. Rapid Light Curves for Ctrl (white diamonds) and Trtg (black diamonds) cultures on day 9. Values are mean±standard errors of three replicates. 
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Appendix 3. PCR-ARISA patterns of amplified bacterial fragments in the replicate samples (Ctrl cultures: Ctrl_1 to 3, Trtg cultures: Trtg_1 to 3). Ref stands for the internal 

standards. Band intensity and position represent the ARISA peak intensity and corresponding migration duration [s] or fragment size [bp]. 

 


