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INVARIANT MEASURE FOR STOCHASTIC SCHRÖDINGER EQUATIONS

T. BENOIST, M. FRAAS, Y. PAUTRAT, AND C. PELLEGRINI

Abstract. Quantum trajectories are Markov processes that describe the time-evolution of
a quantum system undergoing continuous indirect measurement. Mathematically, they are
defined as solutions of the so-called “Stochastic Schrödinger Equations”, which are nonlinear
stochastic differential equations driven by Poisson and Wiener processes. This paper is devoted
to the study of the invariant measures of quantum trajectories. Particularly, we prove that
the invariant measure is unique under an ergodicity condition on the mean time evolution, and
a “purification” condition on the generator of the evolution. We further show that quantum
trajectories converge in law exponentially fast towards this invariant measure. We illustrate our
results with examples where we can derive explicit expressions for the invariant measure.
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1. Introduction

Under a Markov approximation, the evolution of an open quantum system S in interaction with
an environment E is described by the Gorini–Kossakowski–Sudarshan–Lindblad Master (GKSL)
equation [23, 30]. More precisely, assuming that the system is described by the Hilbert space Ck,
the set of its states is defined as the set Dk of density matrices, i.e. positive semidefinite matrices
with trace one:

Dk = {ρ ∈ Mk(C) s.t. ρ ≥ 0, tr ρ = 1}.
The evolution t ∈ R+ 7→ ρ̄t ∈ Dk of states of the system is then determined by the GKSL equation
(also called quantum master equation):

dρ̄t = L(ρ̄t) dt, ρ̄0 ∈ Dk, (1.1)

where L is a bounded linear operator on Mk(C) of the form

L : ρ 7→ −i[H, ρ] +
∑
i∈I

(
ViρV

∗
i − 1

2{V ∗i Vi, ρ}
)
, (1.2)

with I a finite set, H ∈ Mk(C) self adjoint, and Vi ∈ Mk(C) for each i ∈ I ([·, ·] and {·, ·} are
respectively the commutator and anticommutator). Such an L is called a Lindblad operator.

Since L is linear, t 7→ ρ̄t is given by ρ̄t = etL(ρ̄0). The flow is therefore a semigroup (etL)t,
which consists of completely positive, trace-preserving maps (see [38]). In particular, L is the
generator of a semigroup of contractions, thus specL ⊂ {λ ∈ C s.t. Reλ ≤ 0}. Since etL is trace
preserving, 0 ∈ specL. The following assumption is equivalent to the simplicity of the eigenvalue 0
[38, Proposition 7.6]:
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(L-erg): There exists a unique non zero minimal orthogonal projection π such that L(πMk(C)π) ⊂
πMk(C)π.

Assumption (L-erg) implies directly that there exists a unique ρinv ∈ Dk such that Lρinv = 0.
Moreover, one can show that (L-erg) implies the existence of λ > 0 such that for any ρ ∈ Dk,
etL(ρ) = ρinv +O(e−λt) (see [38, Proposition 7.5]).

The above framework generalizes that of continuous-time Markov semigroups on a finite number
of sites: density matrices ρ over Ck generalize probability distributions over k classical states, while
Lindbladians L generalize generators of Markov jump processes. In Section 6.4, we show how a
classical finite state Markov jump process can be encoded in the present formalism.

The family (ρ̄t)t describes the reduced evolution of the system S when coupled to an environ-
ment E in a conservative manner. This evolution can be derived by considering the full Hamiltonian
of S + E in relevant limiting regimes, e.g. the weak coupling or fast repeated interactions regimes,
and tracing out the environment degrees of freedom (see [17, 18] and [1] respectively). It can also
be described by a stochastic unravelling, i.e. a stochastic process (ρt)t with values in Dk such that
the expectation ρt of ρt satisfies (1.1); this method was developed in [4, 5, 6]. One possible choice
of a stochastic unravelling is described by the following stochastic differential equation (SDE),
called a stochastic master equation:

dρt =L(ρt−) dt

+
∑
i∈Ib

(
Liρt− + ρt−L

∗
i − tr

(
ρt−(Li + L∗i )

)
ρt−

)
dBi(t)

+
∑
j∈Ip

( Cjρt−C
∗
j

tr(Cjρt−C∗j )
− ρt−

)(
dNj(t)− tr(Cjρt−C

∗
j ) dt

)
,

(1.3)

where
• I = Ib ∪ Ip is a partition of I such that Li = Vi for i ∈ Ib and Cj = Vj for j ∈ Ip,
• each Bi is a Brownian motion,
• each Nj is a Poisson process of intensity t 7→

∫ t
0

tr(Cjρs−C
∗
j )ds.

Remark 1. The processes
(
Bj(t)

)
t
and

(
Nj(t)−

∫ t
0

tr(Cjρs−C
∗
j )ds

)
t
are actually martingales.

Then assuming that (1.3) accepts a solution, it is easy to check that for any t ≥ 0, the expectation
of ρt is equal to ρ̄t whenever ρ0 = ρ̄0.

Proper definitions of these Poisson processes and proofs of existence and uniqueness of the
solution to (1.3) can be found in [5, 6, 33, 34, 35]. A solution (ρt)t of Equation (1.3) is called a
quantum trajectory.

Equations of the form (1.3) are used to model experiments in quantum optics (photo-detection,
heterodyne or homodyne interferometry), particularly for measurement and control (see [15, 24,
37]). They were also introduced as stochastic collapse models (see [19, 22]) and as numerical
tools to compute ρt (see [16]). Here we are interested in the fact that they model the evolution
of the system S when continuous measurements are done on the environment E . This can be
shown starting from quantum stochastic differential equations using quantum filtering [3, 10, 13,
21, 25]. An approach using the notion of a priori and a posteriori states has been also developed
using “classical” stochastic calculus (see the reference book by Barchielli and Gregoratti [5], and
references therein). Continuous-time limits of discrete-time models can also be considered, see
[33, 34, 35].

Equation (1.3) has the property that if ρ0 is an extreme point of Dk, then ρt is almost surely
an extreme point of Dk for any t ∈ R+. Since we will extensively use this property, let us make
it explicit. The extreme points of Dk are the rank-one orthogonal projectors of Ck; for any
x ∈ Ck \ {0}, let x̂ be its equivalence class in PCk, the projective space of Ck. For x̂ ∈ PCk, let
πx̂ be the orthogonal projector onto Cx. Then x̂ ∈ PCk 7→ πx̂ is a bijective map from PCk to the
set of extreme points. Assume now that ρ0 = πx̂0

for some x̂0 ∈ PCk. Then it is easy to check
that ρt = πx̂t almost surely for any t ∈ R+, with t 7→ xt the unique solution to the following SDE,
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called a stochastic Schrödinger equation:
dxt = D(xt−)xt− dt

+
∑
i∈Ib

(
Li − 1

2vi(t−) Id
)
xt− dBi(t)

+
∑
j∈Ip

( Cj√
nj(t−)

− Id
)
xt− dNj(t),

(1.4)

for x0 ∈ x̂0 of norm one, where the operator D(xt−) is defined as

D(xt−) = −
(
iH +

1

2

∑
i∈Ib

L∗iLi +
1

2

∑
j∈Ip

C∗jCj
)

+
1

2

∑
i∈Ib

vi(t−)
(
Li − 1

4 vi(t−) Id
)

+
1

2

∑
j∈Ip

nj(t−),

with
vi(t−) = 〈xt−, (Li + L∗i )xt−〉, nj(t−) = 〈xt−, C∗jCjxt−〉 = ‖Cjxt−‖2.

The brackets 〈·, ·〉 denote the scalar product in Ck. Without possible confusion, a solution (xt)t
will be also called a quantum trajectory. Remark that ‖x0‖ = 1 implies ‖xt‖ = 1 almost surely
for any t ∈ R+; remark also that the numerical computation of ρt involves only multiplications
of matrices with vectors and not multiplications of matrices (this is the motivation for the use of
quantum trajectories as numerical tools mentioned above).

In the physics literature, extreme points ofDk are called pure states. In particular, the preceding
paragraph shows that the evolution dictated by Eq. (1.3) preserves pure states. It actually has
also the property that quantum trajectories (solution of (1.3)) tend to “purify”. This has been
formalized by Maassen and Kümmerer in [31] for discrete-time quantum trajectories, and extended
to the continuous-time case by Barchielli and Paganoni in [7]. Purification is related to the
following assumption (here A ∝ B means there exists λ ∈ C such that A = λB or λA = B.
Particularly we allow for λ = 0).
(Pur): Any non zero orthogonal projector π such that for all i ∈ Ib, π(Li + L∗i )π ∝ π and for all

j ∈ Ip, πC∗jCjπ ∝ π has rank one.
As shown in [7], (Pur) implies that for any ρ0 ∈ Dk

lim
t→∞

inf
ŷ∈PCk

‖ρt − πŷ‖ = 0 almost surely. (1.5)

The main goal of this article is to show how the exponential convergence of the solution (ρt)t of
Eq. (1.1), induced by (L-erg), translates for its stochastic unravelling (ρt)t solution of Eq. (1.3).
We prove uniqueness of the invariant measure for continuous-time quantum trajectories assuming
both (L-erg) and (Pur). From (1.5), under these assumptions, the invariant measure will be
concentrated on pure states, so we only need to prove uniqueness of the invariant measure for
(x̂t)t equivalence class of (xt)t solution of (1.4) (since PCk is compact and the involved process
is Feller, the existence of an invariant measure is obvious). The difficulty of this proof lies in the
failure of usual techniques like ϕ-irreducibility. Note that this question has already been partially
addressed in the literature: essentially, only diffusive equations have been considered, i.e. equations
for which Eq. (1.3) or (1.4) contain no jump term (in our notation, Ip = ∅). The results of [7]
were, to our knowledge, the most advanced ones so far. In that article, algebraic conditions on the
vector fields describing the stochastic differential equation are imposed to obtain the uniqueness of
the invariant measure. This allows the authors to apply directly standard results from the analysis
of stochastic differential equations. Unfortunately their assumptions are hard to check for a given
family of matrices (Li)i∈Ib .

The main result of the present paper is the following theorem.

Theorem 1.1. Assume that (Pur) and (L-erg) hold. Then the Markov process (x̂t)t has a
unique invariant probability measure µinv, and there exist C > 0 and λ > 0 such that for any
initial distribution µ of x̂0 over PCk, for all t ≥ 0, the distribution µt of x̂t satisfies

W1(µt, µinv) ≤ Ce−λt

where W1 is the Wasserstein distance of order 1.
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This theorem is more general than previous similar results in different ways. First, we con-
sider stochastic Schrödinger equations involving both Poisson and Wiener processes. Second, our
assumptions are standard for quantum trajectories and are easy to check for a given family of
operators

(
H, (Li)i∈Ib , (Cj)j∈Ip

)
. Last, we prove an exponential convergence towards the invari-

ant measure. As a byproduct, we also provide a simple proof of the purification expressed in
Eq. (1.5) (see Proposition 2.5). To complete the picture, assuming only (Pur), we show that
(L-erg) is necessary. We also provide a complete characterization of the set of invariant measures
of (x̂t) whenever (L-erg) does not hold (see Proposition 4.2). Arguments in Sections 3 and 4 are
adaptations of [11], where similar results for discrete-time quantum trajectories are considered.

The paper is structured as follows. In Section 2, we give a precise description of the model of
quantum trajectories with a proper definition of the underlying probability space. In particular,
we introduce a new martingale which is central to our proofs. In Section 3, we prove Theorem 1.1.
In Section 4 we derive the full set of invariant measures assuming only (Pur). In Section 5 we
show that (Pur) is not necessary even if (L-erg) holds. In Section 6, we provide some examples
of explicit invariant measures. In Section 6.4 we provide an encoding of any classical finite state
Markov jump process into a stochastic master equation.

2. Construction of the model

2.1. Construction of quantum trajectories. In this section we fix the notations and introduce
the probability space we use to study (x̂t)t. First, for an element x 6= 0 of Ck, and for an operator
A with Ax 6= 0 we denote

A · x̂ = Âx.

We consider the following distance on PCk:

d(x̂, ŷ) =
√

1− |〈x, y〉|2 , (2.1)

for all x̂, ŷ ∈ PCk, where x and y are norm-one representatives of x̂ and ŷ respectively. We equip
PCk with the associated Borel σ-algebra denoted by B.

Now we introduce a stochastic process with values in Mk(C). Let
(
Ω, (Ft)t,P

)
be a filtered

probability space with standard brownian motions Wi for i ∈ Ib, and standard Poisson processes
Nj for j ∈ Ip, such that the full family

(
Wi, Nj ; i ∈ Ib, j ∈ Ip

)
is independent. The filtration

(Ft)t is assumed to satisfy the standard conditions, and we denote F∞ by F and the processes(
Wi(t)

)
t
and

(
Nj(t) − t

)
t
are (Ft)t-martingales under P. We denote by E the expectation with

respect to P.
On

(
Ω, (Ft)t,P

)
, for s ∈ R+, let (Sst )t∈[s,∞) be the solution to the following SDE:

dSst =
(
K +

#Ip
2 Id

)
Sst− dt+

∑
i∈Ib

LiS
s
t− dWi(t) +

∑
j∈Ip

(Cj − Id)Sst− dNj(t), Sss = Id (2.2)

(#Ip is the cardinal of Ip), where

K = −iH − 1

2
(
∑
i∈Ib

L∗iLi +
∑
j∈Ip

C∗jCj).

Since standard Cauchy–Lipschitz conditions are fulfilled, the SDE defining (Sst )t has indeed a
unique (strong) solution. We denote St := S0

t . Note that for s fixed the process (Sst )t is indepen-
dent of Fs, and we have that for all 0 ≤ r ≤ s ≤ t

SstS
r
s = Srt .

In addition, for any ρ ∈ Dk, let (Zρt )t be the positive real-valued process defined by

Zρt = tr(S∗t Stρ),

and let (ρt)t be the Dk-valued process defined by

ρt =
StρS

∗
t

tr(StρS∗t )
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if Zρt 6= 0, taking an arbitrarily fixed value whenever Zρt = 0 (this value will always appear with
probability zero in the sequel).

The following results on the properties of (Zρt )t were proven in [6]. We give short proofs adapted
to our restricted setting where the Hilbert space is finite-dimensional, and I = Ib ∪ Ip is a finite
set.

Lemma 2.1. For any ρ ∈ Dk, the stochastic process (Zρt )t is the unique solution of the SDE

dZρt = Zρt−

(∑
i∈Ib

tr
(
(Li + L∗i )ρt−

)
dWi(t) +

∑
j∈Ip

(
tr(C∗jCjρt−)− 1

)(
dNj(t)− dt

))
, Zρ0 = 1.

Moreover, (Zρt )t is a nonnegative martingale under P.

Proof. The fact that (Zρt )t verifies the given SDE is a direct application of the Itô formula. Since
(ρt)t takes its values in the compact space Dk, that SDE verifies standard Cauchy–Lipschitz
conditions, ensuring the uniqueness of the solution. Since the processes

(
Wi(t)

)
t
and

(
Nj(t)− t

)
t

are P-martingales, it follows that (Zρt )t is a P-local martingale. Since tr(C∗jCjρ) ≥ 0 for any j ∈ Ip
and ρ ∈ Dk, and (ρt)t takes value in the compact space Dk, it follows from [27, Theorem 12] that
(Zρt )t∈[0,T ] is a P-nonnegative martingale for all T . �

For any ρ ∈ Dk, we define a probability Pρt on (Ω,Ft):
dPρt = Zρt dP|Ft . (2.3)

Since (Zρt )t is a P-martingale from Lemma 2.1, the family (Pρt )t is consistent, that is P
ρ
t (E) = Pρs(E)

for t ≥ s and E ∈ Fs. Kolmogorov’s extension theorem defines a unique probability on (Ω,F∞),
which we denote by Pρ. We will denote by Eρ the expectation with respect to Pρ.

The following proposition makes explicit the relationship between P and Pρ. It follows from
a direct application of Girsanov’s change of measure Theorem (see [26, Theorems III.3.24 and
III.5.19]). For all i ∈ Ib and t ∈ R+, let

Bρi (t) = Wi(t)−
∫ t

0

tr
(
(Li + L∗i )ρs−

)
ds.

Proposition 2.2. Let ρ ∈ Dk. Then, with respect to Pρ, the processes {Bρi }i∈Ib are independent
Wiener processes and the processes {Nj}j∈Ip are point processes of respective stochastic intensity
{t 7→ tr(C∗jCjρt−)}j∈Ip .

The process (ρt)t considered under Pρ models the evolution of a Markov open quantum system
subject to indirect measurements. We refer the reader to [5, 14, 15] and references therein for a
more detailed discussion of this interpretation.

From Itô calculus, (ρt)t is solution of the SDE

dρt = L(ρt−)dt

+
∑
i∈Ib

(
Liρt− + ρt−L

∗
i − tr

(
ρt−(Li + L∗i )

)
ρt−

)
dBρi (t)

+
∑
j∈Ip

( Cjρt−C
∗
j

tr(Cjρt−C∗j )
− ρt−

)(
dNj(t)− tr(Cjρt−C

∗
j ) dt

)
.

(2.4)

Proposition 2.2 then implies that with respect to Pρ, the process (ρt)t is indeed the unique solution
of (1.3) with ρ0 = ρ. Similarly, if ρ0 = πx̂ for some x̂ ∈ PCk, then with respect to Pπx̂ , the process(
Stx
‖Stx‖

)
t
is the solution of (1.4) with x any norm one representative of x̂.

Remark also that for any ρ ∈ Dk, using (2.3), one has from Remark 1

E(StρS
∗
t ) = E(ρtZ

ρ
t ) = Eρ(ρt) = etL(ρ). (2.5)

Our strategy of proof is based on the study of the joint distribution of St and a random initial
state x̂. To this end, we consider the product space Ω×PCk equipped with the filtration (Ft⊗B)t
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and the full σ-algebra F ⊗ B. For any probability measure µ on PCk, and for all E ∈ F and
A ∈ B, let

Qµ(E ×A) =

∫
Pπx̂(E)1x̂∈A dµ(x̂).

We will denote by Eµ the expectation with respect to Qµ. Note that dPπx̂t = ‖Stx‖2 dP for any
x̂ ∈ PCk, so that Pπx̂({Stx = 0}) = 0 for all x ∈ x̂. Therefore

Qµ
(
{Stx = 0}

)
= 0

and there exists a process (x̂t)t for which

x̂t = St · x
holds almost surely. It has the same distribution as the image by the map x 7→ x̂ of the solution
(xt)t to (1.4) with x0 ∈ x̂, ‖x0‖ = 1.

The following proposition shows that the laws of any F-measurable random variables are given
by a marginal of Qµ. For a probability measure µ on PCk, we define

ρµ := Eµ(πx̂).

Proposition 2.3. Let µ be a probability measure on PCk, then ρµ ∈ Dk and for any E ∈ F ,
Qµ(E × PCk) = Pρµ(E).

Proof. The fact that ρµ ∈ Dk follows from the positivity and linearity of the expectation. Con-
cerning the second part, let t ≥ 0 and E ∈ Ft, then

Qµ(E × PCk) =

∫
Pπx̂(E) dµ(x) =

∫ ∫
E

tr(S∗t Stπx̂) dP dµ(x).

Fubini’s Theorem implies

Qµ(E × PCk) =

∫
E

tr(S∗t Stρµ) dP =

∫
E

Z
ρµ
t dP = Pρµt (E).

The uniqueness of the extended measure in Kolmogorov’s extension Theorem yields the proposi-
tion. �

Remark 2. Any F-measurable random variables X can be extended canonically to a F ⊗ B-
measurable random variables setting X(ω, x̂) = X(ω). Proposition 2.3 then implies that the
distribution of a F-measurable random variable under Qµ depends on µ only through ρµ. The
central idea of our proof is that assumption (Pur) will allow us to find a F-measurable process
approximating (x̂t)t. The F-measurability of the process will then imply that it inherits some
ergodicity properties from assumption (L-erg).
Remark 3. If µinv is an invariant measure for the Markov chain (x̂t)t, then with the above notation,
ρµinv

is an invariant state for (etL)t. In particular, if (L-erg) holds then ρµinv
= ρinv. This follows

from the identities

etL(ρµinv
) =

∫
etL(πx̂) dµinv =

∫
Stπx̂S

∗
t dP dµinv(x̂) =

∫
πx̂ dµinv(x̂) = ρµinv

where the second identity uses (2.5).

2.2. Key martingale. The following process is the key to construct a F-measurable process
approximating (x̂t)t. For any t ≥ 0, let

Mt =
S∗t St

tr(S∗t St)
, (2.6)

whenever tr(S∗t St) 6= 0, and give Mt a fixed arbitrary value whenever tr(S∗t St) = 0. Since, by
definition, for any ρ ∈ Dk, Pρ

(
{trS∗t St = 0}

)
= 0, the arbitrary definition of Mt on this set of

vanishing probability is irrelevant. It turns out that with respect to PId/k, (Mt)t is a martingale.
For convenience we write Pch = PId/k and similarly for any other ρ-dependent object, whenever
ρ = Id/k.
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Theorem 2.4. With respect to Pch, the stochastic process (Mt)t is a bounded martingale. There-
fore, it converges Pch-almost surely and in L1 to a random variable M∞. Moreover, for any
ρ ∈ Dk,

dPρ = k tr(ρM∞) dPch,

and (Mt)t converges almost surely and in L1 to M∞ with respect to Pρ.

Proof. Expressing (St)t in terms of Bch
i for i ∈ Ib, we have that

dSt =
(
K+

#Ip
2 Id+

∑
i∈Ib

tr
(
S∗t−(Li + L∗i )St−

)
tr(S∗t−St−)

Li

)
St− dt+

∑
i∈Ib

LiSt− dBch
i (t)+

∑
j∈Ip

(Cj−Id)St− dNj(t).

Recall that the distributions of the Bch
i and Nj under Pch are given by Proposition 2.2.

Since tr(S∗t St) is Pch-almost surely non zero, we can define Rt by Rt = St/
√

tr(S∗t St) almost
surely for Pch, and therefore for Pρ and Qµ. The Itô formula implies

dMt =
∑
i∈Ib

(
R∗t−(Li + L∗i )Rt− −Mt− tr

(
R∗t−(Li + L∗i )Rt−

))
dBch

i (t)

+
∑
j∈Ip

( R∗t−C
∗
jCjRt−

tr(R∗t−C
∗
jCjRt−)

−Mt−

)(
dNj(t)− tr(R∗t−C

∗
jCjRt−) dt

)
.

Hence, with respect to Pch, (Mt)t is a local martingale. By definition, it is positive-semidefinite,
and is also bounded since tr(Mt) = 1 almost surely. Thus (Mt)t is a martingale and standard
theorems of convergence for martingales imply the convergence almost surely and in L1.

By direct computation, we get dPρ|Ft = k tr(ρMt) dPch|Ft . The L1 convergence of (Mt)t with
respect to Pch then implies dPρ = k tr(ρM∞) dPch. Finally the inequality tr(AB) ≤ ‖A‖ tr(B) for
any two positive semidefinite matrices implies Pρ ≤ k Pch, which yields the L1 and almost sure
convergence with respect to Pρ. �

Now we are in the position to show that under the assumption (Pur) the limit M∞ is a rank-
one projector. To this end let us introduce the polar decomposition of (St)t: there exists a process
(Ut)t with values in the set of k × k unitary matrices such that for all t ≥ 0

St =
√

tr(S∗t St)UtM
1/2
t .

Proposition 2.5. Assume that (Pur) holds. Then, for any ρ ∈ Dk, Pρ-almost surely, the random
variable M∞ is a rank-one orthogonal projector on Ck.

Proof. First, since Pρ is absolutely continuous with respect to Pch, proving the result with ρ = Id/k
is sufficient. To achieve this, remark that the Pch-almost sure convergence of (Mt)t and the
Pch-almost sure bound supt≥0 ‖Mt‖ ≤ 1 imply the convergence of Ech(M2

t ). Now recall that
Rt = St/

√
tr(S∗t St). The Itô isometry implies

Ech(M2
t ) = M2

0 +
∑
i∈Ib

∫ t

0

Ech
(
R∗s(Li + L∗i )Rs −Ms tr

(
R∗s(Li + L∗i )Rs

))2

ds

+
∑
j∈Ip

∫ t

0

Ech

(( R∗sC
∗
jCjRs

tr(R∗sC
∗
jCjRs)

−Ms

)2

tr(R∗sC
∗
jCjRs)

)
ds.

Therefore, the convergence of Ech(M2
t ) to Ech(M2

∞) implies that∫ ∞
0

Ech
(
R∗s(Li + L∗i )Rs −Ms tr

(
R∗s(Li + L∗i )Rs

))2

ds <∞

for all i ∈ Ib and ∫ ∞
0

Ech

(( R∗sC
∗
jCjRs

tr(R∗sC
∗
jCjRs)

−Ms

)2

tr(R∗sC
∗
jCjRs)

)
ds <∞
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for all j ∈ Ip. Since the integrands are nonnegative, their inferior limits at infinity are 0. Hence
there exists an unbounded increasing sequence (tn)n such that for any i ∈ Ib,

lim
n

Ech
(
R∗tn(Li + L∗i )Rtn −Mtn tr

(
R∗tn(Li + L∗i )Rtn

))
= 0

and for any j ∈ Ip,

lim
n

Ech

(( R∗tnC
∗
jCjRtn

tr(R∗tnC
∗
jCjRtn)

−Mtn

)2

tr(R∗tnC
∗
jCjRtn)

)
= 0.

Since convergence in L1 implies the almost sure convergence of a subsequence, there exists an
unbounded increasing sequence, which we denote also by (tn)n, such that Pch-almost surely,

lim
n→∞

(
R∗tn(Li + L∗i )Rtn −Mtn tr(R∗tn(Li + L∗i )Rtn)

)
= 0

and

lim
n→∞

(( R∗tnC
∗
jCjRtn

tr(R∗tnC
∗
jCjRtn)

−Mtn

)2

tr(R∗tnC
∗
jCjRtn)

)
= 0

for all i ∈ Ib and j ∈ Ip.
Now and for the rest of this paragraph, fix a realization (i.e. an element of Ω) such that (Mtn)n

converges to M∞. The polar decomposition of Rt is Rt = Ut
√
Mt. Since the set of k × k unitary

matrices is compact, there exists a subsequence (sn)n of (tn)n such that (Usn)n converges to U∞.
We therefore have√

M∞U
∗
∞(Li + L∗i )U∞

√
M∞ −M∞ tr(M∞U

∗
∞(Li + L∗i )U∞) = 0

and √
M∞U

∗
∞C

∗
jCjU∞

√
M∞ −M∞ tr(M∞U

∗
∞C

∗
jCjU∞) = 0,

for all i ∈ Ib and j ∈ Ip. Denoting P∞ the orthogonal projector onto the range of M∞, it follows
that there exist real numbers (αi)i∈Ib and (βj)j∈Ip such that

U∞P∞U
∗
∞(Li + L∗i )U∞P∞U

∗
∞ = αiU∞P∞U

∗
∞

and
U∞P∞U

∗
∞C

∗
jCjU∞P∞U

∗
∞ = βjU∞P∞U

∗
∞.

Assumption (Pur) implies that the orthogonal projector U∞P∞U∗∞ has rank one, thus so does
P∞. Since tr(M∞) = 1, M∞ is a rank one orthogonal projector.

Since (Mtn)n converges Pch-almost surely, the above paragraph and the absolute continuity of
Pρ with respect to Pch show that M∞ is Pρ-almost surely a rank one orthogonal projector. �

3. Invariant measure and exponential convergence in Wasserstein distance

This section is devoted to the main result of the paper, which concerns the exponential conver-
gence to the invariant measure for the Markov process (x̂t)t. We first show a convergence result
for F-measurable random variables. The following theorem is a transcription of [38, Proposition
7.5].

Theorem 3.1. Assume that (L-erg) holds. Then there exist two constants C > 0 and λ > 0 such
that for any ρ ∈ Dk and any t ≥ 0, ∥∥etL(ρ)− ρinv

∥∥ ≤ Ce−λt

Our next proposition requires the introduction of a shift semigroup. From now on we assume
that

(
Ω, (Ft)t,P

)
is a canonical realization of the processes Wi and Nj , in particular Ω is a subset

of (RIb∪Ip)R+ . We can then define for every t ≥ 0 the map θt on Ω by(
θtω
)
(s) = ω(s+ t)− ω(t).

From the previous theorem we deduce the following proposition for F-measurable random vari-
ables.
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Proposition 3.2. Assume (L-erg) holds. Then there exist two constants C > 0 and λ > 0 such
that for any F-measurable, essentially bounded function f : Ω 7→ C with essential bound ‖f‖∞,
any t ≥ 0 and any ρ ∈ Dk, ∣∣Eρ(f ◦ θt)− Eρinv(f)

∣∣ ≤ ‖f‖∞Ce−λt. (3.1)

Proof. Recall that by definition P is the law of processes with independent increments. It follows
that if g is Ft-measurable and h is F-measurable, E(h ◦ θtg) = E(h ◦ θt)E(g). Then, by definition
of Pρ,

Eρ(f ◦ θt) = E(f ◦ θtZρt+s).
Since Zρt+s = tr(St ∗t+sS

t
t+sStρS

∗
t ) where S∗t ρSt is Ft-measurable and St ∗t+sStt+s = S∗sSs ◦ θt by (2.2)

Eρ(f ◦ θt) = E
(
f ◦ θt tr

(
St ∗t+sS

t
t+sE(StρS

∗
t )
))
.

Then relation (2.5), the θ-invariance of P, and the definition of the measures Pρ yield

Eρ(f ◦ θt) = Eρ̄t(f)

with ρ̄t = etL(ρ). It follows from Theorem 2.4 that

Eρ(f ◦ θt)− Eρinv(f) = Ech
(
f tr

(
M∞(etL(ρ)− ρinv)

))
.

For any matrix A, denoting ‖A‖1 its trace norm,
∣∣ tr(M∞A)

∣∣ ≤ ‖A‖1. Therefore,∣∣Eρ(f ◦ θt)− Eρinv(f)
∣∣ ≤ ‖f‖∞‖etL(ρ)− ρinv‖1.

Theorem 3.1 then yields the proposition. �

The main strategy to show Theorem 1.1 is to construct a F-measurable process (ŷt)t approxi-
mating the process (x̂t)t. Let (ẑt)t be the maximum likelihood process:

ẑt = argmax
x̂∈PCk

‖Stx‖ (3.2)

where x is a norm one representative of x̂. If the largest eigenvalue of S∗t St is not simple, the choice
of ẑt may not be unique. However we can always choose an appropriate ẑt in an (Ft)t-adapted
way. If (Pur) holds, Proposition 2.5 ensures that the definition of ẑt is almost surely unambiguous
for large enough t: it is the equivalence class of eigenvectors of Mt corresponding to its largest
eigenvalue.

Let now (ŷt)t be the evolution of this maximum likelihood estimate:

ŷt = St · ẑt. (3.3)

We shall also use the notation ẑst+s := ẑt ◦ θs and ŷst+s := ŷt ◦ θs, that is, processes defined in
the same fashion but substituting Sst+s for St. It is worth noticing that these processes are all
F-measurable.

Our proof that (ŷt)t is an exponentially good approximation of (x̂t)t relies in part on the use
of the exterior product of Ck. We recall briefly the relevant definitions: for x1, x2 ∈ Ck we denote
by x1 ∧ x2 the alternating bilinear form

x1 ∧ x2 : (y1, y2) 7→ det

(
〈x1, y1〉 〈x1, y2〉
〈x2, y1〉 〈x2, y2〉

)
.

Then, the set of all x1 ∧ x2 is a generating family for the set ∧2Ck of alternating bilinear forms
on Ck. We equip it with a complex inner product by

〈x1 ∧ x2, y1 ∧ y2〉 = det

(
〈x1, y1〉 〈x1, y2〉
〈x2, y1〉 〈x2, y2〉

)
,

and denote by ‖x1 ∧ x2‖ the associated norm (there should be no confusion with the norm on
vectors). It is immediate to verify that our metric d(·, ·) on PCk satisfies

d(x̂, ŷ) =
‖x ∧ y‖
‖x‖‖y‖ . (3.4)
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For A ∈ Mk(C), we write ∧2A for the operator on ∧2Ck defined by(
∧2 A

)
(x1 ∧ x2) = Ax1 ∧Ax2. (3.5)

It follows that ∧2(AB) = ∧2A ∧2 B, so that ‖ ∧2(AB)‖ ≤ ‖ ∧2 A‖‖ ∧2 B‖. There exists a useful
relationship between the operator norm on ∧2Mk(C) and singular values of matrices. From e.g.
Chapter XVI of [32],

‖ ∧2 A‖ = a1(A) a2(A), (3.6)
where a1(A) ≥ a2(A) are the two first singular values of A, i.e. the square roots of eigenvalues
of A∗A. We recall that the operator norm is defined such that ‖A‖ := a1(A).

The exponential decrease of d(x̂t, ŷt) is derived from the exponential decay of the following
function:

f : t 7→ E
(
‖ ∧2 St‖

)
.

Lemma 3.3. Assume that (Pur) holds. Then there exist two constants C > 0 and λ > 0 such
that for all t ≥ 0

f(t) ≤ Ce−λt

Proof. First, we show that f converges to zero as t grows to ∞. To this end recall that Rt =

St/
√
kZch

t , so that
E
(
‖ ∧2 St‖

)
= Ech

(
k‖ ∧2 Rt‖

)
.

Furthermore, since R∗tRt = Mt, we have from Theorem 2.4 and Proposition 2.5 that

lim
t→∞

‖ ∧2 Rt‖ = lim
t→∞

a1(Rt) a2(Rt) = 0.

Indeed, since a1(Rt) and a2(Rt) are the largest two eigenvalues of
√
Mt, the fact that it converges

to a rank-one projector implies that a1(Rt) converges to 1 and a2(Rt) to zero. The inequality
‖St‖2 ≤ tr(S∗t St) implies ‖ ∧2 Rt‖ ≤ 1 almost surely. Then Lebesgue’s dominated convergence
theorem yields limt→∞ f(t) = 0.

Second, we show f is submultiplicative. By the semi-group property, St+s = Sst+sSs for all
t, s ≥ 0. Using that the norm is submultiplicative, for any t, s ≥ 0,

‖ ∧2 St+s‖ ≤ ‖ ∧2 Sst+s‖‖ ∧2 Ss‖
Since P has independent increments, ‖ ∧2 Sst+s‖ = ‖ ∧2 St‖ ◦ θs is Fs-independent and ‖ ∧2 Ss‖ is
Fs-measurable,

E
(
‖ ∧2 St+s‖

)
≤ E

(
‖ ∧2 Sst+s‖

)
E
(
‖ ∧2 Ss‖

)
The measure P being shift-invariant,

E
(
‖ ∧2 St+s‖

)
≤ E

(
‖ ∧2 St‖

)
E
(
‖ ∧2 Ss‖

)
which yields that f is submultiplicative.

Since f is measurable, submultiplicative and 0 ≤ f(t) ≤ k for all t, Fekete’s subadditive lemma
ensures that there exists λ ∈ (−∞,∞] such that

lim
t→∞

1

t
log f(t) = inf

1

t
log f(t) = −λ.

Since f converges towards 0, this λ belongs to (0,∞]. This yields the lemma. �

Proposition 3.4. Assume that (Pur) holds. Then there exist two constants C > 0 and λ > 0
such that for any s, t ∈ R+ and for any probability measure µ on (PCk,B),

Eµ
(
d(x̂t+s, ŷ

s
t+s)

)
≤ Ce−tλ. (3.7)

Proof. Recall that Eµ is the expectation with respect to Qµ. Using the Markov property, we have

Eµ
(
d(x̂t+s, ŷ

s
t+s)

)
= Eµs

(
d
(
x̂t, ŷt)

)
(3.8)

with µs the distribution of x̂s conditioned on x̂0 ∼ µ. Then it is sufficient to prove the proposition
for s = 0. For any t ≥ 0, using the fact that ‖Stzt‖ = ‖St‖ for zt a norm one representative of ẑt,

d(x̂t, ŷt) =
‖xt ∧ yt‖
‖xt‖‖yt‖

=
‖Stx0 ∧ Stzt‖
‖Stx0‖‖Stzt‖

≤ ‖ ∧2 St‖
‖Stx0‖‖St‖

≤ ‖ ∧
2 St‖

‖Stx0‖2
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Using this inequality and the fact that dQµ|Ft⊗B = ‖Stx0‖2 dP dµ(x̂0),

Eµ
(
d(x̂t, ŷt)

)
≤
∫

E
(
‖ ∧2 St‖

)
dµ(x̂0) ≤ f(t).

Finally Lemma 3.3 yields the proposition. �

We turn to the proof of our main theorem, Theorem 1.1. The speed of convergence is expressed
in terms of the Wasserstein distance W1. Let us recall the definition of this distance for compact
metric spaces: for X a compact metric space equipped with its Borel σ-algebra, the Wasserstein
distance of order 1 between two probability measures σ and τ on X can be defined using the
Kantorovich–Rubinstein duality Theorem as

W1(σ, τ) = sup
f∈Lip1(X)

∣∣∣ ∫
X

f dσ −
∫
X

f dτ
∣∣∣,

where Lip1(X) = {f : X → R s.t. |f(x) − f(y)| ≤ d(x, y)} is the set of Lipschitz continuous
functions with constant one, and d is the metric on X. Here we use this for X = PCk and d
defined in (2.1) (see also (3.4)).

We recall our main theorem before proving it.

Theorem 3.5. Assume that (Pur) and (L-erg) hold. Then the Markov process (x̂t)t has a
unique invariant probability measure µinv, and there exist C > 0 and λ > 0 such that for any
initial distribution µ of x̂0 over PCk, for all t ≥ 0, the distribution µt of x̂t satisfies

W1(µt, µinv) ≤ Ce−λt

where W1 is the Wasserstein distance of order 1.

Proof. Let f ∈ Lip1(PCk). From the definition of Wasserstein distance, we can restrict ourselves to
functions f that vanish at some point. Remark that since supx̂,ŷ∈PCk d(x̂, ŷ) = 1, restricting to this
set of functions implies ‖f‖∞ ≤ 1. Let µinv be an invariant probability measure for (x̂t)t. We will
prove the exponential convergence of (µt)t towards µinv for any initial µ0, and that will imply that
(x̂t)t accepts a unique invariant probability measure. Let t ≥ 0, and recall that ŷt/2t = ŷt/2 ◦ θt/2.
We have

Eµ
(
f(x̂t)

)
− Eµinv

(
f(x̂t)

)
= Eµ

(
f(x̂t)

)
− Eµ

(
f(ŷ

t/2
t )

)
+ Eµinv

(
f(ŷ

t/2
t )

)
− Eµinv

(
f(x̂t)

)
+ Eµ

(
f(ŷ

t/2
t )

)
− Eµinv

(
f(ŷ

t/2
t )

)
≤ Eµ

(
d(x̂t, ŷ

t/2
t )

)
+ Eµinv

(
d(x̂t, ŷ

t/2
t )

)
(3.9)

+ Eµ
(
f(ŷ

t/2
t )

)
− Eµinv

(
f(ŷ

t/2
t )

)
. (3.10)

The two terms on the right hand side of line (3.9) are bounded using Proposition 3.4. Using
Proposition 2.3, the difference on line (3.10) satisfies

Eµ
(
f(ŷ

t/2
t )

)
− Eµinv

(
f(ŷ

t/2
t )

)
= Eρµ

(
f(ŷ

t/2
t )

)
− Eρinv

(
f(ŷ

t/2
t )

)
.

Then bounding the right hand side using Proposition 3.2, it follows there exist C > 0 and λ > 0
such that ∣∣∣Eµ(f(x̂t)

)
− Eµinv

(
f(x̂t)

)∣∣∣ ≤ 3Ce−λt/2.

Adapting the two constants yields the theorem. �

4. Set of invariant measures under (Pur)

The results and proofs of this section are a direct translation of [11, Appendix B]. We reproduce
the proofs for the reader’s convenience.

Whenever (L-erg) does not hold, dim kerL > 1 and the semigroup (etL)t accepts more than
one fixed point in Dk. The convex set of invariant states can be explicitly classified given the
matrices (Li)i∈Ib and (Cj)j∈Ib . Following [9, Theorem 7] (alternatively see Theorem 7.2 and
Proposition 7.6 in [38], and [36]), there exists a decomposition

Ck ' Cn1 ⊕ · · · ⊕ Cnd ⊕ CD, k = n1 + . . .+ nd +D



12 T. BENOIST, M. FRAAS, Y. PAUTRAT, AND C. PELLEGRINI

with the following properties:
(1) The range of any invariant states is a subspace of V = Cn1 ⊕ · · · ⊕ Cnd ⊕ {0};
(2) The restriction of the operators Li and Cj to Cn1 ⊕ · · · ⊕ Cnd are block-diagonal, with

Li = L1,i ⊕ · · · ⊕ Ld,i, i ∈ Ib,
Cj = C1,j ⊕ · · · ⊕ Cd,j , j ∈ Ip;

(4.1)

(3) For each ` = 1, . . . , d there is a decomposition Cn` = Ck` ⊗ Cm` , n` = k` ×m`, a unitary
matrix U` on Cn` and matrices {L̂`,i}i∈Ib and {Ĉ`,j}j∈Ip on Ck` such that

L`,i = U`(L̂`,i ⊗ IdCm` )U
∗
` , i ∈ Ib,

C`,j = U`(Ĉ`,j ⊗ IdCm` )U
∗
` , j ∈ Ip;

(4.2)

(4) There exists a positive definite matrix ρ` on Ck` such that

0⊕ · · · ⊕ U`(ρ` ⊗ IdCm` )U
∗
` ⊕ · · · ⊕ 0 (4.3)

is a fixed point of (etL)t.
Then, the set of fixed points for (etL) is

U1

(
ρ1 ⊗Mm1

(C)
)
U∗1 ⊕ . . .⊕ Ud

(
ρd ⊗Mmd(C)

)
U∗d ⊕ 0MD(C).

The decomposition simplifies under the purification assumption.

Proposition 4.1. Assume that (Pur) holds. Then there exists a set {ρ`}d`=1 of positive definite
matrices and an integer D such that the set of fixed points of (etL)t is

Cρ1 ⊕ · · · ⊕ Cρd ⊕ 0MD(C).

Proof. The statement follows from the discussion preceding the proposition if we show that (Pur)
implies m1 = . . . = md = 1. Assume that one of the m`, e.g. m1, is greater than 1. Let x be a
norm one vector in Ck1 . Then π = U1(πx̂ ⊗ ICm1 )U∗1 ⊕ 0⊕ · · · ⊕ 0 is an orthogonal projection of
rank m1 > 1, and

π(Li + L∗i )π = ‖(L1,i + L∗1,i)x‖2 π and π(C∗jCj)π = ‖C∗1,jC1,jx‖2 π for all i ∈ Ib, j ∈ Ip,
and this contradicts (Pur). �

It is clear from Proposition 4.1 that to each extremal fixed point 0⊕· · ·⊕ρ`⊕· · ·⊕0 corresponds
a unique invariant measure µ` supported on its range ran ρ`. The converse is the subject of the
next proposition.

Proposition 4.2. Assume (Pur) holds. Then any invariant probability measure of (x̂t)t is a
convex combination of the measures µ`, ` = 1, . . . , d.

Proof. Let µ be an invariant probability measure for (x̂t)t and f be a continuous function on PCk.
Proposition 3.4 implies that∫

f dµ = Eµ
(
f(x̂0)

)
= Eµ

(
f(x̂t)

)
= lim
t→∞

Eµ
(
f(ŷt)

)
.

Since (ŷt)t is F-measurable, Proposition 2.3 implies
∫
f dµ = limt→∞ Eρµ

(
f(ŷt)

)
, and by Remark

3, ρµ ∈ Dk is a fixed point of (etL)t. Proposition 4.1 ensures that there exist nonnegative numbers
p1, . . . , pd summing up to one such that ρµ = p1 ρ1 ⊕ · · · ⊕ pd ρd ⊕ 0MD(C). From the definition of
Pρµ ,

Pρµ = p1 Pρ1 + · · ·+ pd Pρd

with the abuse of notation ρ` := 0⊕ · · · ⊕ ρ` ⊕ · · · ⊕ 0, so that∫
f dµ = lim

t→∞
p1 Eρ1

(
f(ŷt)

)
+ · · ·+ pd Eρd

(
f(ŷt)

)
.

The same argument gives
∫
f dµ` = limt→∞ Eρ`

(
f(ŷt)

)
, and we have µ = p1 µ1 + . . .+ pd µd. �
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5. (Pur) is not necessary for purification

As shown by the following example, the condition (Pur) is sufficient but not necessary for (1.5)
to hold.

Let k = 3 and fix an orthonormal basis {e1, e2, e3} of C3. Let Ib = {0, 1}, Ip = {2}, u =

(e1 + e2 + e3)/
√

3 and v = (e1 + e3)/
√

2. Let

H = 0, V0 = L0 = e1u
∗, V1 = L1 = 2vv∗ + e2e

∗
2, V2 = C2 = ue∗1. (5.1)

Proposition 5.1. Let L be the Lindblad operator given by (1.2) with H, V1, V2, V3 defined
in (5.1). Then (L-erg) holds and the unique invariant state ρinv is positive definite.

Proof. Using [38, Proposition 7.6], it is sufficient to prove that if π is a non null orthogonal projector
such that (Id− π)L0π = (Id− π)L1π = (Id− π)C2π = 0, then π = Id. Assume rankπ < 3. Since
π ∈ M3(C), there exist x̂ ∈ PC3 such that either π = πx̂ or π = Id − πx̂. If the first alternative
holds, (Id − π)L0π = (Id − π)L1π = (Id − π)C2π = 0 implies x̂ is the equivalence class of a
common eigenvector of L0, L1 and C2. If the second alternative holds, x̂ is the equivalence class of
a common eigenvector of L∗0, L∗1 and C∗2 . The only common eigenvectors of L0 and C2 or L∗0 and
C∗2 are elements of C(e2− e3). Since L1 is self adjoint, and this eigenspace is not an eigenspace of
L1, the proposition holds. �

In the orthonormal basis {e1, e2, e3},

L∗0 + L0 =
1√
3

2 1 1
1 0 0
1 0 0

 , L∗1 + L1 = 2

1 0 1
0 1 0
1 0 1

 and C∗2C2 =

1 0 0
0 0 0
0 0 0

 .

Taking π the orthogonal projector onto the subspace spanned by {e2, e3} it follows that (Pur)
does not hold. Yet we have the following proposition.

Proposition 5.2. Consider the family of processes (ρt)t defined by (1.3) with H, L0, L1, C2

defined in (5.1). Then for any ρ ∈ Dk,
lim
t→∞

inf
ŷ∈PCk

‖ρt − πŷ‖ = 0 Pρ-almost surely.

Proof. Proposition 5.1 implies that ρinv, the unique element of Dk invariant by (etL)t is positive
definite. Then, tr(C∗2C2ρinv) > 0. The results of [29] thus ensure that for any ρ ∈ Dk,

lim
t→∞

N2(t)/t = tr(C∗2C2 ρinv), Pρ-almost surely.

Let T = inf{t ≥ 0 : N2(t) ≥ 1}. Then Pρ(T <∞) = 1 and from the definition of C2,

ρT = πû and ρt = πSTt ·û for any t ≥ T.
Hence inf ŷ∈PCk ‖ρt − πŷ‖ = 0 for any t ≥ T and Pρ(T <∞) = 1 yield the proposition. �

Corollary 5.3. Consider the process (x̂t)t defined by (1.4) with H, L0, L1, C2 defined in (5.1).
Then (x̂t)t accepts a unique invariant probability measure µinv and there exist C > 0 and λ > 0
such that for any initial distribution µ of x̂0 over PC3, for all t ≥ 0, the distribution µt of x̂t
satisfies

W1(µt, µinv) ≤ Ce−λt.
Proof. It is a direct adaptation of our proof of Theorem 1.1. Indeed Theorem 1.1 holds if one
substitutes the conclusion of Proposition 2.5 for (Pur). Taking ρ0 = Id/3 in the latter proposition
yields ρt =

StS
∗
t

tr(StS∗
t ) and Mt =

S∗
t St

tr(StS∗
t ) . Therefore, ρt and Mt are unitarily equivalent. Following

the arguments and notation of the proof of Proposition 5.2 we see that Pch-almost surely, MT has
rank one, and so does any Mt for t ≥ T . Hence the conclusion of Proposition 2.5 holds and the
corollary is proven. �

Following the proofs of the discrete-time results of [11], we can prove that the implication in
Proposition 2.5 is an equivalence if (Pur) is replaced by
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(NSC-Pur): Any non zero orthogonal projector π that satisfies πS∗t Stπ ∝ π P-almost surely for
any t ≥ 0 has rank one.

Alas, in practice, such a condition is hard to check.

6. Examples

In the following examples k = 2. We recall the definition of the Pauli matrices:

σx :=

(
0 1
1 0

)
, σy :=

(
0 −i
i 0

)
and σz :=

(
1 0
0 −1

)
.

A standard orthonormal basis of M2(C) equipped with the Hilbert–Schmidt inner product is(
1√
2
Id, 1√

2
σx,

1√
2
σy,

1√
2
σz

)
.

In the basis of Pauli matrices one can write in a unique way any projection πx̂ as

πx̂ = 1
2

(
Id + Xσx + Yσy + Zσz

)
where

X = tr(πx̂σx), Y = tr(πx̂σy), Z = tr(πx̂σz).

We denote in particular by Xt,Yt,Zt respectively the coordinates associated with πx̂t .

6.1. Unitarily perturbed non demolition diffusive measurement. Our first example con-
sists of a 1

2 -spin (or qbit) in a magnetic field oriented along the y-axis and subject to indirect non
demolition measurement along the z-axis. It is a typical quantum optics experimental situation
(see for example [20]). In terms of the parameters defining the related quantum trajectories, we
get H = σy, Ib = {0}, Ip = ∅ and L0 =

√
γ σz with γ > 0. Then (πx̂t)t conditioned on x̂0 is the

solution of

dπx̂t =
(
− i[σy, πx̂t ] + γ(σzπx̂tσz − πx̂t)

)
dt+

√
γ
(
σzπx̂t + πx̂tσz − 2 tr(σzπx̂t)πx̂t

)
dBt. (6.1)

For this quantum trajectory it is immediate to verify (Pur), and solving L(ρ) = 0 shows that
ρinv = 1

2 Id is the unique invariant state, so that (L-erg) holds. Hence, by Theorem 1.1 (x̂t)t has
a unique invariant measure. In the following we derive an explicit expression for this invariant
measure.

The next Lemma allows us to restrict the state space.

Lemma 6.1. If µ(Y0 = 0) = 1 then Qµ(Yt = 0) = 1 for all t in R.

Proof. From equation (6.1), (Yt)t is the solution of dYt = 2Yt(γ dt−√γ Zt dBt). It is therefore a
Doléans-Dade exponential:

Yt = Y0 e
2γt exp

(
− 2γ

∫ t

0

Z2
s ds− 2

√
γ

∫ t

0

Zs dBs
)

and the conclusion follows. �

Now we prove that the invariant measure admits a rotational symmetry.

Lemma 6.2. Assume that the distribution µ of x̂0 is invariant with respect to the mapping x̂ 7→
σy · x̂. Then µt is invariant with respect to the same mapping.

Proof. Since σy is unitary and self-adjoint, we have πσy·x̂ = σyπx̂σy. Since σyσz = −σzσy, it
follows from (6.1) that

d(σyπx̂tσy) =
(
− i[σy, σyπx̂tσy] + γ(σzσyπx̂tσyσz − σyπx̂tσy)

)
dt

−√γ
(
σzσyπx̂tσy + σyπx̂tσyσz − 2 tr(σzσyπx̂tσy)σyπx̂tσy

)
dBt.

Then it follows from σy · x̂0 ∼ x̂0 and (Bt)t ∼ (−Bt)t that (x̂t)t and (σy · x̂t)t are both weak
solutions to the same SDE with the same initial condition. Since this SDE has a unique solution,
they have the same distributions. �
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Proposition 6.3. Let (x̂t)t be the process defined by (6.1). Then its unique invariant measure is
the normalized image measure by

ι : θ 7→ 1
2

(
Id + sin θ σx + cos θ σz

)
(6.2)

of the measure τ(θ) dθ on (−π, π] with

τ(θ) =

∫ π

θ

exp
cotx− cot θ

γ

sinx

sin3 θ
dx

for θ ∈ [0, π] and τ(θ) = τ(θ + π) for θ ∈ (−π, 0].

Proof. The convergence results in Theorem 1.1 and Lemma 6.1 imply that the invariant measure
µinv is the image by ι of a probability measure τ on (−π, π]. Let (θt)t be the solution of

dθt = 2(1− γ cos θt sin θt) dt− 2
√
γ sin θt dBt (6.3)

with initial condition θ0. Remark that (θt)t is 2π-periodic with respect to its initial condition,
namely, (θt + 2π)t is solution of (6.3) with initial condition θ0 + 2π. Now, using the Itô formula,

(cos θt, sin θt)t ∼
(

tr(πx̂tσz), tr(πx̂tσx)
)
t

for (πx̂t)t solution of (6.1) with initial condition x̂0 = 1
2

(
Id + sin θ0 σx + cos θ0 σz

)
. Hence

(
ι(θt)

)
t

has the same distribution as (x̂t)t. Therefore τ is an invariant measure for the diffusion defined
by (6.3); in addition, Theorem 1.1 shows that this invariant measure is unique, and Lemma 6.2
shows that it is π-periodic. Following standard methods (see [28]), one shows that the restriction
of τ to [0, π) has a density of the form τ(θ) = C1τ1(θ) + C2τ2(θ) with C1, C2 ∈ R and

τ1(θ) =

∫ π
θ

sinx exp( 1
γ cotx) dx

sin3 θ exp( 1
γ cot θ)

τ2(θ) =
1

sin3 θ exp( 1
γ cot θ)

Now, straightforward analysis shows that
∫ π

0
τ1(θ) dθ <∞ while

∫ π
0
τ2(θ) dθ =∞. Therefore, τ is

proportional to τ1 and the result follows.
�

Remark 4. For γ → ∞, the invariant measure µinv in Proposition 6.3 is a Dirac measure at 0
and π. To describe the scaling for γ large we embed τ(θ) into L1(R) by defining it to be zero
outside the region (−π, π]. Then on the positive half line, in the L1 norm,

lim
γ→∞

1

2γ3
τ(
θ

γ
) =

1

θ3
exp(−1

θ
).

Hence, for large γ, the stationary probability distribution has two peaks of width (of order) 1/γ
located 1/γ radians clockwise from the limit points 0 and π. Furthermore the probability to find
the particle around the limit points is exponentially suppressed.

The strong noise limit, γ →∞, was recently studied in various models [2, 8, 12]. This is the first
model that allows for an explicit calculation of the shape of the stationary probability measure.
The density of the invariant probability distribution is plotted in Figure 1 for three values of γ,
and for θ ∈ [0, π].

6.2. Thermal qubit, diffusive case. The following second example corresponds to the evolution
of a qubit interacting weakly with the electromagnetic field at a fixed temperature. The emission
and absorption of photons by the qubit are stimulated by a resonant coherent field (laser). In the
limit of a strong stimulating laser, the measurement of emitted photons results in a diffusive signal
whose drift depends on the instantaneous average value of the raising and lowering operators of the
qubit (see [37, §4.4] for a more detailed physical derivation). We obtain an analytically solvable
model if we assume that the unitary rotation of the qubit is compensated for and thus frozen. In
terms of the parameters defining the related quantum trajectories, we get H = 0, I = Ib = {0, 1},
L0 =

√
a σ+ and L1 =

√
b σ− with a, b ∈ R+ \ {0} and σ± = 1

2 (σx ± iσy), so that σ+ =

(
0 1
0 0

)
and σ− =

(
0 0
1 0

)
.
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Figure 1. The restriction to [0, π] of the density of the invariant probability
distribution in Example 6.1.

The stochastic master equation satisfied by πx̂t is

dπx̂t = a
(
σ+πx̂tσ− − 1

4

(
(Id− σz)πx̂t + πx̂t(Id− σz)

))
dt

+ b
(
σ−πx̂tσ+ − 1

4

(
(Id + σz)πx̂t + πx̂t(Id + σz)

))
dt

+
√
a
(
σ+πx̂t + πx̂tσ− − tr(σxπx̂t)πx̂t

)
dB0(t)

+
√
b
(
σ−πx̂t + πx̂tσ+ − tr(σxπx̂t)πx̂t

)
dB1(t)

(6.4)

Again it is immediate to verify (Pur), and solving for L(ρ) = 0 shows that (L-erg) holds.

Lemma 6.4. If µ(Y0 = 0) = 1 then Qµ(Yt = 0) = 1 for all t in R.

Proof. From (6.4), (Xt)t and (Yt)t satisfy

dYt = −Yt
(

1
2 (a+ b) dt+ Xt

(√
a dB0(t) +

√
bdB1(t)

))
.

Therefore, if one defines

Mt = exp
(
− 1

2

∫ t

0

(a+ b)X 2
s ds−

∫ t

0

Xs
(√
adB0(s) +

√
bdB1(s)

))
then one has Yt = Y0 e−

1
2 (a+b)tMt, and this proves Lemma 6.4. �

Proposition 6.5. Let (x̂t)t be the process defined by (6.4). Then its unique invariant measure is
the normalized image measure by ι (defined by (6.2)) of the measure τ(θ) dθ on (−π, π] with

τ(θ) =
eςz arctan

(
ς(cos θ−z)

)
(

cos2 θ + 1− 2z cos θ)
)3/2 ,

with z = a−b
a+b and ς = a+b

2
√
ab
.

Proof. As in the proof of Proposition 6.3, Theorem 1.1 and Lemma 6.4 imply that the invariant
measure µinv is the image by ι of a probability measure τ on (−π, π]. Let (θt)t be the solution of

dθt =
(
(b− a) sin θt + 1

2 (a+ b) cos θt sin θt
)

dt+
√
a (cos θt − 1) dB0(t) +

√
b (cos θt + 1) dB1(t).

(6.5)
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The Itô formula implies once again

(cos θt, sin θt) ∼
(

tr(πx̂tσz), tr(πx̂tσx)
)
t

for (πx̂t)t solution of (6.4) with initial condition x̂0 = 1
2

(
Id+sin θ0 σx+cos θ0 σz

)
. Hence

(
ι(θt)

)
has

the same distribution as (x̂t). As in the proof of Proposition 6.3, standard techniques show that
the unique invariant distribution for (6.5) has density proportional to the function τ above. �

The density of the invariant probability distribution for three values of the pair (a, b) is plotted
in Figure 2.

−3 −2 −1 0 1 2 3

θ

0.00

0.05

0.10
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0.30
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a=2, b=1
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Figure 2. The density of the invariant probability distribution for Example 6.2.

6.3. Thermal qubit, jump case. Our third example is the second one where the stimulating
coherent field has relatively small amplitude and is filtered out. Then, the signal is composed
only of the photons absorbed or emitted by the qubit. The resulting trajectory involves only
jumps related to these events. The parameters defining the model are then, H = 0, Ib = ∅ and
Ip = {0, 1}, C0 =

√
a σ+ and C1 =

√
b σ− with a, b ∈ R+ \ {0}.

The process (πx̂t)t is solution of

dπx̂t =a
(
σ+πx̂t−σ− − 1

4

(
(Id− σz)πx̂t− + πx̂t−(Id− σz)

))
dt

+ b
(
σ−πx̂t−σ+ − 1

4

(
(Id + σz)πx̂t− + πx̂t−(Id + σz)

))
dt

+
( σ+πx̂t−σ−

tr(σ−σ+πx̂t−)
− πx̂t−

)(
dN0(t)− a tr(σ−σ+πx̂t−)dt

)
+
( σ−πx̂t−σ+

tr(σ+σ−πx̂t−)
− πx̂t−

)(
dN1(t)− b tr(σ+σ−πx̂t−)dt

)
(6.6)

where N0 and N1 are Poisson processes of stochastic intensities

t 7→
∫ t

0

a tr(σ−σ+πx̂s−) ds and t 7→
∫ t

0

b tr(σ+σ−πx̂s−) ds.

Assumptions (Pur) and (L-erg) hold as in Example 6.2.

Proposition 6.6. Let {e1, e2} denote the canonical basis of C2. The invariant measure for Equa-
tion (6.6) is

µinv =
a

a+ b
δπê1 +

b

a+ b
δπê2
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Proof. It is enough to check from (6.6) that, if x̂0 is either ê1 or ê2 then (πx̂t)t is a jump process on
(πê1 , πê2) with intensity b for the jumps from πê1 to πê2 and intensity a for the reverse jumps. �

6.4. Finite state space Markov process embedding. In this last example we show how we
can recover all the usual continuous-time Markov chains using special quantum trajectories.

Let {e`}k`=1 be an orthonormal basis of Ck, and (Xt)t a {e1, . . . , ek}-valued Markov process with
generator Q (we recall that Q is a k× k real matrix such that E(〈v,Xt〉|X0) = 〈v, etQX0〉 for any
vector v ∈ Ck). LetH be diagonal in the basis {e`}k`=1, let Ib = ∅ and Ip = {(i, j); i 6= j in 1, . . . , k}
and for any (i, j) ∈ Ip let Ci,j =

√
Qi,j eje

∗
i .

Proposition 6.7. Let (x̂t)t be the quantum trajectory defined by Equation (1.4) and the above
parameters. Then assumption (Pur) holds. In addition,

(i) Let T = inf
{
t ≥ 0 : x̂t ∈ {ê1, . . . , êk}

}
. If for all i there exists j with Qi,j > 0 then for

any probability measure µ over PCk, Pµ(T <∞) = 1.
(ii) Conditionally on x̂0 ∈ {ê`}k`=1, the process (x̂t)t has the same distribution as the image

by x 7→ x̂ of (Xt)t.
(iii) The assumption (L-erg) holds if and only if (Xt)t accepts a unique invariant measure. In

that case, the unique invariant measure νinv for (x̂t)t is the image by x 7→ x̂ of the unique
invariant measure for (Xt)t.

Proof. Note first that any C∗i,jCi,j = Qi,j eie
∗
i , so that (Pur) holds trivially.

To prove (i), let T1 = inf{t > 0; ∃(i, j) ∈ Ip such that Ni,j(t) > 0}. Remark that because
tr(Ci,jπx̂s−C

∗
i,j) = Qi,j |〈ei, xs−〉|2, the sum

∑
i,j Ni,j of independent Poisson processes has inten-

sity ∑
i,j

∫ t

0

Qi,j |〈ei, xs−〉|2 ds ≥ t min
i
Qi

where Qi =
∑
j Qi,j is positive by assumption, so that T1 is almost surely finite. Now consider

the almost surely unique (i, j) in Ip such that Ni,j(T1) > 0; necessarily tr(Ci,jπx̂t−C
∗
i,j) > 0, and

then
Ci,jπx̂t−C

∗
i,j

tr(Ci,jπx̂t−C
∗
i,j)

= πêj , so that T ≤ T1. This proves (i).
Now, to prove (ii), remark that equation (1.3) can be rewritten in the form

dπx̂t =
∑

(i,j)∈Ip

(
tr(Ci,jπx̂t−C

∗
i,j)πx̂t− −

1

2
{C∗i,jCi,j , πx̂t−}

)
dt

+
∑

(i,j)∈Ip

( Ci,jπx̂t−C
∗
i,j

tr(Ci,jπx̂t−C
∗
i,j)
− πx̂t−

)
dNi,j(t).

Let T1 be defined as above; then for t < T1 the process (πx̂t)t satisfies

πx̂t = πx̂0
+

∑
(i,j)∈Ip

∫ t

0

(
tr(Ci,jπx̂s−C

∗
i,j)πx̂s− −

1

2
{C∗i,jCi,j , πx̂s−}

)
ds. (6.7)

Starting with an initial condition x̂0 ∈ {ê`}k`=1, one proves easily that the integrand is zero, which
means that πx̂t = πx̂0

for t < T1. This shows in addition that for t < T1, the intensity of Ni,j is∫ t

0

tr(Ci,jπx̂s−C
∗
i,j) ds =

{
Qi,j t if x0 = ei

0 otherwise.

Therefore, conditionally on x0 = ei, T1 = inf{t > 0; ∃j 6= i such that Ni,j(t) > 0} and there exists
an almost surely unique j such that Ni,j(T1) > 0. One then has

πx̂T1 =
Ci,jπx̂T1−C

∗
i,j

tr(Ci,jπx̂T1−C
∗
i,j)

= πêj .

This shows that for t ∈ [0, T1] the process (x̂t)t has the same distribution as the process of
equivalence classes of Xt. This extends to all t by the Markov property of the Poisson processes.
This proves (ii).
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Points (i) and (ii) show that for t > T1, the process (x̂t)t has the same distribution as (Xt)t with
initial condition XT1

satisfying X̂T1
= x̂T1

. Therefore any invariant measure for (x̂t)t is the image
by x 7→ x̂ of an invariant measure for (Xt)t. Theorem 1.1 and Section 4 show that (x̂t)t admits
at least one invariant measure, and that the invariant measure is unique if and only if (L-erg)
holds. This implies that (Xt)t has a unique invariant measure if and only if (L-erg) holds. �
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