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Abstract. The paper is devoted to the accuracy improvement of robot-based mil-

ling by using an enhanced manipulator model that takes into account both geome-

tric and elastostatic factors. Particular attention is paid to the model parameters 

identification accuracy. In contrast to other works, the proposed approach takes in-

to account impact of the gravity compensator and link weights on the manipulator 

elastostatic properties. In order to improve the identification accuracy, the industry 

oriented performance measure is used to define optimal measurement configura-

tions and an enhanced partial pose measurement method is applied for the identifi-

cation of the model parameters. The advantages of the developed approach are 

confirmed by experimental results that deal with the elastostatic calibration of a 

heavy industrial robot used for milling. The achieved accuracy improvement fac-

tor is about 2.4.   

Keywords: Robot-based milling, elastostatic calibration, gravity compensator 

1 Introduction 

At present, the conventional CNC machines are progressively replaced in in-

dustry by robotic manipulators to perform main manufacturing tasks. For those 

applications, industrial robots are considered to be very competitive due to their 

manufacturing flexibility, large workspace, cost-effectiveness and so on. At the 

same time, the robotic-based machining introduces some difficulties. For instance, 

link and joint compliances become non-negligible when robot is under substantial 

external loading. So, in order to achieve high processing accuracy, essential revi-

sion of relevant mathematical models and control strategies are required. 
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The stiffness modeling of robotic manipulators has been in the focus of the re-

search community for more than 30 years (Salisbury 1980). There exist different 

approaches that are able to take into account particularities of serial and parallel 

manipulators (Merlet and Gosseling 2008 , Kövecses, and Angeles 2007). Among 

a number of existing stiffness modeling approaches, the Virtual Joint Modeling 

(VJM) method looks the most attractive in robotics. Its main idea is to take into 

account the elastostatic properties of flexible components by presenting them as 

equivalent localized virtual springs (Pashkevich et al. 2011). However the stiffness 

modeling of the manipulators with gravity compensators has not found enough at-

tention yet. Another difficulty related to the stiffness modeling of robotic manipu-

lator is the identification of its model parameters. This problem is quite new in ro-

botics, the existing approaches are suitable for strictly serial manipulators mainly 

(Dumas et al. 2011). Therefore, the paper aims to obtain a sophisticated elasto-

static model for heavy industrial robots with a gravity compensator and to identify 

their parameters. 

2 Problem of the compliance errors compensation  

In common engineering practice, robot behavior under an external loading can 

be described by the following force-deflection relation (Klimchik et al. 2012a) 

  1

θ θ θθ θ· · T


   t J K H J F   (1) 

where 
θJ  and 

θθH  are the Jacobian and Hessian matrices respectively, the matrix 

θK  describes the elastic properties of the manipulator components. This model al-

lows us to compute the end-effector deflection t  due to the external loading F . 

Since the manipulator deflection caused by the loading is known, it can be used to 

improve the positioning accuracy by means of error compensation technique 

(Fig. 1). However in practice, only geometrical parameters are provided by the ro-

bot manufacturer, while elastostatic parameters should be identified using dedicat-

ed calibration techniques. Usually the force-deflection relation (1) is rearranged in 

the linear model suitable for the identification procedure, which is a linear map-

ping between the parameters to be identified and the end-effector displacement 

1 1 ,...; ( 1, , )T T

i i i i i i ni ni i i m     t A k A J J J FJF  (2) 

where the vector k  collects elastostatic parameters of the matrix 1

θ θ

k K . 

It should be mentioned that such a model can be efficiently applied for strictly 

serial manipulators (without closed-loops) while for heavy manipulators with a 

gravity compensator this procedure should be revised in order to take into account 

particularities of the stiffness model. Another difficulty here is related to the gravi-

ty compensator modeling, whose parameters are usually not given.  
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Fig. 1 Off-line compliance errors compensation strategy 

Hence, the goal of this work is to obtain a sophisticated elastostatic model that 

can be used for compliance errors compensation. Accordingly, two problems 

should be considered: (i) developing the model for the compensator and metho-

dology for the identification of its parameters; (ii) integration of the compensator 

into conventional elastostatic model and identification of its parameters. 

3 Parameters of the enhanced manipulator model and their 
identification 

Considered industrial robot KUKA KR-270 incorporates gravity compensator 

that is used to balance link-weights but also affects manipulator elastostatic prop-

erties. The mechanical structure of the gravity compensator under study is pre-

sented in Fig. 2. The compensator incorporates a passive spring attached to the 

first and second links, which creates a closed loop that generates the torque ap-

plied to the second joint of the manipulator. The compensator geometrical model 

includes three node points P0, P1, P2, which yield three principal geometrical pa-

rameters 1 2,L P P , 0 2,a P P , 0 1,s P P . Let us also introduce some auxiliary 

parameters (such as 
xa  and 

ya ), whose geometrical meaning is described in 

Fig. 2. The fact that the gravity compensator affects on the second joint only al-

lows us to replace the constant parameter 
2

K  in the model (1) by the non-linear 

one that also takes into account elasto-static properties of the compensator. 

The variable s  describing the compensator spring deflection can be computed 

as the function of second joint coordinate 
2q  as follows:  

2 2 2

2cos( )2s a La L q      (3) 
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Fig. 2 Gravity compensator and its model 

Therefore, the equivalent stiffness of the second joint (comprising both the mani-

pulator and compensator stiffnesses) can be expressed as 

2 2

0 20

2 2 22
sin cos co( ) ( ) s( )c

s a L
L q qK K K a q

s s
      

  
     

  
 (4) 

where 
cK  is the gravity compensator stiffness, the value 

0s  corresponds to the 

distance 0 1,P P
 
for the unloaded spring. This allows us to extend the classical 

stiffness model (1) of the serial manipulator by modifying the virtual spring para-

meters in accordance with the compensator properties. In this case, the Cartesian 

stiffness matrix 
CK  can be computed using following expression  

 
1

1 T

C θ θ θθ θ( ( ) )· ·


 K J K q H J   (5) 

which includes both the first and second order derivatives (Jacobians and Hes-

sians) of the functions  ,g q θ  describing the manipulator geometry ((Pashkevich 

et al. 2011)). Here, the vectors q  and θ  collect actuator coordinates and the cor-

responding deflections.  

The equivalent stiffness of the second joint (4) depends on several geometrical 

parameters ( , ,x yL a a ) that are unknown and should be identified using reference 

points illustrated in Fig. 2b. Taking into account particularities of the experimental 

setup for the geometric parameters identification, where for each measurement of 

the point P1 joint coordinate 
2q  is given, the value of L  can be computed as  

1 1

m T T

i i ii i

m

i
L

 
 p Ru u u   (6) 

where 
1

1

m

i ii im


  p p p , 

1

1

m

i ii im


  u u u , [cos , sin , 0]Ti i iq qu , 

ip  is 

the Cartesian coordinate vector of point P1 for the ith measurement and m  is the 

number of measurements and the orthogonal matrix TR VU  can be obtained 

using the following SVD-factorization 
1

m

ii

T

i
 u p UΣV . The remaining geo-

metrical parameters (
xa  and 

ya ) are x and y coordinates of the vector 

  1 1

1 1 1 1 1 1

1

0

1

2

k m k m k m
j j j j j

i i i i i

j i j

T

i i

i j i

T T s k m 

   



 

 
   

 
  p I nn p p p nn p  (7) 
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where 1

1

mj j j

i i ll
m


  p p p , 1

1

mj j j j j

i i i i il

T Ts m


  p p p p , j

ip  is the Cartesian 

coordinate vector of point P0j for the ith measurement, k  is the number of refer-

ence points and m  is the number of measurements. Here, the vector n  is the last 

column of the matrix V  of the following SVD-factorization 

1 1

k m j j

i ij i

T T

 
  p p UΣV . 

Since all geometrical parameters are known, the elastostatic ones can be identi-

fied. To take into account the compensator influence while retaining the approach 

developed for serial robots without compensators, manipulator elastostatic para-

meters can be identified into two steps. The first step aims to compute the ex-

tended set of elastic parameters that includes all equivalent virtual springs for the 

second joint by using the standard least-square technique 
1

( ) ( ) ( )

1 1

·
T T

m m
p p p

i i i i

i i



 

   
    
   
 k B B B p   (8) 

where the vector 
ip  is the small displacement of the end-effector under the ex-

ternal loading 
iF , matrix ( )p

iB  is a rearranged matrix 
iA  that integrates positional 

components only and takes into account structure of the vector  k . The second 

step deals with the identification of the gravity compensator parameters and com-

pliance of joint #2 that can be obtained from the following equation 

   2 2

1

0

0

1 1
·

q q

i

T

c c i

m mT T

i ii i
K K K Ks  



     C C C  (9) 

where 
qm  is the number of different angles 

2q  in the experimental data, 

      2 2

2 2 2cos sin cos1 · / · / ·i i i iL q L s a L sa q qa        
 

C  (10) 

In order to ensure high calibration efficiency, the design of experiments should 

be considered while choosing measurement configurations. To the best of our 

knowledge, the best results for particular industrial applications can be achieved 

by using the test-pose based approach (Klimchik et al. 2012b), which reduces op-

timal pose selection to the following optimization problem: 

 
1

( ) ( )

0 01 { , }

( ) ( )

1
trace min

T
q

T

i i

m j p j p

i

p p

j i

m

i



 

 
 

 
 

q w
A A A A  (10) 

Here matrix ( )

0

p
A  has the same structure as matrix ( )p

iA , but is defined by the 

desired test pose configuration 
0q  and the external loading 

0F . The values of 
0q , 

0F  are usually related to a typical machining configuration and force generated by 

the tool-workpiece interaction. Such an approach allows us to ensure the highest 

positioning accuracy after compensation compliance errors caused by the technol-

ogical process. 

Using theoretical results presented in this section, it is possible to obtain a so-

phisticated elasto-static model that can be used for further error compensation. In 

the next section, these results are used to obtain the stiffness model of the KUKA 

KR-270 robot. 
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4 Experimental results and comparison analysis 

The main geometric parameters of the gravity compensator are L, ax and ay (see 

Figure 2). They can be identified by using relative locations of points P0 and P1 

with respect to point P2. Since the adopted geometric model is a planar one, here 

the laser tracker base frame is defined in a particular way in order to ensure that 

the marker locations relative to the XY-plane are not significant. Another impor-

tant issue is related to the selection of the marker point locations on the rigid part 

of the gravity compensator. To ensure high identification accuracy, these markers 

should be located on the opposite sides of the compensator rotational axis, such 

that the optimal conditions 
1

cos 0
k

jj jR 


  and 
1

sin 0
k

jj jR 


  are satis-

fied. To increase the identification accuracy, four marker points are used in the ca-

libration experiments and are denoted as P01, P02, P03 and P04 respectively. Their 

locations are presented in Fig. 1, where the radii 1 3R R  and 2 4R R , and the 

angles 3 1     and 4 2    . The measurement data have been obtained 

using laser-tracer Leica for the set  2 0 , 30 , 60 , 90 , 120 , 140q             . The 

values of the identified geometrical parameters and corresponding confidence in-

tervals are given in Table 1.  

Table 1. Identification results for the compensator geometric parameters 

 L [mm] ax [mm] ay [mm] 

Value 184.72 685.93 123.30 

CI  ±0.06 ±0.70 ±0.69 

For the identification of manipulator elastostatic parameters, 15 measurement 

configurations (with 5 different values of q2) were obtained based on the proposed 

industry oriented performance measure (10), for which the position coordinates of 

the reference points (P1, P2 and P3) were measured three times (before and after 

the loading). The corresponding experimental setup is illustrated in Fig. 3. The de-

sired elastostatic parameters have been obtained using a two-step identification 

procedure. On the first step, the base and tool transformations have been com-

puted. On the second step, all measurement data as well as the obtained base and 

tool transformations have been used for the identification of the manipulator elas-

tostatic parameters. Corresponding numerical results are given in Table 2. 

Table 2. Manipulator elastostatic parameters obtained using different approaches, [µrad/Nm] 

 1k
 2k

 3k
 4k

 5k
 6k

 

The results  

obtained in this work 
0.623 

-145°

0.297

0.278
-95° -45° 0°  

0.416 2.786 3.483 2.074 

(Dumas et al. 2011) 3.798 0.248 0.276 1.975 2.286 3.457 
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Fig. 3 Experimental setup for manipulator elastostatic calibration 

To show the advantages of the developed approach, the manipulator accuracy 

after calibration has been compared for two distinct plans of calibration experi-

ments. The first one has been obtained using the industry-oriented performance 

measure and implements enhanced numerical routines. In this case, the manipula-

tor was presented as a quasi-serial chain, and the calibration data were obtained 

using the enhanced partial pose measurements. The second plan used measure-

ment configurations that were selected semi-intuitively, in accordance with some 

kinematic performance measures (Dumas et al. 2011). A relevant manipulator 

model corresponding to the strict serial architecture, and the calibration data were 

obtained using conventional full-pose measurements. 

Using these two sets of calibration data, the identification yielded two slightly 

different sets of manipulator parameters (Table 2). Then, the obtained parameters 

(both sets) may be used to compute the end-effector positions for the validation 

configurations (that were not used in both identification routines). Comparing 

these results with the corresponding position measurements, it is possible to eva-

luate the "calibration quality" and relevant plans of the experiments.  

For comparison purposes, the manipulator accuracy improvement due to elas-

tostatic errors compensation has been studied based on the error analysis before 

and after compensation. Relevant results are shown in Table 3, where the maxi-

mum and RMS values of the distance-based residuals are provided. As follows 

from the obtained results, using the identified elastostatic parameters, it is possible 

to compensate 91.2% of the end-effector deflections (in average). In general, the 

manipulator positioning accuracy has been improved by a factor of 11.1 compare 

to a non-compensated robot. Compare to the previous results, the compensation 

efficiency has been increased by a factor of 2.4 using almost the same number of 

configurations, which is also referred to as the accuracy improvement factor. 

Hence, the above presented analysis shows the advantages of theoretical contribu-

tions presented in this work. The developed calibration technique allows us to in-

crease essentially the manipulator positioning accuracy under external loading us-

ing a reasonable number of measurement configurations. It should be noted that 

the obtained elastostatic parameters can be used for elaso-dynamic analysis also. 
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Table 3. The manipulator accuracy improvement after elastostatic error compensation. 

Criterion 
Before  

compensation 

After compensation Improvement factor 

(Dumas 2011) [This work] (Dumas 2011) [This work] 

max [mm] 8.28 1.77 0.78 4.6 10.4 

RMS[mm] 5.90 1.27 0.53 4.6 11.1 

5 Conclusion 

The paper deals with the accuracy improvement of a heavy industrial robot 

employed in milling. It provides a sophisticated geometric/elastostatic model for 

quasi serial manipulator with gravity compensator and techniques for the identifi-

cation of the model parameters. In order to improve the identification accuracy, 

design of experiments technique based on industry oriented performance measure 

was used. The advantages and practical significance of the proposed approach 

have been shown by experimental results and a comparison analysis. The im-

provement factor is about 2.4.  
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