

Hand Posture Recognition Using Convolutional Neural Networks

Dennis Núñez Fernández, Bogdan Kwolek

▶ To cite this version:

Dennis Núñez Fernández, Bogdan Kwolek. Hand Posture Recognition Using Convolutional Neural Networks. LatinX in AI Research at ICML 2019, Jun 2019, Long Beach, United States. hal-02263891v2

HAL Id: hal-02263891 https://hal.science/hal-02263891v2

Submitted on 11 Sep 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Hand Posture Recognition Using Convolutional Neural Networks

Dennis Núñez Fernández¹, Bogdan Kwolek² ¹ National University of Engineering, Peru
 ² AGH University of Science and Technology, Poland

Introduction

Hand Posture Recognition Problem

Objective:

- Reliable and fast hand posture recognition (to control Nao robot)

Approaches to the problem:

- Depth cameras (ToF, structured light, stereo-pair)
- RGB cameras
- Hand-crafted features
- Learned-features
- Convolutional Neural Networks

Problems:

- Difficulties in hand detection (in real-time)
- High dimensionality of the hand's kinematic configuration space
- Self-occlusions, variations in hand appearances
- Ill-posedness issues (the problem of inferring 3D coordinates from a single 2D observation is ill-posed)
- Camera geometry, scale difficulties, view-point

Dataset

Dataset [3]:

- 6000 images of size 38x38
- 10 static postures
- 10 performers (various nationalities)
- Train/test: 5273/727 images (Kinect sensor)
- Test: 400 images (laptop Dif. cam.)

Figure 3: Hand postures

Experimental Results

Our Approach

Real-time hand posture recognition

- Hand detection, wrist position estimation
- CNN-based hand pose recognition
- Biologically inspired computer vision Gabor filter

Figure 1: Block diagram of our method for hand posture recognition

Overview of the Method

Hand detection and wrist localization:

- Input: color images of size 640x480
- Statistical color model (RGB-H-CbCr) for skin detection
- Feature vector \mathbf{x} of size 38 on binary image
- Regression model: $y = g(\mathbf{x}, \mathbf{w}) + \epsilon$, where ϵ is a random vector, \mathbf{w} are weights of a neural network with one hidden layer

Convolutional neural network:

	1	2	3	4	5	6	7	8	9	10	Avg.
inect if. cam.	$\begin{array}{c} 1.2\\ 4.6\end{array}$	$\begin{array}{c} 1.3\\ 3.4 \end{array}$	$7.8 \\ 2.9$	$\begin{array}{c} 1.4\\ 3.5\end{array}$	$2.1 \\ 1.7$	$\begin{array}{c} 1.8\\ 2.7\end{array}$	2.6 2.7	$\begin{array}{c} 1.3\\ 3.8\end{array}$	$\begin{array}{c} 1.2\\ 4.6\end{array}$	$\begin{array}{c} 1.4\\ 2.6\end{array}$	$2.2 \\ 3.2$

Table 1: Error of wrist location [pix] for classes 1-10

	Accuracy	Precision	Recall	F1 score
Kinect man. Dif. cam. man. Kinect aut. Dif. cam. aut.	$\begin{array}{c} 0.950 \\ 0.928 \\ 0.905 \\ 0.783 \end{array}$	$\begin{array}{c} 0.945 \\ 0.931 \\ 0.906 \\ 0.788 \end{array}$	$\begin{array}{c} 0.960 \\ 0.937 \\ 0.932 \\ 0.832 \end{array}$	$\begin{array}{c} 0.949 \\ 0.934 \\ 0.906 \\ 0.785 \end{array}$

Table 2: Performance measures using CNN on raw gray images

	Accuracy	Precision	Recall	F1 score
Kinect man.	0.992	0.992	0.992	0.992
Dif. cam. man.	0.930	0.930	0.936	0.929
Kinect aut.	0.970	0.967	0.976	0.970
Dif. cam. aut.	0.868	0.868	0.882	0.866

Table 3: Performance measures using CNN with Gabor-based preprocessing

Performance of the system:

	1	2	3	4	5	6	7	8	9	10	Avg.
Kinect Dif. cam.	100 93	94 95	100 80	$\begin{array}{c} 100\\ 95 \end{array}$	90 93	100 63	83 90	100 88	$\frac{100}{73}$	100 100	97 87

Table 4: Recognition accuracy [%] on the basis of wrist position estimated automatically

Figure 2: Architecture of convolutional neural network

Gabor filter:

- Prefiltering images fed to CNN [2]

- Motivation: visual cortical simple cells were first shown by Hubel & Wiesel (Nobel Prize, 1981) to have response properties that resemble Gabor filters

Conclusions

- Promissing results

- CNN operating on images prefiltered by Gabor achieves better classification performance
- Low computational costs

References

1. P. Pisharady, M. Saerbeck: Recent methods and databases in visionbased hand gesture recognition. Comput. Vis. Image Underst, 2015. 2. B. Kwolek: Face detection using convolutional neural networks and Gabor filters, 2005. 3. http://home.agh.edu.pl/~bkw/code/ciarp2017/