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Abstract. Understanding how humans use auditory cues to interpret
their surroundings is a challenge in various fields, such as music informa-
tion retrieval, computational musicology and sound modeling. The most
common ways of exploring the links between signal properties and human
perception are through di↵erent kinds of listening tests, such as catego-
rization or dissimilarity evaluations. Although such tests have made it
possible to point out perceptually relevant signal structures linked to
specific sound categories, rather small sound corpora (100-200 sounds in
a categorization protocol) can be tested this way. The number of subjects
generally do not exceed 20-30, since it is also very time consuming for
an experimenter to include too many subjects. In this study we wanted
to test whether it is possible to evaluate larger sound corpora through
machine learning models for automatic timbre characterization. A selec-
tion of 1800 sounds produced by either wooden or metallic objects were
analyzed by a deep learning model that was either trained on a percep-
tually salient acoustic descriptor or on a signal descriptor based on the
energy contents of the signal. A random selection of 180 sounds from the
same corpus was tested perceptually and used to compare sound cate-
gories obtained from human evaluations with those obtained from the
deep learning model. Results revealed that when the model was trained
on the perceptually relevant acoustic descriptors it performed a classifi-
cation that was very close to the results obtained in the listening test,
which is a promising result suggesting that such models can be trained
to perform perceptually coherent evaluations of sounds.

Keywords: Sound descriptors · Sound perception · Machine learning ·
Networks · Machine Listening

Proc. of the 14th International Symposium on CMMR, Marseille, France, Oct. 14-18, 2019

858



2 M. Buongiorno Nardelli et al.

1 Introduction

Analyzing our surroundings through the many sounds that are continuously
produced by our environment is a trivial task that humans do more or less auto-
matically. Both natural sounds from the environment such as waves, rain, wind,
or sounds from humans, machines or animals can be recognized and localized
without any practicing. It is however much more complicated to tell a machine
how to recognize such events through sounds. For that purpose we need to iden-
tify perceptually relevant sound structures for each source that somehow can be
considered as the signature that characterizes an aspect of the sound, such as the
action that caused the sound or the object, such as its shape, size or material of
the sound source. Several previous studies have tempted to identify such char-
acteristics and have identified sound structures linked to the perceived size [11]
and the material of which it is composed [12,8,3]. In the case of more complex
situations reflecting for instance interactions between sound sources, the listener
perceives properties related to the event as a whole. Warren and Verbrugge [17]
showed that objects that bounce and break can be distinguished by listeners
with a high degree of accuracy, while Repp [14] revealed that subjects were able
to recognize their own recorded clapping and the hand position from recordings
when someone else is clapping. More recently, Thoret [16] showed that subjects
were able to recognize biological motions and certain shapes from friction sounds
produced when a person is drawing on a paper.

The present study focuses on how two di↵erent material categories, wood and
metal, can be distinguished. Previous studies on the identification of material
categories [4,3], have shown that both temporal aspects such as the damping and
frequency related aspects such as the spectral bandwidth or the roughness are
perceptually salient signal structures for such sounds. These approaches enabled
us to design evocative sound synthesis models that enable to control sounds from
verbal labels (material, size, shape etc). However, for more general uses, such
as the identification of sound categories within large databases, the previous
approaches are less adapted, since they rely on a combination of several acoustic
descriptors obtained from a rather small set of sounds and therefore might not
be adapted to general models that characterize environmental sounds. In the
present study we therefore propose to focus on the log Mel energy of the sound
by using a more global descriptor, namely the MFCC that has been commonly
used in automatic classification tasks [9]. Although the MFCCs were initially
designed for speech recognition based on source filter models [7], they integrate
perceptual properties and mainly discard the source part making them rather
pitch independent. It is therefore interesting to use such descriptors on large sets
of sounds that cannot be easily pre-treated and equalized in pitch and intensity.
Their ability to capture global spectral envelope properties is also an important
advantage from a perceptual point of view [15].

The objective of this study is to take advantage of network-based modeling,
analysis, and visualization techniques to perform automatic categorization tasks
that mimic human perception. Similarly to social networks, gene interaction
networks and other well-known real-world complex networks, the data-set of
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sounds can be treated as a network structure, where each individual sound is
represented by a node in a network, and a pair of nodes is connected by a link
if the respective two sounds exhibit a certain level of similarity according to a
specified quantitative measure. In this approach, one can see a lot of conceptual
similarities between sound networks and social networks, where individual nodes
are connected if they share a certain property or characteristic (i.e., sounds
can be connected according to shared physical or perceptual properties, and
people are connected according to their acquaintances, collaborations, common
interests, etc.) Clearly, di↵erent properties of interest can determine whether a
pair of nodes is connected; therefore, di↵erent networks connecting the same set
of nodes can be generated.

In this paper we take a further step in exploring this promising direction
of research. Specifically, many complex systems can be better analyzed via net-
work representations as networks provide a nice mathematical tool to explore
these systems. Uncovering the topological structures of networks may help to
understand the organizing principles of underlying complex systems. Further-
more, the knowledge acquired via this approach has motivated us to explore
machine learning models for automatic timbre characterization and classifica-
tion and the e↵ectiveness of such approaches compared to results from human
perception tests. Automatic classification with deep learning approaches have
previously been applied to large datasets of both speech and music [9,10], but
fewer studies have investigated automatic timbre classification of environmental
sounds.

The paper is organized as follows: in Sec. 2 we discuss the various method-
ologies employed in this research, from the definition of acoustical descriptors,
to network metrics and machine learning models; in Sec. 3 we discuss the results
of our analysis; we end with a few concluding remarks and a look towards future
applications of this study.

2 Methodology

All the computational results in this paper have been obtained with the MUSICNTWRK
package. MUSICNTWRK is a python library for pitch class set and rhythmic se-
quences classification and manipulation, the generation of networks in general-
ized music and sound spaces, deep learning algorithms for timbre recognition,
and the sonification of arbitrary data. The software authored by one of the co-
authors (MBN) and it is freely available under GPL 3.0 at www.musicntwrk.com
[6][5].

2.1 Impact sound data.

We have compiled a database of ca. 1800 impact sounds produced by metal or
wood objects from Splice Sounds collections. The length of each recording was
equalized to 22050 sample points (5.0 sec. at a sample rate of 44100 Hz) by
either zero-padding or truncation. Sounds span a broad palette of timbre and
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provide a good data-set for statistical analysis. Of these 1800 sounds, we extract
a random sub-set of 180 sounds that we used for the human perception tests and
analyzed with network techniques. The remaining 1620 sounds have been used
to train the machine learning models with a 80-20% split between training and
validation sets.

2.2 Audio descriptors and metrics in the generalized timbre space.

Power Cepstrum and PSCC The Power Cepstrum of a signal gives the
rate of change of the envelope of di↵erent spectrum bands and is defined as
the squared magnitude of the inverse Fourier transform of the logarithm of the
squared magnitude of the Fourier transform of a signal:

PSCC =
��FT�1 {log(|FT{f(t)} |2)��2 (1)

In this work We always considered the first 13 cepstrum coe�cients (PSCC),
where the 0-th coe�cient corresponds to the power distribution of the sound
over time.

Fig. 1. Section of the network of the MFCCs built from the 1620 sounds that have been
used to train the machine learning models. Colors indicate the classification based on
their modularity class: Green, mostly high frequency tones from wood; Gray, mostly
high to mid-frequency tones of wood; Purple, mostly deep frequency tones of wood;
Cyan, mostly dry metal tones; Pink, mostly metal; and Orange, mostly ”choked” metal
sounds.
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Mel Frequency Cepstrum and MFCC. The Mel Frequency Cepstrum of a
signal is obtained as in Eq. 1 and di↵er from the power cepstrum by the choice
of the spectrum bands that are mapped over the Mel scale using triangular
overlapping windows. The mapping of the frequency bands on the Mel scale
better approximates the human auditory system’s response than the linearly-
spaced frequency bands used in the normal cepstrum. We use a 16 bands Mel
filter, and we considered the first 13 cepstrum coe�cients (MFCC) as in the
previous case. As for the PSCC, the 0-th coe�cient corresponds to the power
distribution of the sound over time.

Both PSCC and MFCC are obtained using 64 bins in the short time Fourier
transform.

Networks and metric in timbre space. Network analysis methods exploit
the use of graphs or networks as convenient tools for modeling relations in large
data sets. If the elements of a data set are thought of as “nodes”, then the emer-
gence of pairwise relations between them, “edges”, yields a network representa-
tion of the underlying set. Similarly to social networks, biological networks and
other well-known real-world complex networks, entire data-set of sound struc-
tures can be treated as a network, where each individual descriptor (PSCC,
MFCC) is represented by a node, and a pair of nodes is connected by a link
if the respective two objects exhibit a certain level of similarity according to
a specified quantitative metric. Pairwise similarity relations between nodes are
thus defined through the introduction of a measure of “distance” in the network:
a “metric”. In this study we use the Euclidean norm (generalized Pythagoras
theorem in N-dimensions) to quantify similarity between sound descriptors:

distance(I, J) =

sX

i

�
xI

i � xJ
i

�2
, (2)

where x is the chosen sound descriptor for sound I and J . In Figure 1 we show the
network of the MFCC built from the 1620 sounds that have been used to train
the machine learning models. In the figure we display the principal component
for which less than 2% of all possible edges are built, that is, we allow an edge
only if two MFCCs are at a distance that is less than 3% of the maximum
diameter of the network. This representation reveals that the classification is
coherent with material categories, as it can be observed from the emergence of
clusters of sounds belonging to the same material (see for instance the green
cluster of wood sounds on the lower left part of the network and the cyan, pink
and orange clusters of metallic sounds in the upper part). This result validates
the corpus with respect to the sound quality. For a general review on networks
and graph theory the reader is referred to Albert and Barabási [2].

2.3 Machine learning model.

We implemented a deep learning model based on convolutional neural network
(CNN) architecture inspired by similar approaches used in image and sound
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recognition [13]. The CNN is built using the Keras kernel of Tensorflow [1] and
it is trained on the full PSCC or MFCC data, after proper scaling and normaliza-
tion. We retained only models with validation accuracy higher than 90%. After
an appropriate model is chosen, it is tested on the set initially chosen for the
human perception experiment. Each model chosen retains a similar accuracy on
this set. A typical result of a training session on 30 epochs is shown in Fig. 2.

Fig. 2. Accuracy and loss in a typical model training run: (left) accuracy, (right) loss.

2.4 Experimental setup

The sounds were presented randomly to the participants thought headphones.
The participants were asked to categorize each sound in either the Metal or
Wood category by selecting the label shown on a graphical interface developed
with Matlab. They could listen to each sound as often as desired.
Participants: Twenty-seven volunteers (21 males, mean age: 37 years-old) par-
ticipated in the experiment. They declared no hearing nor cognitive problems.

3 Results and Discussion

A set of 180 impact sounds randomly extracted from the initial database (section
2.1) was used in a perceptual listening test. In Figure 3 and Table 1, we sum-
marize the data of the perceptual test compared with four scenarios based on
the machine learning models. In Figure 3 the scores represent the percentage of
classification in the metal category. From this figure certain sounds (157) were
clearly classified without ambiguity. 60 sounds were classified by 100% of the
subjects in the labeled material category and 23 sounds that were less clearly
classified were defined as “ambiguous”, i.e. classified by less than 50% of the sub-
jects in the labeled material category (for more details see Table 1). The above
sounds were fed to our ML models in four di↵erent fashions: 1. with the model
trained on the MFCCs to classify the sound with its MFCC (perceptual measure
with perceptual model); 2. with the model trained on the MFCCs to classify the
sound with its PSCC (physical measure with perceptual model); 3. with the
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model trained on the PSCCs to classify the sound with its PSCC (physical mea-
sure on physical model); and 4. with the model trained on the PSCCs to classify
the sound with its MFCC (perceptual measure on physical model). It should be
noted that the ML models 1. and 3. have an accuracy that exceeds 90% in both
cases. In the first column of Table 1 we report the percentage of classification
in the metal category in the perceptual test. The successive columns list the
sounds that are common with sounds characterized incorrectly by the four ML
models (marked as X). Interestingly, we find a large degree of overlap between
the perceptual scores and the ML scenario n. 4, physical model and perceptual
measure. Moreover, a closer inspection to the data, shows that the majority of
sounds, even if identified correctly by the model, retain a certain degree of un-
certainty, as demonstrated by the probability of that sound to be characterized
as metal listed in the last column. Indeed the majority of the scores are within
50±10% and they could vary depending on the specific training of the machine
learning model. To further support this observation, we have built the network
of MFCCs for the full set of 180 sounds used in the perceptive test, shown in
Fig. 4. The figure displays the first few giant components built with the shortest
distances, less than 1% of all possible edges, that is, we allow an edge only if two
MFCCs are at a distance that is less than 0.5% of the maximum diameter of the
network. From the figure clusters of both unambiguous and ambiguous sounds
can be observed confirming the observations made on the original network shown
in Figure 1. It is evident that the “ambiguous” sounds are all clustered together
and belong to the same modularity class demonstrating the robustness of the
MFCCs as a relevant descriptor from a perceptual point of view.

4 Conclusion

By testing sounds using a perceptive measure (MFCC) on a machine learning
model trained on physical parameters (PSCC), we reproduced a distribution of
ambiguity in the classification of the origin of the sound that is coherent with the
results of a human listening tests. In this way we can obtain scores that are co-
herent with perceptual tests. This is a first step towards a more general machine
listening methodology that, if associated with perceptually salient acoustic de-
scriptors that characterize the acoustic information used by the auditory system,
might replace time-consuming listening tests and enable perceptual evaluation
of huge databases of sounds. It could also be a valuable tool for cognitive stud-
ies to point out relevant sound structures (invariants) associated to perceptual
categories based on very large data sets. Such sound structures open new possi-
bilities to design evocative synthesis models that enable to control sounds in a
perceptually consistent way.
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Table 1. Table of sounds that are classified by less than 50% of subjects in the labeled
material category in the perceptual test. We compare the perceptual scores with four
di↵erent machine perception scenarios and list the sounds that overlap between the
perceptual scores and the selected ML model. HM, percentage of classification in Metal
category by human subjects (perceptual scores); MM, sounds in common with Model
MFCC - MFCC; MP, sounds in common with model MFCC - PSCC; PP, sounds
in common with model PSCC - PSCC; PM, sounds in common with model PSCC -
MFCC; and ML, metal score (%) for model PSCC-MFCC. See test for a complete
discussion

Ambiguous sounds HM (%) MM MP PP PM ML (%)

metal 092.wav 26 X 16
metal 106.wav 15 X 27
metal 119.wav 48 X 100
metal 1 04.wav 18 59
metal 1 12.wav 15 51
metal 2 06.wav 37 X 45
metal 2 10.wav 33 59
metal 3 10.wav 30 58
metal 4 03.wav 15 78
metal 4 10.wav 19 66
metal 1 06.wav 19 53
metal 3 03.wav 19 X 31
metal 4 05.wav 37 X 36
metal 4 11.wav 37 X 34
metal 1 02.wav 19 X 11
metal 1 03.wav 26 X 8
metal 2 04.wav 30 X 12
metal 3 07.wav 48 X 9
metal 3 12.wav 48 X 9
metal 1 11.wav 44 X 39
wood 019.wav 52 X X 99
wood 005.wav 52 8
wood 16.wav 52 X X 67

Proc. of the 14th International Symposium on CMMR, Marseille, France, Oct. 14-18, 2019

865



Machines that listen. . . 9

Fig. 3. In blue: Mean scores (corresponding to the percentage of classification in the
Metal category) obtained from the perceptual test. These scores are compared with
the scores of sounds characterized incorrectly by the four models (MM, MP, PM and
MM models). The sounds that are in common are represented with filled markers.
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