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Summary points 

• Precision livestock farming (PLF) is proposed to the livestock industry as an essential tool 

to enhance sustainability and competitiveness  

• Precision livestock feeding is part of PLF and can have a great impact in livestock 

profitability due the ability of feeding pigs with diets tailored daily to their nutrient requirements. 

• Precision livestock feeding can decrease livestock environmental impacts by optimizing 

the use of dietary nutrients and animal nutrient utilization efficiency which results in less nutrient 

excretion.  

• Mathematical models developed for precision livestock feeding must be designed to 

operate in real-time using system measurements. These models are structurally different from 

traditional nutrition models. 

• The success of PLF is dependent on the precision livestock feeding integration into the 

system, as well, the adaptability and training of the farmers to use PLF systems. 

 

Abstract 

Precision livestock farming (PLF) is an innovative production system approach based on 

intensive and integrated use of advances in animal sciences and technology of information to 

automatically and continuously monitor and control farm processes. The use of PLF can help 

farmers to improve management tasks such as monitoring of animal performance and health, and 

optimization of feeding strategies. An important component of PLF is precision livestock feeding, 

which consists in providing in real-time to individuals or group of animals with the amount of 

nutrients that maximizes nutrient utilization without loss of performance. The use of precision 

livestock feeding can decrease protein intake by 25%, nitrogen excretion into the environment by 

40%, while increasing profitability by nearly 10%. The success of the development of PLF and 

precision livestock feeding depends on the automatic and continuous collection of data, data 

processing and interpretation, and the control of farm processes. The advancement of precision 

livestock feeding requires the development of new nutritional concepts and mathematical models 

able to estimate individual animal nutrient requirements in real-time. Further advances for these 

technologies will require the coordination of different experts (e.g., nutritionists, researchers, 
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engineers, technology suppliers, economists, farmers, and consumers) and stakeholders. For the 

adoption of PLF and precision livestock feeding the development of integrated user-friendly 

systems and the end-user training is imperative. The development of PLF will not just be a question 

of technology, but a successful marriage between knowledge and technology in which improved 

and intelligent mathematical models will be essential components. 

Keywords; Precision livestock farming, farm management, automatization, modern 

livestock production, nutrition  

Introduction 

Precision livestock farming (PLF) is an innovative production system approach that can be 

defined as the management of livestock using the principles and technologies of process 

engineering (Wathes et al., 2008). The intensive and integrated use of advances in animal science 

and in the technology of information and communication are the basis for the development of PLF. 

One of the objectives for developing PLF systems is the on-line continuous and automatic 

monitoring of animals to support farmers in the management of animal production such as feeding 

strategies, control of the growth rate, and health management (Berckmans, 2004). The main 

purpose of PLF is, however, to enhance farm profitability, efficiency, and sustainability (Banhazi 

et al., 2012a). Precision animal nutrition or precision livestock feeding is considered in this 

document as part of the PLF approach and involves the use of feeding techniques that allow the 

proper amount of feed with the suitable composition to be supplied in a timely manner to a group 

of animals (Parsons et al., 2007; Cangar et al., 2008; Niemi et al., 2010) or to individual animals 

in a group (Pomar et al., 2009; Andretta et al., 2014). The on-farm application of precision 

livestock feeding requires the design and development of measuring devices (e.g., to determine 

the animal’s feed intake and weight), computational methods (e.g., estimating in a timely manner 

nutrient requirements based on the actual animal’s growth), and feeding systems capable of 

providing the required amount and composition of feeds that will generate the desired production 

trajectory.  

The practical application of precision livestock feeding can have great impact in livestock 

profitability. Feed is the most important cost component in commercial growing-finishing pig 

production systems and represents between 60 and 70% of the overall production costs. Similar 

figures hold for broilers and other livestock. Given that nutrients that are not retained by the animal 

or in animal products are excreted via the urine and faeces or as heat, and that the efficiency by 

which domestic animals transform dietary nutrients into animal products are generally low, 

improving the nutrient efficiency can largely contribute to reducing production costs and improve 

the sustainability of livestock production systems. In fact, nitrogen and phosphorous, which are 

among the most costly nutrients in livestock feeds, are retained with efficiency rarely greater than 

35% (Dourmad et al., 1999; Poulsen et al., 1999). The inefficiency of nitrogen and phosphorous 

use has different causes. First, part of these ingested nutrients are used for basal metabolic 

processes involving degradation (catabolism) and synthesis (anabolism), or are lost in the digestive 

tract through desquamation and endogenous secretions. These losses are generally referred to as 

maintenance losses. Nutrients are also lost during the production of animal products (e.g., body 

protein and lipid, milk, and eggs). In growing animals, the losses associated with the utilization of 

the first-limiting amino acid for body protein deposition can largely be attributed to the inevitable 

catabolism (Heger and Frydrych, 1985; Mohn et al., 2000). These inevitable amino acid losses 

should be differentiated from other metabolic losses related to the preferential amino acid 

catabolism, which results from the catabolism of amino acids given in excess, from the excretion 
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of chemically unavailable absorbed amino acids (e.g., heat damaged proteins) (Batterham et al., 

1990), and from the use of amino acids for the synthesis of non-protein body compounds 

(Moughan, 1989). In growing animals fed cereal-based diets, the sum of the undigested nitrogen 

and the losses associated with digestion, maintenance functions, and body protein deposition may 

represent more than 40% of the total ingested nitrogen.  

Pigs, broilers, and other livestock animals are typically raised and fed in groups, usually 

with the same feed that is given to all animals in the group during a given period of time. However, 

nutrient requirements vary largely among animals in a population (Pomar et al., 2003; Brossard et 

al., 2009) and these requirements evolve over time following individual patterns (Hauschild et al., 

2012; Andretta et al., 2014). When growth maximization is the objective of a commercial 

production system, nutrients have to be provided at a level that will allow the most nutrient 

demanding animals in the group to express their growth potential (Hauschild et al., 2010). In this 

situation, almost all animals receive more nutrients than they need. Providing animals with high 

levels of nutrients to maximize herd performance is common practice in commercial livestock 

operations even though maximum growth does not ensure maximum economic efficiency 

(Hauschild et al., 2010; Niemi et al., 2010). Besides the estimated 40% nitrogen loss associated 

with digestion, maintenance, and production inefficiencies, an additional 30% loss results from 

protein given in excess to optimize the production response of the group. To account for the 

variability among animals but also among feed ingredients and other uncontrolled factors (e.g., 

environment, health) nutritionists include safety margins when formulating diets to ensure the 

maximum population responses. The need of these safety margins can be seen as an admission of 

our inability to precisely estimate the nutrient requirements of groups of animals (Patience, 

1996).Precision nutrition will play an important role in future animal production systems because 

innovative monitoring approaches simplify the determination of nutrient requirements which, 

when estimated in real-time, allow for the possibility of feeding animals, individually or as a group, 

according to specific production objectives. These objectives include the maximization or the 

controlling of growth rate, or to minimize the excess supply of nutrients and reducing 

environmental impacts. Safety margins are not required in precision livestock feeding. Compared 

to a 3-phase feeding program for growing pigs, precision livestock feeding can reduce protein 

intake by 25% and reduce nitrogen excretion by almost 40% while feed cost can be reduced more 

than 10% (Pomar et al., 2010). Because animals and feed distribution are monitored and controlled 

automatically, precision livestock feeding will reduce the time that nutritionists and farm staff will 

spend on animal observation, decision-making, and applying production strategies, enabling them 

to work on other aspects of farm management. The objective of this chapter is to describe the basic 

concepts of precision livestock feeding, its essential elements and illustrate practical applications 

of precision livestock feeding for growing and finishing pigs.  

The basic concepts of precision livestock feeding 

Precision animal nutrition or precision feeding concerns the use of feeding techniques that 

provide animals with diets tailored according to the production objectives (i.e., maximum or 

controlled production rates), including environmental and animal welfare issues. Precision 

livestock feeding is presented in this document as the practice of feeding individual animals or 

groups of animals while accounting for the changes in nutrient requirements that occur over time 

and for the variation in nutrient requirements that exists among animals. As defined in this 

document, the accurate determination of available nutrients in feeds and feed ingredients, precise 

diet formulation, and the determination of the nutrient requirements of individual animals or 
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groups of animals should be included in the development of precision livestock feeding (Sifri, 

1997; Van Kempen and Simmins, 1997; Pomar et al., 2009). The operation of precision livestock 

feeding in commercial farms requires the integration of three types of activities: 1) automatic 

collection of data, 2) data processing, and 3) actions concerning the control of the system (Aerts 

et al., 2003; Berckmans, 2004; Banhazi et al., 2012b). Application of precision livestock feeding 

at the individual level is only possible where measurements, data processing, and control actions 

can be applied to the individual animal (Wathes et al., 2008).  

Automatic data collection 

Measurements on the animal, the feeds and the environment are essential in precision livestock 

feeding and these have to be measured directly and frequently (if possible, continuously). 

Measurements that can be made at the animal level include feed intake (e.g., quantity eaten, feed 

intake behaviour), its physical state (e.g., body weight, body composition), and indicators of its 

behavioural and health status (e.g., physical activity, interactions among animals). The availability 

and the rapid development of new devices and emerging sensor technologies to PLF and precision 

livestock feeding, offer a great potential for animal monitoring. Available technologies and sensors 

have been described by Wathes et al. (2008) and include low-cost cameras which, in combination 

with image analysis, can be used to quantify animal behaviour and estimate body weight. Real-

time sound analysis and audio-visual observations have been proposed to monitor health status 

and welfare in pigs (Vranken and Berckmans, 2017) and behaviour in laying hens (Berckmans, 

2004; Vranken and Berckmans, 2017).  

Besides the availability of technologies allowing the measurement of animal traits, some 

guiding principles have to be used for choosing the appropriate and relevant devices and sensors 

to be used in precision livestock feeding. Black and Scott (2002) used the Hazard Analysis Critical 

Control Point (HACCP) in the Australian “More Beef from Pastures” program. The HACCP was 

proposed to ensure that the most important processes determining productivity and profitability in 

an animal enterprise were identified and could be controlled and manipulated with the least chance 

of failure (Black, 2007) including the development of PLF applications (Banhazi et al., 2012b). In 

the context of automatic data collection for precision livestock feeding, the HACCP principles are 

a) to identify the factors that have quantitatively a major impact in the determination of the 

response of the animal or of the population to the nutrient supply, and b) for each one of these 

factors, determine the measurements that have to be taken at the farm or animal level to ensure the 

application of precision livestock feeding. At this point, precision livestock feeding developers 

have to avoid the temptation of looking for practical applications of currently available sensors but 

rather concentrate on identifying the most important physiological factors and measurements 

needed to establish optimal feeding strategies. These measurements have to be related to the 

precise evaluation of the nutritional value of the diet, the real-time determination of nutrient 

requirements (Pomar et al., 2009), and the responses of the animal to the nutrient supply. The 

application of HACCP principles to identify production hazards is not addressed further in this 

paper and the reader is referred to Black (2007) for more information on this issue.   

Data processing 

Collected data has to be processed to allow for control activity in precision livestock feeding. 

Mathematical modelling is a methodology used to understand and to quantify complex biological 

phenomena involved in animal production and can be the basis for data processing in precision 

livestock feeding control systems. A mathematical model is an equation or a set of equations 
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representing the behaviour of the system (Thornley and France, 2006). Computer simulation, in 

its broadest sense, is described as the process of defining a mathematical-logical model for the real 

system and experimenting with this model on a computer (Pritsker, 1986; Thornley and France, 

2006). By definition, models are a simplification of the system they represent, but the most relevant 

factors implicated in the animal responses that are to be controlled in precision livestock feeding 

need to be represented into the model. Mathematical models developed for precision livestock 

feeding, however, have to be designed to operate in real-time using real-time system measurements 

and, therefore, they are structurally different from traditional nutrition models, which are 

developed to work in a retrospective manner to simulate and understand known production 

situations. The basic principles for model development have to be reviewed because not all the 

models are adequate for precision livestock feeding and a model structure has to be chosen 

according to the available information and the desired control design of the system.  

Mathematical models can take many different forms depending on model objectives and 

structure. Indeed, models can be empirical or mechanistic, deterministic or stochastic, static or 

dynamic, and real-time or prospective. Information about the development of mathematical models 

in animal science can be found elsewhere (Thornley and France, 2006). Different approaches have 

been used to predict animal growth (van Milgen et al., 2012). The earliest and still very common 

approach is empirical in which growth is described by a single or few mathematical equations. 

Empirical models use a black-box approach and are developed to describe the responses of a 

system without a description of the system itself and unconstrained by biological principles 

(Thornley and France, 2006). The empirical approach can provide effective prediction in a narrow 

range of situations related to experimental conditions under which the data were collected. 

However, the empirical approach fails to extrapolate results in situations beyond those used in the 

original experimental conditions. Because model parameters and structure do not have a biological 

meaning, these models need to be fitted with appropriate data to simulate each situation. Therefore, 

to ensure flexibility and to allow effective prediction in a wide range of situations, models with 

mechanistic (deductive) components are preferred (Baldwin, 1976; Whittemore, 1986). 

Mechanistic models provide some degree of understanding of the biological phenomena 

implicated in the response of the system (Thornley and France, 2006). Mechanistic mathematical 

models have been the preferred approach in animal sciences since the 70s when protein and lipid 

deposition (and the resulting body weight gain) was modelled from the nutrient supply 

(Whittemore and Fawcett, 1976). This and other early models have inspired the development of 

other nutritional models simulating growth in pigs (Black et al., 1986; Moughan et al., 1987; Pomar 

et al., 1991; Birkett and de Lange, 2001; Green and Whittemore, 2003; Halas et al., 2004; van 

Milgen et al., 2008), poultry (Emmans, 1981; Emmans, 1988; Hancock et al., 1995; Gous et al., 

1999), turkeys (Hurwitz et al., 1991; Rivera-Torres et al., 2011), conceptus growth and milk 

production in sows (Dourmad et al., 2008; NRC, 2012) and egg production in hens (Fisher et al., 

1973).  

Mathematical models can be deterministic or stochastic. Deterministic models make a 

unique prediction for each specific set of input variables without any associated probability 

distribution. Stochastic models contain random elements in the model, so that, in addition to 

predicting the expected value of a performance trait, they also predict its dispersion (Thornley and 

France, 2006). Variation is essential and inherent to living systems and variation among the 

animals significantly contributes to the efficiency with which nutrients can be used (Curnow, 

1973) independently of genetic variation (Knap, 2000; Knap and Jorgensen, 2000; Pomar et al., 

2003; Brossard et al., 2009; Vautier et al., 2013), and environmental or animal management aspects 
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(Wellock et al., 2004). This variation is essential for the understanding of the biological 

mechanisms implicated in the response of populations to the nutrient intake, given that the 

response of a population to treatments differs in magnitude and shape from that of an individual 

animal (Pomar et al., 2003). Mathematical models designed to estimate nutrient requirements and 

responses in a population of animals need to account for individual variation. 

Static models do not contain time as a driving variable and do not make time-dependent 

predictions. Dynamic models are developed to quantify and to study the evolution of a system over 

time (Thornley and France, 2006). Essential elements of dynamic models are the differential 

equations in which time is an independent variable driving the rate of change of the state variables 

of the system. Most models in animal science and specifically in swine nutrition are dynamic 

because of the animal responses and requirements change over time.  

The utilization of mechanistic models in precision livestock feeding systems has been 

criticized because these models are overly complex and the information required by the model to 

simulate practical conditions is not always available (Aerts et al., 2003; Wathes et al., 2008). On 

the other hand, the simplicity of empirical models is counteracted by the difficulty to represent 

interactions between nutrients and animals. Despite the fundamental structural differences between 

empirical and mechanistic models in the way they predict the response of the animal to the nutrient 

supply, both types of models have to be calibrated a priori using data collected from reference 

populations (Pomar et al., 2015) in which the phenotypic performance potential of the animal is 

quantified. Indeed, mechanistic growth models for pigs use intrinsic characteristics of a reference 

population either to describe the potential (phenotypic) protein deposition and feed intake patterns 

(Dourmad et al., 2008; van Milgen et al., 2008; NRC, 2012) or potential body protein and lipid 

deposition (Emmans, 1981; Black et al., 1986) while empirical models have the animal responses 

embedded into the model. To be used in precision livestock feeding, empirical and mechanistic 

models are, therefore, challenged by the difficulty of identifying the right reference population for 

its calibration, the fact that actual populations and individual animals may follow feed intake and 

growth patterns different than the ones observed in the reference population (Pomar et al., 2015).  

The computational power and reliability of modern information technologies empower the 

utilization of advanced recursive technologies in the development of PLF and precision livestock 

feeding applications (Wathes et al., 2008). These modelling techniques (e.g., artificial neural 

networks) estimate unknown model parameters of an abstract mathematical model, based on on-

line input and output measurements. Model parameters are estimated on-line during the process, 

resulting in a model that continuously adapts its response to on-line process inputs and outputs. 

There are few examples in which these models have been used in PLF or precision livestock 

feeding applications (Korthals et al., 1994; Bridges et al., 1995; Aerts et al., 2000; Thomson and 

Smith, 2000). The limitation of using the recursive approach in precision livestock feeding is 

related to the fact that model parameters and model structure do not provide biological insight in 

the causal mechanisms implicated in animal responses, that animal response and input parameters 

may have unsymmetrical variation, and that the animal responses to input variation does not evolve 

in the same timeframe. For example, when animal processes are modelled for which there is a 

significant time lag between the effects of varying input parameters (e.g., dietary lysine intake) 

and the response (e.g., body weight gain and composition), the autocalibration capability of these 

recursive models is limited and they will generate irregular control signals (Cangar et al., 2008). 

Rapid animal responses such as a behavioural response to inputs such as temperature and light 

intensity may be easily controlled by recursive models in PLF applications (Aerts et al., 2000).  
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The disadvantages associated with black-box models can be overcome by using an 

intermediate approach of grey-box models in which recursive technologies and mechanistic 

models are combined. This approach was suggested by Bridges et al. (1995) who used a 

mechanistic swine growth model to generate physiological response data and this response data 

were then used to train and validate three backward propagation neural network models describing 

the effect of the environment on average daily gain, feed intake, heat production, and physiological 

status of the animal. The authors concluded that neural network models can be used to simplify 

data extraction from complex models and be used in instances where the use of the full model is 

difficult or impossible. Another grey-box model application was proposed by Hauschild et al. 

(2012), who combined black-box (i.e., empirical) and “knowledge-based” (i.e., mechanistic) 

model components to estimate daily amino acid requirements in individual growing-finishing pigs. 

The empirical component of this model estimated daily feed intake, body weight, and daily gain 

based on individual information collected in real time. Based on these daily estimations, the 

mechanistic model component predicted the concentration of amino acids required to meet the 

daily growth needs. The principles behind this model approach have been described (Hauschild et 

al., 2010; Pomar et al., 2015) and validated (Andretta et al., 2014; Andretta et al., 2016b).  

Control of the system 

The main objective of precision livestock feeding is to monitor, manage, and control animal 

feeding and nutrition continuously and automatically. Data collection and monitoring devices 

provide the farmer with detailed information about the animal’s actual conditions and 

performance, the utilization of farm resources, while data processing helps with system 

surveillance (e.g., disease detection) and the estimation of optimal production strategies (e.g., 

optimal slaughter and production strategies). This information can also be used by an automatic 

controller to make decisions, which in the context of precision livestock feeding, will typically be 

the amount and the composition of the feed to be given to an individual or to a group of animals. 

Depending on the production objectives, the controller can be programmed to maximize growth 

rate, to minimize feed cost, to minimize nutrient excretion, or to meet another objective.  

The determination of nutrient requirements and the control of the nutrient intake through 

feed composition and intake are two essential elements of precision livestock feeding. For a given 

animal and at a given time during his life, daily nutrient requirements can be estimated by the sum 

of the requirements for maintenance and production. These requirements are estimated for each 

nutrient taking into account the efficiency with which each nutrient is used. For a given animal, 

maintenance and production requirements change over time and so do nutrient requirements (NRC, 

2012). Farm animals are often raised and fed in groups although, within a group, animals differ in 

feed intake and growth potential. Consequently, nutrient requirements vary among animals (Pomar 

et al., 2003; Wellock et al., 2004; Brossard et al., 2009). The dynamic and the between-animal 

variation are the two main sources of variation in nutrient requirements that can be controlled in 

precision livestock feeding systems. Production systems in which animals are fed individually can 

be used to control both sources of variation while in group-fed systems only the time-dependent 

variation can be controlled.  

Therefore, several potential control strategies are available for the application of precision 

livestock feeding in commercial conditions. In feeding systems where animals are offered with 

feed ad libitum, the only way to control the nutrient intake is by varying the composition of the 

distributed feed. In ad libitum group-fed systems, animals can be fed for maximal production by 

providing nutrients following the time-dependent nutrient requirements of the group or for a given 
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production strategy (i.e., body composition, population uniformity), by controlling the 

composition of the served feed. When animals are individually fed and offered feed ad libitum, 

both the between animal and the time-dependent nutrient requirements variation can be controlled. 

In feeding systems where animals are offered feed restrictively, the amount and the composition 

of the feed can be controlled. Maximum growth rate will not be attained in this situation although 

feeding strategies can be established to account for between animal and the time-dependent 

variation in nutrient requirements. For example, feed restriction in pregnant sows allows 

controlling body weight gain and fatness while maintaining conceptus growth. Examples of these 

control approaches for growing animals will be given in the following section.  

The implementation of precision livestock feeding principles in growing and finishing pig 

production systems 

Conventional growing and finishing pig feeding programs are designed to maximize 

population body weight gain, optimize carcass fatness, etc., and they provide a single feed to all 

the pigs in the pen or herd within each feeding phase. One to four-phase feeding systems are 

nowadays popular in commercial growing-finishing pig operations (Niemi et al., 2010; NRC, 

2012) but it is acknowledged that increasing the number of feeding phases reduces feed costs, 

improves feed efficiency, and decreases nutrient excretion (Letourneau Montminy et al., 2005; 

Brossard et al., 2010). Multi-phase group-feeding systems allow the adjustment of the feed 

composition over time to better match the population nutrient requirements. Moving from 

conventional feeding systems to precision livestock feeding systems requires not only to increase 

the number of feeding phases, but also using the information concerning the actual status and 

evolution of the animal (e.g., feed intake, body weight, body composition) to control feed supply.  

Accurate and automatic measurement of the amount of feed consumed daily by individuals or 

groups of pigs is an essential information element required for the implementation of precision 

livestock feeding in growing and finishing pig operations. Although liquid feeding systems provide 

predetermined amounts of feeds to pens, they are of limited use to provide information on the feed 

intake because feed is provided at restricted levels with these systems. The availability of 

commercial devices for measuring dry feed intake is still limited and seldom used for the 

implementation of precision livestock feeding in commercial piggeries. An individual feed intake 

recording system has been developed in the UK for the real-time control of growth (Parsons et al., 

2007). The system is able to weigh the feed delivered to each pig at each visit. Similar precision 

livestock feeding system has been developed by Pomar et al. (2014) using an automated recording 

system (IVOG system, Insentec B.V., Marknesse, the Netherlands). Another example of dry 

feeders measuring the consumed feed has been developed in Australia (Banhazi et al., 2009; 

Banhazi et al., 2012a). This device can accurately measure the amount of feed supplied through 

the feed line (by an innovative feed sensor), estimating the amount of feed delivered to each feeder. 

Finally, an automatic and intelligent precision feeder (AIPF) developed for precision feeding of 

growing-finishing pigs has been developed (Pomar et al., 2011), which is able to provide a specific 

quantity and composition of feed to individual pigs at each feeder visit. The functioning of these 

AIPF feeders has been described elsewhere (Pomar et al., 2011; Pomar et al., 2015) and the feeders 

have been used in several research projects (Andretta et al., 2014; Cloutier et al., 2015; Andretta 

et al., 2016a).  

Accurate and regular body weight measurements performed without causing stress and 

requiring labour input is a great asset for the implementation of precision livestock feeding in 

growing-finishing pig facilities. Available technologies for automatic animal weighing include 
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conventional load cell platforms (Turner et al., 1985) and the combination of video cameras and 

image analysis. The possibility of estimating the weight of a pig from specific areas and 

dimensions through digital image analysis has been developed (Schofield, 1990; Brandl and 

Jørgensen, 1996; Whittemore and Schofield, 2000; Doeschl-Wilson et al., 2004; White et al., 

2004a) and used in several experiments.  

Lean growth is the major determinant of amino acid requirements in growing animals. Modern 

pigs are capable of maintaining high levels of lean deposition at heavier live weights. Measuring 

backfat and muscle thickness can be precious information to estimate body fat and protein. 

Although different technologies are available, ultrasound is without doubt the most widely used 

because of its cost, reliability, and portability (Moeller, 2002). However, it is still a manual 

operation and although automatic measurement methods of backfat thickness have been proposed 

(Tillett et al., 2002; Frost et al., 2004), these technologies have not been developed further since 

then. 

After measuring the essential information concerning the feeds and animals, precision 

livestock feeding requires to determine optimal nutrient concentration of feeds to automatically 

provide animals with the amount and composition of the feed according to the established 

production objectives. Precision nutrition can be used in pig growing facilities to either allow pigs 

perform at their maximal growth potential or drive growth rate and body composition by restricting 

feed or nutrient intake. Actual pig growth models (e.g., van Milgen et al., 2008; NRC, 2012) have 

been developed to operate in a retrospective manner and are calibrated after all growth data have 

been collected to simulate the production situation. These models are designed to predict, under 

specific situations, the consequences of feed and nutrient intake in terms of animal responses (e.g., 

protein and lipid deposition, body weight growth). These models are used to evaluate the nutrient 

utilization by the animal and to test nutritional strategies. Mathematical models developed to be 

used in precision livestock feeding systems need to operate in real-time using appropriate real-

time animal information (e.g., body weight and composition), behaviour (e.g., feed intake), 

environment (e.g., ambient temperature), health (e.g., body temperature, sounds to detect health 

status), and other parameters. When these models are conceived to achieve the animals' full growth 

potential, they can be devoid of feedback control elements and provide predictions based on actual 

and recent animal information. The objective of this real-time model-control approach is not to 

manipulate the animal response (i.e., body weight gain or composition) but to deliver the controlled 

production factors (e.g., feed composition) at the levels required for maximum growth. 

Automatic blenders, feeders and feed, and animal management devices are required to apply 

the controller decisions. The development of feeding systems that allow blend-feeding and the 

automatic distribution of two or more feeds that, when combined in variable ratios, can meet the 

requirements of pigs throughout their growing period (Feddes et al., 2000; Pomar et al., 2014) 

makes the phase-feeding technique cost-effective. The feeds can be complete diets formulated to 

satisfy the requirements of pigs at the beginning and at the end of their growing period or to contain 

complementary amounts of nutrients in such a way that when blended, the feeds become complete 

diets (Joannopoulos et al., 2015). Blending two feeds may be seen as a promising option for feed 

companies, since it means that there are just two feeds to prepare, with only the proportions 

changing between the feeding phases and between farms. These group and individual feeding 

precision livestock feeding systems will benefit from using accurate and individual feed intake and 

body weight measurements to drive the amount and composition of the feeds to be served to the 

pigs. 
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To further develop precision livestock feeding systems, it is necessary to improve our actual 

understanding of several animal metabolic processes. Precision livestock feeding is still based on 

models and nutritional concepts of average population responses. When feeding individual pigs 

with daily tailored diets, these traditional nutritional concepts seem insufficient (Remus, 2015; 

Ghimire et al., 2016; Remus et al., 2017). It is necessary to distinguish the nutritional requirements 

of a population from those of an individual. Individual pigs are able to modulate growth and the 

composition of growth according to the level of available amino acids (Remus, 2018). Also, pigs 

can respond differently to the same amount of ingested amino acid, due to differences in the 

efficiency of amino acid utilization. These aspects are not considered in current nutritional models, 

which assume that the efficiency by which animals use the available amino acids is constant. 

Similarly, the amino acid composition of whole body protein is assumed to be constant as well, 

while it has been shown that it can vary. Similar results have been found for the efficiency of 

calcium and phosphorus utilization (Gonzalo et al., 2018). Understanding the metabolic processes 

responsible for the observed variation between individual animals in their ability to use dietary 

nutrients is challenging nutritionists and modellers but is required to further improve the efficiency 

of livestock production. Advances in precision livestock feeding rely on the development of sound 

nutritional concepts and comprehensive biological models developed to more precisely estimate 

individual nutrient requirements in real-time.  

PLF and precision livestock feeding systems used in practice 

 The real-time modelling-control approach was used by Pomar et al. (2014) to control the time-

dependent variation of group-housed pigs offered feed ad libitum. Feed intake was measured daily 

with an automatic device and animals were weighed manually every two weeks. The desired diet 

composition was obtained by blending two feeds with a high and a low nutrient concentration. 

Nutrient requirements of the group were estimated each day based on body protein and growth 

rates observed in animals of similar genetic background. Comparing the traditional three-phase 

feeding system to the daily-phase feeding system, the authors concluded that protein intake could 

be reduced by 7% while nitrogen excretion was reduced by 12%. 

Controlling the time-dependent and the among-animal variation can further help reducing 

nutrient intake and excretion. This modelling approach was used to estimate nutrient requirements 

in real-time in individual pigs (Hauschild et al., 2012; Pomar et al., 2015) and applied to feed pigs 

individually with daily tailored diets (Andretta et al., 2014). The latter authors showed that daily 

adjustment of the diet resulted in a 27% reduction in total lysine intake, without affecting growth. 

This additional 20% reduction in lysine intake in relation to group-fed pigs could be obtained by 

feeding the animals individually and thus controlling simultaneously the time-dependent and the 

between-animal variation. Although reducing feed cost depends to a great extent on feed prices, it 

is expected that feed cost can be reduced by 1-3% when only controlling the time-dependent 

variation while a 8-10% reduction can be obtained when controlling also the among-animal 

variation. 

Restricting feed or nutrient intake has been proposed in several precision livestock feeding 

systems with the objective to minimize feed cost, ammonia emissions, or to maximize the return 

per pig space. Demmers et al. (2012) used an automated feeding system to provide the desired 

amount of feed of fixed composition to each pen. Daily body weight was estimated using a 

commercial visual image analysis system. The controller was based on a recursive neural network 

of growth and ammonia emission models, which were calibrated from previous experiments. The 

system was used to control the amount of feed delivered to pens and the ambient temperature to 
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optimize growth and reduce ammonia emissions. A precision livestock feeding system was also 

used by Niemi et al. (2010) to study multi-phase and two phases feeding systems and growth 

patterns in terms of economic return per pig space. In this multi-phase feeding system, the amount 

of feed, the protein concentration in the diet, and the time to reach slaughter weight were optimized 

on a daily basis. The controller included a stochastic dynamic model that estimated nutrient 

requirements as a function of body weight and evaluated the different scenarios to maximize the 

return on capital investment. The authors concluded that producers would benefit from adjusting 

diet composition on a daily basis but that the optimal production strategy and the return on 

investment are affected by the variation among pigs and the variation in feed and carcass prices. 

A real-time system for the integrated control of population pig growth and pollutant emissions was 

also proposed (Whittemore et al., 2001; Parsons et al., 2007) using an automatic daily feed intake 

recording device and a visual image analysis system to estimate daily body weight (Schofield et 

al., 1999; White et al., 2004b). Pigs were fed ad libitum in this precision livestock feeding system 

with diets varying in crude protein concentration. A high and a low-protein diets were manually 

blended to obtain the desired level of protein in the final mix to be served. The authors concluded 

that weight gain in pigs can be controlled through the proposed ad libitum feeding precision 

livestock feeding system and that some control of body fatness may also be possible. 

Factors that can influence the successful application of precision livestock feeding 

systems on farms 

Precision livestock feeding can be considered as a component of a PLF system and the 

successful on-farm application of precision livestock feeding systems will face similar challenges 

as other PLF systems. Wathes et al. (2008) considered PLF as an “embryonic technology with 

great promise” but they also acknowledged that few PLF have been implemented successfully so 

far. In addition, there may be a long time path between development and application. For 

example, the milking robot was developed in the 80s and has been commercialized since the 

early 90s but, despite 25 years of availability, it has yet to revolutionize the dairy industry. In an 

article with the provocative title “Is precision livestock farming an engineer’s daydream or 

nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall?”, Wathes et al. (2008) 

discussed the development and adoption of PLF systems. Others (Groot Koerkamp et al., 2007; 

Banhazi et al., 2012a; Banhazi et al., 2012b) have expanded on these ideas and the main issues 

in the development and successful adoption of PLF (and thus precision livestock feeding) can be 

summarized as follows: 

• There is a strong need for coordination and to involve different experts and stakeholders in 

the development and implementation of PLF (i.e., researchers, engineers, technology 

suppliers, economists, farmers, consumers, and citizens).  

• With the rapid development and available of sensors, more focus should be paid to data 

interpretation and control mechanisms. 

• Not all processes need to be automated; it is about assisting farmers, not about automatic 

farms. Groot Koerkamp et al. (2007) argued that there is not necessarily an intrinsic 

connection between (better) measurements and (better) control and that the allocation of 

controlling power is an important factor to consider. Who is in control: a machine, the farmer, 

the animal? Groot Koerkamp et al. (2007) suggested that recursive control by animals may be 

an alternative means to create order in complex biological systems, which, to some extent, can 

be interpreted as the consideration of agro-ecological principles in PLF. 
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• The benefits of PLF systems should be verified on the farm. 

• Appropriate deployment of PLF systems and training, service and support for farmers should 

be assured. The latter may imply the development of a new service industry. As indicated by 

Banhazi et al. (2012b), farmers are biologists by nature and only technologists occasionally. 

Although they do invest in technology, it is typical machinery that they look forward to buying 

as opposed to software, sensors or services.  

• Awareness and education for consumers and citizens. Citizens may perceive PLF as a further 

industrialization of livestock production. Education should help appreciating controlled, 

animal-centric livestock production, while looking for attributes that make modern production 

better for the animal and more sustainable. Food production should be made more transparent. 

For example, the EU-funded BrightAnimal project suggested using social networks, 

FarmCams, and a “Be a farmer for a day” initiative to improve awareness. 

Some of these issues addressed above have been considered in projects funded by EU-funded 

projects such as EU-PLF (www.eu-plf.eu), ALL-SMART-PIGS (www.all-smart-pigs.com/), and 

Feed -a-Gene (www.feed-a-gene.eu).   

An increasing concern is the adaptability and training required by farmers to use PLF 

systems. Some authors (Van Hertem et al., 2017) believe that use of appropriate data visualization 

tools can facilitate the farmer acceptance and adoption of PLF applications. These authors tested 

and evaluated PLF systems on ten fattening pig farms and five broiler farms. Data of production, 

climate and behaviour was continuously measured, analyzed daily and made available on a web-

based tool. Nearly 50% of the farmers took the training, but only 28% of the trained farmers 

actively used the tool. According to the authors, the success of the training seemed to be dependent 

on the complexity of the system installed on the farm (e.g., environmental sensors) and the 

training/education of the end user. They conclude that training is fundamental for the adoption of 

such systems.  

 

Future perspectives 

As indicated above, different technologies are now available for real-time and individual 

phenotyping and the availability of feeder equipment allows the distribution of specific diets to 

individual animals. An important issue that needs to be addressed further in the future is the control 

of the system, and how precision livestock feeding can and should interact with other components 

of PLF and with livestock production in general. For example, precision livestock feeding allows 

having large groups of pigs in a single pen, but this raises questions on how the group size affects 

animal behaviour and health, on pen design, and on management of animals in the pen. In recent 

years, some growing-finishing pig facilities are moving to larger groups of up to 1,000 pigs/pen. 

These facilities are generally equipped with auto-sorting systems that weigh individual animals 

before entering the feed court, identifying pigs that reach market weight, and sort them into a 

loading pen (Street and Gonyou, 2008). The development of nutritional concepts and models 

specially designed for precision livestock feeding and the system integration, to provide early 

alerts about changes in the system (e.g. health status based on a reduction in the feed intake) seem 

to be of great importance. These issues need to be addressed in the future if precision livestock 

feeding is to go beyond being an alternative feeding technique based on the optimization of the 

nutrient supply to the animal. Precision livestock feeding has the potential to be an important 

element of innovative livestock production systems, which may involve changes in several 

processes and elements within the system (Groot Koerkamp et al., 2007). 

http://www.eu-plf.eu/
http://www.all-smart-pigs.com/
http://www.feed-a-gene.eu/
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