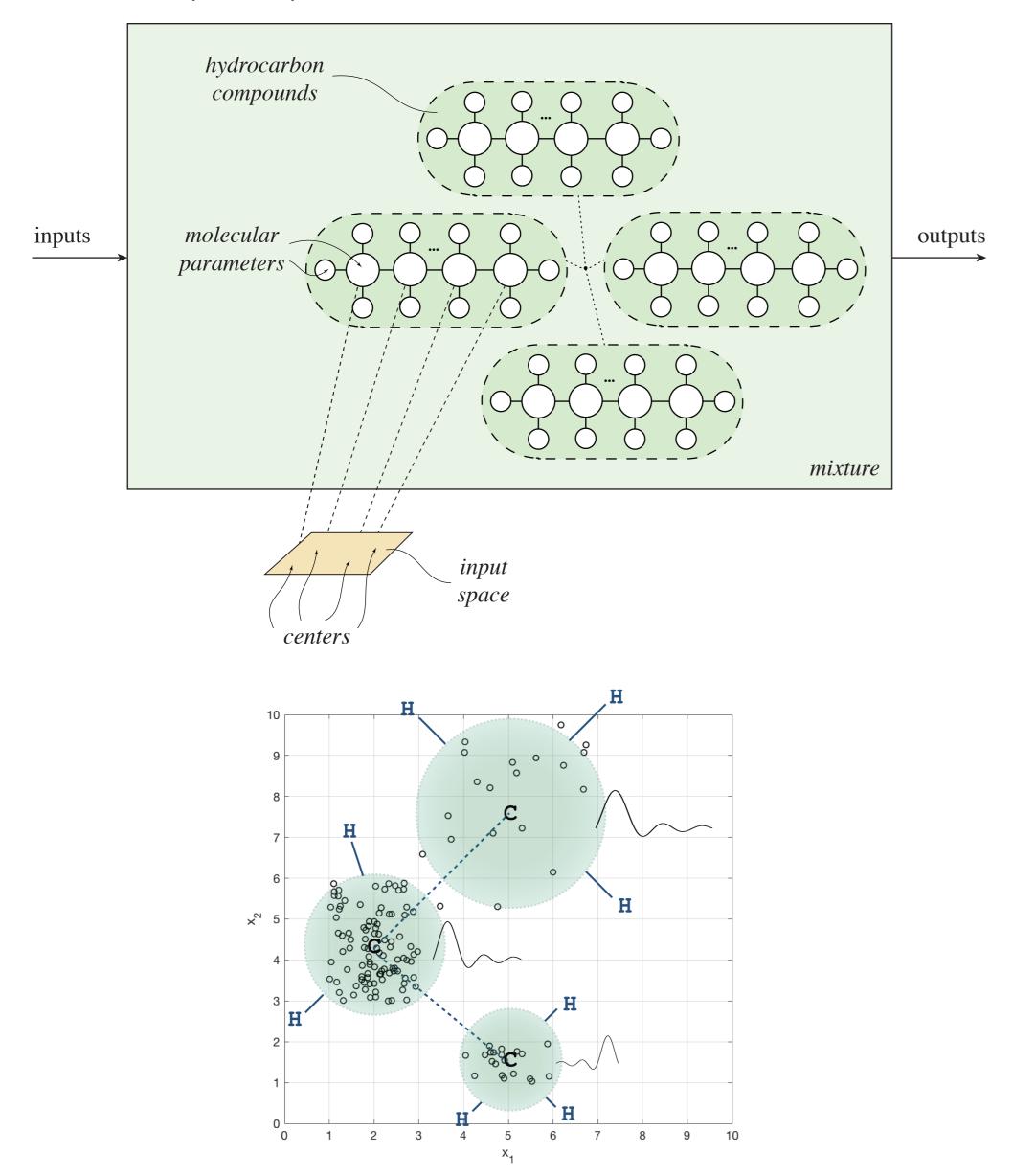

Challenges and Issues on Artificial Hydrocarbon Networks: The Chemical Nature of Data-Driven Approaches

Hiram Ponce

Universidad Panamericana. Facultad de Ingeniería. Augusto Rodin 498, Ciudad de México, 03920, México. hponce@up.edu.mx

BACKGROUND AND SCOPE

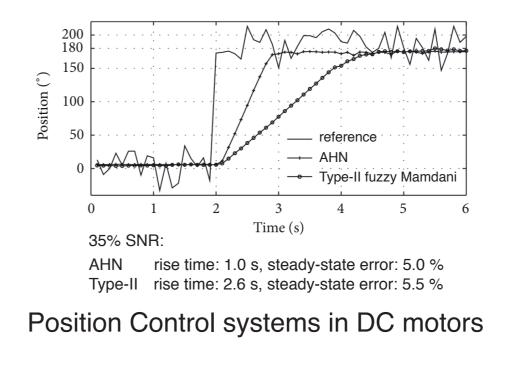

Recently, artificial hydrocarbon networks (AHN), a supervised learning method inspired in the inner structures and mechanisms of chemical compounds, have been proposed as a data-driven approach. AHN have proved to be efficient in predictive power when modeling a data-based problem. However, it stills require more studies on its challenges, issues and applications.

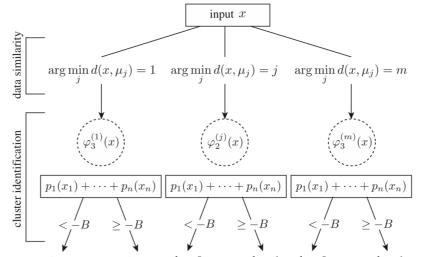
This work aims to discuss challenges and trends of AHN as a data-driven method. It also lays the foundations on AHN for implementing new training algorithms and the way to reveal the chemical nature of data-driven problems.

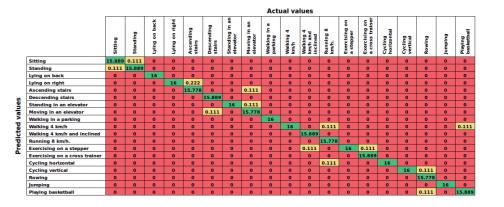
KEY CONCEPTS OF AHN

APPLICATIONS & HIGHLIGHTS OF AHN

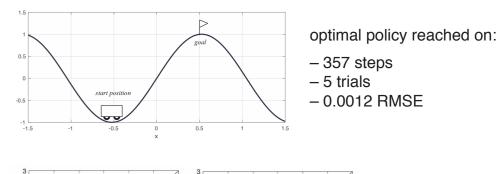
The goal of the AHN method is to package information, from a set of instances, in basic units known as molecules. Then, create compounds (nonlinear) and mixtures (linear).

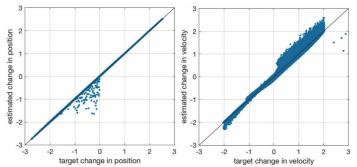



– Key features in supervised ML.


Features	AHN	DT	NN	NB	kNN	SVM
Accuracy	$\checkmark \checkmark \checkmark$	$\checkmark\checkmark$	$\checkmark \checkmark \checkmark$	\checkmark	$\checkmark\checkmark$	$\checkmark \checkmark \checkmark$
Tolerance (missing values)	\checkmark	$\checkmark \checkmark \checkmark$	\checkmark	$\checkmark \checkmark \checkmark$	\checkmark	$\checkmark\checkmark$
Tolerance (noise)	$\checkmark \checkmark \checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark \checkmark \checkmark$	\checkmark	$\checkmark\checkmark$
Variety of attributes	$\checkmark\checkmark$	$\checkmark \checkmark \checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$
Regression	$\checkmark \checkmark \checkmark$	\checkmark	$\checkmark\checkmark$	\checkmark	$\checkmark\checkmark$	$\checkmark\checkmark$
Classification	$\checkmark \checkmark \checkmark$	$\checkmark \checkmark \checkmark$	$\checkmark \checkmark \checkmark$	$\checkmark \checkmark \checkmark$	$\checkmark\checkmark$	$\checkmark \checkmark \checkmark$
Interpretability	$\checkmark\checkmark$	$\checkmark \checkmark \checkmark$	\checkmark	$\checkmark \checkmark \checkmark$	$\checkmark\checkmark$	\checkmark

Symbols: low (\checkmark), medium ($\checkmark \checkmark$) and high ($\checkmark \checkmark \checkmark$) satisfaction


- Some applications and case studies.



AHN accuracy 99.49(0.44) % deep-RNN accuracy 99.27(0.16) % statistical equivalent (*p* = 0.109); AHN 6.98*x* less parameters Human activity recognition

The inspiration in organic compounds to develop a ML method considers three facts observed from nature:

- Stability

- Organization
- Multi-functionality

if d(x, 0) < 2.63 and $g_1(x) < 0.57$, then sample = *benign*, or if d(x, 0) < 2.63 and $g_1(x) \ge 0.57$, then sample = *malignant*, or if $d(x, 0) \ge 2.63$ and $g_2(x) < 1.12$, then sample = *benign*, or if $d(x, 0) \ge 2.63$ and $g_2(x) \ge 1.12$, then sample = *malignant*

Interpretability of AHN-based classifier

Reinforcement learning from scratch

TRENDS AND ISSUES OF AHN

- New training algorithms
- Big data processing
- Kernels and relations in molecules
- Hybrid approaches with AHN
- Transfer learning

Ponce, H., Ponce, P., Molina, A. (2013), Artificial Hydrocarbon Networks Fuzzy Inference System, *Mathematical Problems in Engineering* 2013: 531031.
Ponce, H., Miralles, L., Martínez, L., (2016), A Flexible Approach for Human Activity Recognition Using Artificial Hydrocarbon Networks, *Sensors* 16(11): 1715.
Ponce, H., Martínez, L. (2017), Interpretability of Artificial Hydrocarbon Networks for Breast Cancer Classification, *IJCNN*, Anchorage, AK, 3535–2542.
Ponce, H., González, G., Martínez, L., (2018), A Reinforcement Learning Method for Continuous Domains Using Artificial Hydrocarbon Networks, *IJCNN*, Rio de Janeiro, Brazil, 1–6.