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Introduction

Thin-walled shell structures are important structural components in many branches of engineering; these structures are prone to buckling instabilities under static and dynamic compressive loading and may be directly or parametrically excited into resonance at their natural frequencies by dynamic loads. The stability of thin-walled structures under dynamic loading constitutes a relevant research area; in particular, the parametric excitation (vibration buckling under pulsating loading) represents an important topic in the dynamic stability of shell structures.

Because of the theoretical and practical significance of these structural components, the parametric excitation and nonlinear vibration problem of cylindrical shells has received considerable attention.

The vibration buckling problem of shells under pulsating loading has often been investigated within a semi-analytical context. It has been recognized that essential information about the nonlinear dynamic behaviour of structures can be efficiently obtained by means of analytical-numerical, lowdimensional models, i.e. models with a small number of degrees of freedom. The essential ideas of parametric excitation for shell problems are discussed by Hsu [START_REF] Hsu | On the parametric excitation and snap-through stability problems of shells[END_REF]. Early investigations in the field of the parametric excitation of cylindrical shells were carried out by Yao [START_REF] Yao | Dynamic stability of cylindrical shells under static and periodic axial and radial loads[END_REF][START_REF] Yao | Nonlinear elastic buckling and parametric excitation of a cylinder under axial loads[END_REF], Vijayaraghavan and Evan-Iwanowski [START_REF] Vijayaraghavan | Parametric instability of circular cylindrical shells[END_REF] and Nagai and Yamaki [START_REF] Nagai | Dynamic stability of circular cylindrical shells under periodic compressive forces[END_REF]. Laminated structures have been studied by Argento [START_REF] Argento | Dynamic stability of a composite circular cylindrical shell subjected to combined axial and torsional loading[END_REF] and Argento and Scott [START_REF] Argento | Dynamic instability of layered anisotropic circular cylindrical shells: Part I. Theoretical developments[END_REF][START_REF] Argento | Dynamic instability of layered anisotropic circular cylindrical shells: Part II. Numerical results[END_REF]. Further semi-analytical work includes the work of Popov et al. [START_REF] Popov | Low-dimensional models of shell vibrations[END_REF],

Gonçalves and Del Prado [START_REF] Gonçalves | Nonlinear oscillations and Stability of Parametrically Excited Cylindrical Shells[END_REF], and Dey and Ramachandra [START_REF] Dey | Dynamic stability of simply supported composite cylindrical shells under partial axial loading[END_REF]. The extension of semi-analytical approaches to multi-mode analyses has been presented and used in various works by Amabili, Pellicano and their colleagues [START_REF] Amabili | Nonlinear Vibrations and Stability of Shells and Plates[END_REF][START_REF] Pellicano | Stability and vibration of empty and fluid filled cylindrical shell under static and periodic axial loads[END_REF][START_REF] Strozzi | Nonlinear vibrations of functionally graded cylindrical shells[END_REF][START_REF] Pellicano | Effect of geometry on the non-linear vibration of circular cylindrical shells[END_REF][START_REF] §¨ | ! ¢"¢¤£" § §¦£¢ §¥ §£# $ ¢ §"%¥¢" cylindrical shell with geometric imperfections[END_REF] on nonlinear vibrations and parametric excitation of cylindrical shells. A low-dimensional model with a small number of degrees of freedom, introduced earlier by Jansen [START_REF] Jansen | Non-stationary flexural vibration behaviour of a cylindrical shell[END_REF] to capture important characteristics of the nonlinear vibration behaviour of shells, was used to analyse the dynamic stability behaviour of anisotropic cylindrical shells under dynamic axial loading [START_REF] Jansen | Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis[END_REF].

The possibility to carry out a nonlinear dynamic response analysis using numerical time integration ¡¢ £¤¥ ¦¡£¥ §¨£© §¥ ¨¦ £¥¢ ¥¢£¥ ¨ transient analysis) for shell structures is standardly available within finite element codes. Because of their imperfection-sensitive behaviour, relevant shell configurations such as cylindrical shells have received considerable attention in dynamic buckling investigations, e.g. by Saigal et al. [START_REF] Saigal | Dynamic buckling of imperfection sensitive shell structures[END_REF], Yaffe and Abramovich [START_REF] Yaffe | Dynamic buckling of cylindrical stringer stiffened shells[END_REF] and Bisagni [START_REF] Bisagni | Dynamic buckling of fiber composite shells under impulsive axial compression[END_REF].

Finite element studies based on numerical time integration is, however, computationally expensive. This in particular holds for shells under pulsating loading, which have been investigated through Finite Element Analysis, e.g. Ganapathi et al. [START_REF] Ganapathi | Parametric dynamic instability analysis of laminated composite conical shells[END_REF], but to date have not been analysed through systematic Finite Element studies using numerical time integration. Accepted manuscript, Thin-Walled Structures

The present paper contains two main new contributions. For the specific problem that will be considered, the dynamic stability of cylindrical shells under parametric excitation, earlier mainly semi-analytical methods have been used. First new contribution corresponds to the application of the Finite Element method. Due to the versatility in modelling in analysis capabilities of this method, it can be used to capture also details of the characteristics of the nonlinear behaviour of the structure. The objective is to show the feasibility to carry out these full model analyses, which ask special care when numerical time integration is employed, in view of the -¡¢£ ¤¥£¦ §£¨ ©¢ perspective -considerable computational resources required. The traditional semi-analytical models can typically be used only for idealized configurations and idealized conditions. Second important contribution of the present paper is the assessment of the range of validity of a specific semianalytical, low-dimensional model earlier used to investigate the essential features of the dynamic stability problem of cylindrical shells under parametric excitation.

These two new contributions will be made possible through the development of a novel modal projection procedure. This post-processing procedure to interpret the behaviour of the full model will play an important role for the investigations to be presented. The approach also has the potential to be used in a reduced order model approach. In earlier work, the Proper Orthogonal Decomposition has been presented as an appropriate tool for constructing a reduced order model for the class of problems analysed in the present paper [START_REF] Amabili | Reduced-order models for nonlinear vibrations of cylindrical shells via the proper orthogonal decomposition method[END_REF]. Also § £ § £¤ nonlinear modes ¢ been used for this purpose [START_REF] Amabili | Reduced-order models for nonlinear vibrations of fluid-filled circular cylindrical shells: Comparison of POD and asymptotic nonlinear normal modes methods[END_REF][START_REF] Gonçalves | Low-dimensional models for the nonlinear vibration analysis of cylindrical shells based on a perturbation procedure and proper orthogonal decomposition[END_REF]. A Finite Element integrated perturbation-type approach has been used as a reduction method to study the nonlinear (large amplitude) vibration behaviour and dynamic buckling behaviour of composite cylindrical shells under axial step loading [START_REF] Rahman | A Finite Element-Based perturbation method for nonlinear free vibration analysis of composite cylindrical shells[END_REF][START_REF] Rahman | Dynamic buckling analysis of composite cylindrical shells using a finite element based perturbation method[END_REF].

In this paper, the large amplitude vibration behaviour of both isotropic and composite cylindrical shells under pulsating loading is investigated by using transient Finite Element analysis using numerical time integration in order to obtain accurate solutions. The Finite Element analysis allows an accurate satisfaction of idealized or realistic boundary conditions, makes it possible to include all

¥¡ § ¥ § ¡ ¤¤ §¢ ¨ !¡¢ §"¥# § £¦¡ §¨ §¥ §£ ! §$ § §¥ ¡ %¢©¦¦ §¥ ¤"¨ ¦ § ¡ ¨© ¦ ¢ § § ¨ § ¥ ¦ §¥ ¡¡© % §¨£ §¥ ¡ ¢©¦¦ §¥
dynamic state. Key issues for the numerical analysis will be addressed. A Finite Element modal projection procedure will be developed, which facilitates the interpretations of the Finite Element analysis using numerical time integration, in particular the comparison between Finite Element calculations and the results of semi-analytical approaches available in the literature. Accepted manuscript, Thin-Walled Structures

Problem formulation on the basis of a semi-analytical approach

In the present section, the problem of parametric excitation of a composite cylindrical shell under pulsating axial loading is described on the basis of the governing equations and displacement functions for this problem following the formulation used in Ref. [START_REF] Jansen | Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis[END_REF].

Governing equations

The equations governing the nonlinear dynamic behaviour of a cylindrical shell are presented. The shell is loaded by an axial compressive force P and an external pressure p which can both depend on time. It is assumed that the radial displacement § is positive inward (see Figure 1). Applying the usual membrane stress resultants N x , N y and N xy , and introducing the Airy stress function defined by N x = F ,yy , N y = F ,xx and N xy ¡ ¢F ,xy , the Donnell-type nonlinear imperfect shallow shell equations for an anisotropic material can be written as

£ ¥ ¤ £ ¦ ¥ §¤ ¨ © § © £ § § § !¤ (1) £ ¦ ¥ ¤ £ " ¥ §¤ ¨© £ § § !¤ # $% & § '' (2) 
where the variables § and depend on the spatial coordinates x, y and time t, R is the shell radius, § ! denotes a stress-free radial initial imperfection, $% & § '' is the radial inertia term, $% is the averaged specific mass of the laminate, h is the reference shell thickness.

The 4 th order linear differential operators
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£ " ¥(¤ ¨4©© 0 (¤ 54 ©1 0 (¤ 2 4 © 0 4 11 0 ¤(¤ 22 54 1 0 (¤ 222 4 0 (¤ 2222 (5) depend on the stiffness properties of the laminate, the elements of the partially inverted ABDmatrix [START_REF] Jansen | Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis[END_REF], and the nonlinear operator defined by £ 6 7¤ ¨6 7 22 6 2 7 2 6 22 7

reflects the geometric nonlinearity. Accepted manuscript, Thin-Walled Structures

In particular, Eq. ( 1) guarantees the compatibility of the strains and the radial displacement field while Eq. ( 2) is the equation of motion (dynamic equilibrium equation) in radial direction.

The first step for solving the equations is to transform them into a finite set of nonlinear ordinary differential equations (ODEs) using the Galerkin method, through which we can describe the deformation using a finite number of degrees of freedom (DOFs).

The radial displacement § ¡ ¢¡ £¤ can be written as § ¡ ¢¡ £¤ ¥ ¦ £¤¨ ¡ ¢¤ ©¤

The coefficients ¤ are now the DOFs of the problem. After suitably expanding the Airy function and projecting the governing equations using the Galerkin procedure, one can obtain the following set of ODEs,

! " #$ % & " ¥ ' () ) 0 ) " ¥ ¥ ' () ) 0 ) 0 ) ) " ¥ ¥ ¥ ' ()(1 ) 1 0 1 2¤ 3¤ 0 ) 0 )

Displacement functions

The choice of the trial functions used for the radial displacement w is crucial in order to obtain good quality results in the case of nonlinear vibrations; studies on convergence in the nonlinear case are reported in Refs. [START_REF] Pellicano | Stability and vibration of empty and fluid filled cylindrical shell under static and periodic axial loads[END_REF][START_REF] Strozzi | Nonlinear vibrations of functionally graded cylindrical shells[END_REF][START_REF] Pellicano | Effect of geometry on the non-linear vibration of circular cylindrical shells[END_REF][START_REF] §¨ | ! ¢"¢¤£" § §¦£¢ §¥ §£# $ ¢ §"%¥¢" cylindrical shell with geometric imperfections[END_REF]. It is important to include axisymmetric modes in the expression for the radial displacement.

Let us consider a circular cylindrical shell with classical, simply supported boundary conditions (SS-3 boundary conditions), excited by a radial 456789@A B85C D@E4 A@6AFB56 G6HIFH9AP Q E8 vibrate in the resonant condition of the mode (m,n), where m is the number of longitudinal half-waves and n the number of circumferential full waves. It is important to include the following modes in the displacement function assumed for the radial displacement [START_REF] Amabili | Nonlinear Vibrations and Stability of Shells and Plates[END_REF][START_REF] Pellicano | Stability and vibration of empty and fluid filled cylindrical shell under static and periodic axial loads[END_REF]: R resonant mode, including both driven and companion modes R asymmetric modes with k × n circumferential full waves, where k is an integer R axisymmetric modes Accepted manuscript, Thin-Walled Structures

In certain cases, additional modes with natural frequency close to the ratio 1:1, 1:2, 1:3 with respect to the frequency of excitation, which in general may have an influence in the response, should be included. In the numerical calculations in Ref. [START_REF] Pellicano | Stability and vibration of empty and fluid filled cylindrical shell under static and periodic axial loads[END_REF], the following 23-DOFs expansion was assumed:

§ ¡ ¢¡ £¤ ¥ ¥ ¦¨ © £¤ ¤ ! © £¤ "#¢¤$"#% & '() & () ¤ ¥ ¨©0 £¤ "#% 12) ¤ 3 () (9) 
In the expansion presented in Ref. [START_REF] Jansen | Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis[END_REF], the most essential modes were retained and the number of DOFs was thereby reduced to four. Driven and companion resonant modes and two specific axisymmetric modes were included. One of the axisymmetric modes satisfies a crucial coupling condition with the driven and companion mode. In the numerical calculations the expansion used in Ref. [START_REF] Jansen | Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis[END_REF] is
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where h R is ipqrst skewedness parameter, which is equal to zero in the case of an isotropic shell but can reflect the possible skewedness of the deflection pattern of an anisotropic shell. In the case of skewed modes and for large amplitude deflections, the expression satisfies the classical boundary condition SS-3 only approximately. Accepted manuscript, Thin-Walled Structures 

Finite Element Analysis

Nonlinear Dynamic Analysis

The nonlinear dynamics simulations were performed using the Finite Element (FE) software

Abaqus 2016 [START_REF]¡¢¢¡£¤¥ ¦ §¢¥¨©¢ ¡£¢ ¡¤ §¢¢ ¢¢ £![END_REF]. A four-node general-purpose shell element with reduced integration and finite membrane strains (the Abaqus S4R shell element) was employed. The time integration scheme used is the implicit HHT (Hilbert-Hughes-Taylor) method. This integration scheme is unconditionally stable for linear problems and has been shown to give appropriate stability properties also for certain nonlinear problems, but it introduces a certain amount of numerical damping in the system.

In order to reduce the influence of this numerical damping, one must carefully set the parameters of the method in an approach in which small time increments are used to accurately represent the vibrational response of the structure while keeping the numerical energy dissipation at a minimum ( ¡¢£¤¥¦ §¤¨©¦ §¦¨ option in Abaqus, see Table 1).

Regarding the time step of the integration, an automatic scheme of variable time step available in Abaqus is used. Three parameters are defined within this approach: initial suggested time step, minimum time step and maximum time step. After a convergence analysis, the initial and maximum time steps were always chosen smaller than 1/80 T, where T is the time period of the harmonic forcing; the integrator is free to use a smaller time step if needed. Using a low or negligible damping, the influence of the time step choice is crucial and one should apply a small time step in order to reduce the deviation of the solution.

Modal projection procedure

In order to simplify the interpretation of the dynamic response of the structure, an innovative postprocessing procedure was developed. The deflection of the cylindrical shell can be described using a time depending vector . The goal is then to obtain the best approximation of this vector using a reduced basis constituted of linearly independent (in general not orthogonal) vectors. Applying this approach to the Finite Element analysis results, for each time step of the time history output, a vector with components , the radial displacement associated with the node of the shell surface with coordinates (! " #" $ , can be easily assembled (considering only the radial displacement instead of all 6 DOFs at the node allows reducing the size of the problem considerably). The same procedure is used when assembling time independent vectors % & corresponding to the modal shapes obtained via linear frequency analysis. These vectors, as linear independent vectors, are appropriate candidates for building the reduced basis ': Accepted manuscript, Thin-Walled Structures

¢ ¡ ¡ ¢ £ ¤ (11)
where ¢ ¥ is corresponds to ¦ §¨©¦ ¦ !©¦" §# #¨$ §¦%¦ ¨#&' (his means that, once a vector ¢ ) 0 has been imported, ¢ is defined as ¢ 1 2 3 456 1 3 7

. For the actual deflection 8 9, its approximation can be written in terms of reduced basis vectors,

8 @ 8 9 A B C ¢ C B D £ CE (12) 
where B C is time-dependent. In order to find the linear combination that gives the best fit of the real surface, one can minimize the norm of the error vector

F G8 D F H F 8 D I PB D F H 8 D H I 8 ) B D I B D 8 ) I B D B D (13) 
Imposing the gradient equal to be equal to zero, the following is obtained:
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which leads to

W8 ) T V WB D T T T 8 ) V T B D X (15) 
Defining the matrix Y T , B D can be determined from

Y ` T 8 ) B ) (16) 
One can demonstrate that this corresponds to a minimum by evaluating the Hessian matrix,

Q Q5 R S T 8 ) V T B DU T (17) 
Since has maximum rank, the Hessian matrix has only positive eigenvalues. The approximation error can be monitored, for instance by evaluating the following dimensionless form, Accepted manuscript, Thin-Walled Structures

¢ ¥ ¡ £ ¥¤¥ ¡ £ ¥ (18) 
where ¡ £ ¡ £ ¦ §©. For the results presented in the following, a reasonable tolerance of less than 10% was specified for this dimensionless error. For assessing the quality of the projection this dimensionless error is compared with respect to the relative magnitude of the response ¥ ¡ £ ¥¤ ¥ ¡ £ ¥, where ¡ £ corresponds to the maximum norm of ¡ £. 

Boundary conditions

Bottom edge nodes: v = w = 0 Symmetry edge nodes: 

u = § = § ¦ = 0 Mesh (uniform)

Numerical results

For the numerical calculations for shells under axial pulsating loading, examples from literature of circular cylindrical shell are considered. For the case of iso ¡¢£¤¥ ¦ §¨©©¦ ¢£¢¦ shell [START_REF] Popov | Parametric resonance in cylindrical shells: a case of study in the nonlinear vibration of structural shells[END_REF] and ¢¢¤¥ §s [START_REF] Bogdanovich | Non-Linear Dynamic Problems for Composite Cylindrical Shells[END_REF] shell are considered. For the anisotropic shells, the static and dynamic ¨ §¤¢ ¡ ¢! ¢¢ ¢¦ ¦ §¨©© [START_REF] Booton | Buckling of Imperfect Anisotropic Circular Cylinders under Combined Loading[END_REF] is considered. In Tables 2-4 the mechanical properties of these three shells are reported. In Figure 2 the coordinate system and conventions for the FE analyses are shown. In Table 5, the properties of the boundary conditions in the FE modelling are reported.

The terms "¡¤¨ #¢¨$ "¥¢#£¤¢ #¢¨$ introduced in earlier studies of nonlinear vibrations of laterally excited cylindrical shells will also be used in the following analysis of a cylindrical shell under axial parametric excitation% & §¨ ¨¡# "¡¤¨ #¢¨$ ¡¨!¨¡¦ ¢ the mode that is triggered through a corresponding imperfection or initial displacement. The term driven mode is also used in those cases, in which the response mode is not fully affine to the triggering imperfection, but corresponds to a mode that is spatially to a considerable extent triggered by the imperfection applied.

'¢¡ §¨¦¨¦ §¨©©¦ §¨¢©¤¨¡ "¦¤©¨#¢¨$ ¡¨¦£¢¦¨¨ §¤¢ ¡ is studied, comparing the basic characteristics of the nonlinear behaviour (nonlinear amplitude ( frequency curves, corresponding jump phenomena, and also snap-through phenomena) with results of earlier investigations using a simplified approach. Also the two-#¢¨"driven mode (¥¢#£¤¢ #¢¨$ ¥¢ £©¨ ¡¨¦£¢¦¨ § has been identified as an essential characteristic for the nonlinear dynamic behaviour of cylindrical shells will be investigated. It can be shown, that the nonlinear modes corresponding to the specific, "©¤¨¡$ ¦)##¨ ¡¤¥ 01¤ § ¡¨¦£¨¥ ¢ §¨¦ §¨©© #¤-length) mode considered for isotropic shells in the current work (corresponding to a mode with one half wave in the axial direction), are also symmetric with respect to the shell mid-length. Since this specific behaviour will be studied in this

££¨¡ !¢¡ ¢¢¤¥ §¦ ¦ §¨©© ¢£¢¦ ¦ §¨©© ¦)##¨ ¡) ¥¢¤ ¤¢ 1¤©© ¨ ¦¨ §¨¦ §¨©©
mid-length. It should be kept in mind that when considering the nonlinear response of the (fulllength) shell, in case a mode that is non-symmetric with respect to the shell mid-length is triggered, this potentially -through a nonlinear coupling -can result in a nonlinear response that is not symmetric with respect to the shell mid-length.

Nonlinear dynamic response of reference shells under pulsating axial loading

Main response characteristics will be illustrated for ¢¢¤¥ §s isotropic shell and ¢¢ ¢¦ anisotropic shell. Accepted manuscript, Thin-Walled Structures

Bogdanovich ¡ isotropic shell

The first case study is the dynamic response of Bo¢£¤¥¦ §¨© ¨¦¦¨© ¥£ ¤¨¤ ¤¨¥¢ load. The shell considered is simply supported (SS-3), while a uniform membrane stress resultant on the edge is specified,

! " # $ ! % &'()012 (19) 
In addition, a static axial pre-load is applied through the uniform membrane stress resultant 3 " .

The amplitudes of the dynamic and static excitations are normalized using the classical critical load 45 # 67 8

9@ABCDE 8 F

, corresponding to an axial force 45 # 67 8

9@ABCDE 8 F G HIP equal to 1.5211 × QR S N using the data presented in Table 2.

In the calculations, the following axial load amplitudes are considered: for the dynamic load ! % / 45 # T U # RVWX and for the static pre-load T Y # 3 " ` 45 # 0, 0.1, 0.25, 0.5.

A single mode imperfection is also considered

a b # RVRQ G c G (de fI " g h G &'()Xi2 )HR2
and the damping is neglected.

In [START_REF] Jansen | Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis[END_REF] the following 3 DOF expansion was used a # p % )12 q p C )12 &'( f rs" g h q t)12 (de fI "

g h &'()Xu2 (21) 
In the FE analysis, the radial displacement a is considered positive outward. Damping is neglected.

Homogeneous initial conditions are applied, corresponding to the initial conditions in the semianalytical analysis in Ref. [START_REF] Jansen | Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis[END_REF]:

t)R2 # t v )R2 # p % )12 # p % v )12 # p C )12 # p C v )12 # R.
In order to analyse the linear and the nonlinear behaviour corresponding to the principal Mathieu-Hill parametric instability, the shell is excited at frequency w close to Hx y , where x y is the linear (small amplitude) frequency of the imperfect and preloaded shell. In order to obtain the frequencyload curves for specified load amplitudes, the governing equations are integrated in a time interval equal to 50 forcing periods T and the maximum of the system response during this time interval is recorded. Accepted manuscript, Thin-Walled Structures Finite Element analysis details of the model boundary conditions are listed in Table 5. It is to be noted that symmetry conditions have been used in the FE model; in particular, a symmetry plane located at ¡ and perpendicular to the axis of the cylinder is considered. This choice has the aim to reduce the computational cost and allows us to model exactly the boundary conditions SS-3. In this case a response that is symmetric with respect to the shell is studied. The load is applied with concentrated forces on the nodes of the shell edge. Single dynamic simulations for different frequency of excitation and preload levels are carried out. Referring to Eq. ( 12), where ¢ £ are the modes selected for the response projection, the modal projection procedure developed considers the first 100 modes of the FE linear frequency analysis and the axisymmetric modes (1,0), (3,0) and

(5,0) as ¢ £ .

In Figure 3 the modal amplitude § ¤ ¥¦, referring again to Eq. ( 12), is presented for modes (1,0), (3,0), (5,0) and [START_REF] Hsu | On the parametric excitation and snap-through stability problems of shells[END_REF][START_REF] Nagai | Dynamic stability of circular cylindrical shells under periodic compressive forces[END_REF], [START_REF] Hsu | On the parametric excitation and snap-through stability problems of shells[END_REF][START_REF] Argento | Dynamic stability of a composite circular cylindrical shell subjected to combined axial and torsional loading[END_REF]. Both ¨© driven and companion mode are considered. Besides the strong response of modes [START_REF] Hsu | On the parametric excitation and snap-through stability problems of shells[END_REF][START_REF] Nagai | Dynamic stability of circular cylindrical shells under periodic compressive forces[END_REF] and [START_REF] Hsu | On the parametric excitation and snap-through stability problems of shells[END_REF][START_REF] Argento | Dynamic stability of a composite circular cylindrical shell subjected to combined axial and torsional loading[END_REF], the inward vibration of the mode (1,0) should be noted, confirming earlier observations in the literature about modes contributing in the nonlinear behaviour and more specifically the relevance of axisymmetric modes [START_REF] Pellicano | Stability and vibration of empty and fluid filled cylindrical shell under static and periodic axial loads[END_REF][START_REF] Jansen | Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis[END_REF]. Also the phase shift of ¨ !"#$ % ! &'()% #' ('! should be noted, where is an integer. In an earlier stage of the time history, when the parametric resonance has not yet manifested itself, the amplitude of the response is relatively small. It can be seen that the approximation error 0 1 23 4 151 3 4 1 remains modest for the larger response amplitudes occurring in a later stage of the time history (i.e. when the relative magnitude of the response 1 3 4 15 1 3 4 678 1 is large), which corresponds to the situation of interest. The maxima of the modal amplitudes frequency-response curve are presented in Figures 4 and5. Results when ordering the modes with respect to the maximum amplitude reached during the integration time are presented in Table 6. Considering specifically the resonant mode (1,5) the curves presented in Figure 6 were obtained. The FE analysis shows a qualitatively good agreement with the semi-analytical results using only a small number of degrees of freedom shown in [START_REF] Jansen | Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis[END_REF].

The softening behaviour of the response curves and the jump phenomena corresponding to the softening branch, found earlier in the semi-analytical analysis, are also observed in the present Finite Element analysis. The snap to a remote configuration, using the semi-analytical model presented in [START_REF] Jansen | Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis[END_REF] seen for a preload of 9@A B CD , in the present Finite Element study already occurs for a preload of 9@EA B CD . Additional studies have been carried out using the semi-analytical model of Ref. [START_REF] Jansen | Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis[END_REF] (Figure 7). These calculations show, that for a number of forcing periods of 50 (Fig 7a ),

the snap occurs at a pre-load level around 9@F9 B CD . Moreover, calculations were carried out for a higher number of forcing periods. These calculations (Fig 7b ) show, that in this case also with the Accepted manuscript, Thin-Walled Structures semi-analytical model, for a pre-load level of £¡ ¢ ¤ ¥ a snap to a remote configuration is predicted.

An interesting phenomenon relates to the relevant modes involved in the response. In the ¦waterfall § charts of Figure 8, the maximum absolute value of the response ¨©, defined as !"¨©, is shown as a function of the excitation frequency (on the y-axis) and the projected mode (along the x-axis). The present results are in agreement with expectations [START_REF] Amabili | Nonlinear Vibrations and Stability of Shells and Plates[END_REF][START_REF] Pellicano | Stability and vibration of empty and fluid filled cylindrical shell under static and periodic axial loads[END_REF].

In particular, a strong response of the following modes can be observed:

# both driven and companion modes # asymmetric modes with k × n circumferential waves, where k is an integer

# axisymmetric modes B$$%$&'( )&0($%1$203 (4566
A parametric excitation analysis was also performed for the simply 7899@ABCD E@@B@FG7 HFI7@BA@9IP cylindrical shell. In this case, the simulations were made without static pre-load. The dynamic axial load is imposed through the corresponding uniform membrane stress resultant

Q R SQ R T UVWX (22) 
where ¤ R T / ¤ ¥ Y ` £¡a and the classical buckling stress resultant ¤ ¥ for a laminated shell is defined as Q bc d ee f g hipqrst eg g u [START_REF] Ganapathi | Parametric dynamic instability analysis of laminated composite conical shells[END_REF] in which material properties of a layer of the laminate are used (see Table 4). The three DOFs expansion used in Ref. [START_REF] Jansen | Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis[END_REF] is

v f w T x w r UVW y x W y UVW y S h (24) 
where the skewedness parameter imposed in [17] is equal to 0.002, which corresponds to a very small skewedness. The skewedness of the pattern that can be extracted from the results of the Finite Element linear frequency analysis is higher (around 0.03), but can still be considered to be small.

In the semi-analytical analysis in Ref. [START_REF] Jansen | Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis[END_REF], a two-mode imperfection is used: Accepted manuscript, Thin-Walled Structures

¡ £¢£¤ ¥¦ § ¨© £¢£ § © ¥¦ § !" # $ % & (25) 
Because of the anisotropy of the shell, the shell response will not be symmetric with respect to the shell mid-length and for this reason the complete circular shell is modelled. In order to model the SS-3 boundary condition while avoiding unconstrained displacements at the shell edges in the axial direction, the bottom edge of shell was connected with a support by a set of soft springs. To represent an imperfect geometry corresponding to the imperfection shape used in the semianalytical approach, the Finite Element mesh node positions were defined via a MATLAB script.

Also in these simulations damping is neglected. The maximum of the modal response was considered within the first 200 forcing periods T of the integration period. In the FE dynamic simulations the upper limit of the time step size was set equal to 1/160 T. In Figures 9 and10 the results of the modal projection procedure are presented. The method makes it possible to identify the different modes involved in the response. The FE analysis shows a qualitatively good agreement with the semi-analytical results reported in Ref. [START_REF] Jansen | Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis[END_REF].

Critical dynamic load evaluation

The present analysis is concerned with the evaluation of the critical dynamic load of a shell under axial pulsating loading. When the main parameters of the analysis case (such as the frequency of excitation) have been fixed, the stability properties of the system can be studied as a function of the load amplitude. The critical dynamic load (CDL) is defined as the load at which for small perturbations in an 'asymmetric( mode, a growing solution of the asymmetric response, or a jump to a remote branch, occurs.

This evaluation of the critical dynamic load will be carried out for a simply supported isotropic shell, )010234 shell. 567 8947 0@ )010234 467AA was earlier studied within a semi-analytical context in Ref. [START_REF] Pellicano | Stability and vibration of empty and fluid filled cylindrical shell under static and periodic axial loads[END_REF], where results were obtained via continuation methods, and in Ref. [START_REF] Jansen | Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis[END_REF], via numerical time integration. Also in the present FE analysis, numerical time integration will be used. The shell is subjected to a harmonic excitation in which the frequency B is constant and close to 2C DEF and the amplitude is increased stepwise with an increment of 0.001 G HD . The duration of each step is 1000 T, where T is the forcing period. In order to interrogate the stability of the dynamic response, an initial condition for the displacement is imposed. In particular, the following initial condition for the radial displacement at time t = 0 is applied: Accepted manuscript, Thin-Walled Structures § ¡ ¢£ ¤¥ ¦¨¦© ¢¥ ! " ¤# (26) and the consequence of this disturbance on the response of the shell is monitored. The expansion used in [START_REF] Jansen | Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis[END_REF] is Eq. ( 10), with m=1, n=5 ($ % =0). In Refs. [12] and [17] modal damping is introduced.

In the current FE analysis a corresponding Rayleigh damping with parameters reported in Table 7, is used. Also in the present analysis half cylinder is modelled, so that a response symmetric with respect to the shell mid-length can be captured. In Figure 11 the time history of the radial displacement of a node located on the peak of the resonant deformed shape w ref is represented. It is noted that in the procedure of stepwise increasing the amplitude of the harmonic excitation, the critical load obtained (i.e. the load at which a growing solution of the asymmetric response occurs) can in certain cases depend on the starting amplitude for the analysis in combination with the initial conditions applied. Results are presented in Table 8. The modal projection procedure developed reveals the modes involved in the response, see Figure 12.

Travelling wave investigation

The nonlinear coupling between driven and companion mode may lead to the phenomenon of travelling waves in the circumferential direction of the shell. Considering the relevant terms related to the driven mode and companion mode in the expression for the radial deflection in Eq. ( 9), assuming that the time-dependent amplitudes & '() and 0 '() can be expressed as

1 '(2 3¥ 4 '(2 56783¥ £ 9 '(2 3¥ @ '(2 56783 A B C ¥ (27) 
the radial response may be written as

§¤£ ¢£ 3¥ D4 '(2 56783¥ 567¢¥ A @ '(2 56783 A B C ¥ 7EF¢¥G7EF !H " # (28) 
If B C =kI with k=0,1,2,P the response is a pure standing wave §¤£ ¢£ 3¥ Q4 '(2 567¢¥ R @ '(2 7EF¢¥¥ 56783¥S7EF !H " #

whereas if B C T UI the response can be written as Accepted manuscript, Thin-

Walled Structures § ¡ ¢¡ £¤ ¥¦¨ © £¤ © !£ " # ¤$ %¢¤ © !%¢ & £ & " # ¤' ! ( )0 1 2 (30) 
which is the superposition of a standing wave and a travelling wave, that becomes a pure traveling wave if ¨© © and " # ) # .

The modal projection procedure developed allows describing the response of the shell for each of the modes involved. For the driven mode and the companion mode, their time phase shift can be observed. If these two associated modes are in phase or in opposition of phase, there is no travelling wave effect. This is the case in Figure 13, which shows the projection o3 456 7898@AB B56CC. This result corresponds to the findings in [START_REF] Jansen | Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis[END_REF], where no travelling waves have been observed when DEDCFBGEH 7898@AB B56CC IEP6Q 9ICBD4GEH C8DPGEHR

It is interesting to note, that for the case of S8848EAB B56CC under parametric excitation, energy exchanges between the driven mode and companion modes can be observed. In these analysis cases, a travelling wave can arise, as can be seen in Figures 14 and15, where the phenomenon occurs in the last part of the 200 forcing periods T of the integration period. In the analysis case TUV lin = 1.9188 (Figure 16) a long duration integration in resonance condition was performed. In this last case the energy exchange between driven and companion mode occurs without the phase shift in time corresponding to a travelling wave. pre-load levels ¦ ¡ § ¢ ¦ £¤ 0, 0.10, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50 using semi-analytical model from Ref. [17], a) number of forcing periods = 50, b) number of forcing periods = 400. ¥ ¤¨© corresponds to the linear frequency of the respective pre-!"#$%& $sotropic shell. Accepted manuscript, Thin-Walled Structures 

Concluding remarks

In the present work dynamic stability investigations of isotropic and composite cylindrical shells under pulsating axial loading, in earlier work mainly investigated via semi-analytical procedures, have been carried out employing Finite Element analysis using numerical time integration. A combination of these two complementary approaches (Finite Element analysis and semi-analytical approach) is required to obtain reliable and accurate results in the complex and time-consuming nonlinear dynamic stability analysis.

The modal projection procedure for Finite Element analysis developed allows extracting modal amplitudes which can be directly compared with the corresponding modal amplitudes in the semianalytical approaches used in Refs. [START_REF] Pellicano | Stability and vibration of empty and fluid filled cylindrical shell under static and periodic axial loads[END_REF] and [START_REF] Jansen | Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis[END_REF], so that a very good picture of the complex nonlinear behaviour occurring in the case of parametric excitation of cylindrical shells under axial loading can be obtained.

Critical dynamic loads and frequency-response were shown to be generally in good qualitative agreement with the findings presented in Ref. [START_REF] Jansen | Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis[END_REF]. The present Finite Element approach, when compared with the simplified dynamic response analysis using a very limited number of assumed modes presented in Ref. [START_REF] Jansen | Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis[END_REF], makes an improvement of the accuracy of the dynamic stability analysis of cylindrical shells possible. The analysis of the modal amplitude via the modal projection procedure developed gives the opportunity to study the interactions between the contributing modes and to interpret interesting phenomena such as the occurrence of travelling waves on the basis of a Finite Element analysis using numerical time integration.

Figure 1 .

 1 Figure 1. Shell geometry, coordinate system and applied loading within semi-analytical nonlinear dynamic analysis of composite cylindrical shells [17].

Figure 2 .

 2 Figure 2. Shell geometry and coordinate system for Finite Element analysis.

Figure 6 .Figure 7 .

 67 Figure 6.Frequency-response curves for cylindrical shell under pulsating axial loading of mode[START_REF] Hsu | On the parametric excitation and snap-through stability problems of shells[END_REF][START_REF] Nagai | Dynamic stability of circular cylindrical shells under periodic compressive forces[END_REF] for the static preload levels ¦ ¡ § ¢ ¦ £¤ 0 (solid line), 0.1 (dashed line), 0.25 (dash-dot line), 0.5 (dotted line). a) present FE result, b) semi-analytical result from Ref.[START_REF] Jansen | Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis[END_REF]. ¥ ¤¨© corresponds to the linear frequency of the respective pre-loaded shell.!"# #$%& #!'(()

Figure 8 .Figure 10 .

 810 Figure 8. Waterfall chart for cylindrical shell under pulsating axial loading showing the contribution of various modes for varying excitation frequency. ¡¢£¤¥¡¦ §¨© §¡¡ §¨©.

  

  

  

  

Table 1 .

 1 HHT default parameters.

	Parameter	Transient	Moderate
		fidelity	dissipation
		-0.05	-0.41421
		0.275625	0.5
		0.55	0.911421

Table 2 .

 2 

!"#$%&'( $()01$% (&233 !)!4

Table 3 .

 3 51#'( isotropic shell data.

		6789@A7BCDEFs isotropic shell
	L	2 m
	R	1 m
	h	0.01 m
	E	4x10 10 N/m 2
	G	2500 kg/m 3
	H	0.3
		I7P7BFQ CQ7RS7PCD QETUU
	L	0.4 m
	R	0.2 m
	h	2x10 -3 m
	E	2.1x10 11 N/m 2
	G	7850 kg/m 3

H 0.3 Accepted manuscript, Thin-Walled Structures

Table 4 .

 4 ¡¡¢¡£¤¥ anisotropic shell data.

Table 5 .

 5 Boundary conditions for shells used in the Finite Element analysis.

		Booton	Popov	Bogdanovich
	Element type	S4R	S4R	S4R
	Element size	0.0015m	0.004m	0.02m
		0.0032m	0.02 m	0.1m
	Total number elements 8520	3140	3140

Density C = 2778.62 kg/m 3 Accepted manuscript, Thin-Walled Structures

  Accepted manuscript, Thin-Walled Structures

	¡ § ¢£ 1.9068	¡ § ¢£ 1.9335	¡ § ¢£ 1.9601	¡ § ¢£ 1.9868
	A max /h	mode	A max /h	mode	A max /h	mode	A max /h	mode
	3.4633	1,5	3.2063	1,5	3.0450	1,5	2.8232	1,5
	0.7823	1,0	0.6695	1,0	0.6229	1,0	0.5495	1,5
	0.6709	1,5	0.6229	1,5	0.5924	1,5	0.5400	1,0
	0.4811	1,10	0.3715	1,10	0.3593	1,10	0.3061	1,10
	0.3576	3,5	0.2528	3,5	0.2408	3,5	0.1770	3,5
	0.2608	3,10	0.2439	3,10	0.2156	3,10	0.1274	1,10
	0.2015	3,0	0.1822	5,5	0.1349	3,0	0.1078	3,0
	0.1871	5,5	0.1783	5,10	0.1248	1,10	0.1060	3,10
	0.1660	1,10	0.1669	3,0	0.1158	5,5	0.1048	5,10
	0.1442	5,10	0.1283	1,10	0.1056	3,10	0.0913	3,15
	0.1282	3,10	0.1182	3,10	0.0948	5,10	0.0617	5,5
	0.1029	7,10	0.0956	3,15	0.0717	7,10	0.0544	3,10
	0.0921	5,0	0.0853	5,0	0.0658	5,0	0.0464	5,0
	0.0891	1,15	0.0799	5,10	0.0564	3,15	0.0459	3,5
	0.0859	3,15	0.0792	7,10	0.0465	3,5	0.0411	3,15
	0.0684	3,5	0.0705	1,15	0.0451	1,15	0.0341	7,10
	0.0641	5,10	0.0520	3,15	0.0426	5,15	0.0253	5,10
	0.0594	5,15	0.0487	3,5	0.0426	5,10	0.0242	5,15
	0.0473	1,15	0.0486	5,15	0.0324	7,10	0.0211	5,15
	0.0473	3,15	0.0402	1,6	0.0317	3,15	0.0210	7,10
	0.0455	7,10	0.0366	1,15	0.0300	5,15	0.0206	1,15
	0.0420	1,6	0.0356	7,10	0.0242	1,15	0.0164	1,6
	0.0404	5,15	0.0344	5,5	0.0224	5,5	0.0111	1,6

Table 6 .

 6 Principal modes participation under parametric excitation for zero preload, ¤¥¦¨©¥ isotropic shell. Accepted manuscript, Thin-Walled Structures

Table 7 .

 7 Damping values for ¡¢¡£¤¥ ¥¦ §¨¨.

Table 8 .

 8 Critical dynamic load results comparison.

	Instance Ref. [17]		Ref. [12]		Present work
	Type	Modal damping		Modal damping		Rayleigh damping
		(all modes)		(all modes)	
	Value	( i =0.089		( i =0.089		) = 267.85
						0 = 0.0000296
		123 lin	Ref. [17]	Ref. [17]	Ref. [12]	Present
				(in-plane		work
				inertia)*	
		1.9	0.473	0.439	0.448	0.435
		2.0	0.434	0.400	0.416	0.401
		2.1	0.524	0.479	0.492	0.488

*©¦ § £¨ §¥ § ! §¡" §! #"¦ $-¢¨ § §%"& '¡%% §¥¢¡! to a semi-analytical analysis including the in-plane inertia of the fundamental axial mode.
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