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Abstract 

Nonlinear dynamic stability investigations for isotropic and composite cylindrical shells under 

pulsating axial loading are carried out using transient Finite Element analysis. In particular, 

important characteristics of the geometrically nonlinear behaviour are systematically studied 

through Finite Element analysis. The results of the Finite Element analysis are compared with 

results obtained in earlier studies using semi-analytical procedures. In order to facilitate the 

evaluation and the comparison of these two complementary approaches, a modal projection 

procedure has been developed for the Finite Element analysis. Critical dynamic loads and 

frequency-response curves for isotropic and composite shells under pulsating loading obtained with 

the Finite Element transient analysis are shown to be generally in good qualitative agreement with 

the results of earlier semi-analytical work. The analysis of the modal amplitude achieved via the 

modal projection procedure also makes it possible to study the interactions between contributing 

modes and to observe and interpret interesting phenomena such as the occurrence of travelling 

waves in the circumferential direction of the shell. 
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1. Introduction 

Thin-walled shell structures are important structural components in many branches of engineering; 

these structures are prone to buckling instabilities under static and dynamic compressive loading 

and may be directly or parametrically excited into resonance at their natural frequencies by dynamic 

loads. The stability of thin-walled structures under dynamic loading constitutes a relevant research 

area; in particular, the parametric excitation (vibration buckling under pulsating loading) represents 

an important topic in the dynamic stability of shell structures. 

Because of the theoretical and practical significance of these structural components, the parametric 

excitation and nonlinear vibration problem of cylindrical shells has received considerable attention. 

The vibration buckling problem of shells under pulsating loading has often been investigated within 

a semi-analytical context. It has been recognized that essential information about the nonlinear 

dynamic behaviour of structures can be efficiently obtained by means of analytical-numerical, low-

dimensional models, i.e. models with a small number of degrees of freedom. The essential ideas of 

parametric excitation for shell problems are discussed by Hsu [1]. Early investigations in the field 

of the parametric excitation of cylindrical shells were carried out by Yao [2-3], Vijayaraghavan and 

Evan-Iwanowski [4] and Nagai and Yamaki [5]. Laminated structures have been studied by Argento 

[6] and Argento and Scott [7-8]. Further semi-analytical work includes the work of Popov et al. [9] 

and Gonçalves  and Del Prado [10].  The extension of semi-analytical approaches to multi-mode 

analyses has been presented and used in various works by Amabili, Pellicano and their colleagues 

[11-15] on nonlinear vibrations and parametric excitation of cylindrical shells. A low-dimensional 

model with a small number of degrees of freedom, introduced earlier by Jansen [16] to capture 

important characteristics of the nonlinear vibration behaviour of shells, was used to analyse the 

dynamic stability behaviour of anisotropic cylindrical shells under dynamic axial loading [17].   

Using a Finite Element based reduced order approach, the nonlinear (large amplitude) vibration 

analysis and the dynamic buckling of composite cylindrical shells under step loading have been 

studied in Refs. [18, 19]. 

The possibility to carry out a nonlinear transient analysis for shell structures is standardly available 

within finite element codes. Because of their imperfection-sensitive behaviour, relevant shell 

configurations such as cylindrical shells have received considerable attention in dynamic buckling 

investigations, e.g. by Saigal et al. [20], Yaffe and Abramovich [21] and Bisagni [22]. Finite 

element based transient analysis is, however, computationally expensive. This in particular holds 

for shells under pulsating loading, which have been investigated through Finite Element Analysis, 

e.g. Ganapathi et al. [23] and Dey and Ramachandra [24], but to date have not been analysed 

through systematic transient Finite Element studies.   
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In this paper, the large amplitude vibration behaviour of both isotropic and composite cylindrical 

shells under pulsating loading is investigated by using transient Finite Element analysis in order to 

obtain accurate solutions. The Finite Element analysis allows an accurate satisfaction of idealized or 

realistic boundary conditions, makes it possible to include all relevant inertial effects, and enables 

capturing the complicated interaction between the ���������� �	�
������� fundamental dynamic 

state and the parametrically excited ������������, asymmetric dynamic state. Key issues for the 

numerical analysis will be addressed. A Finite Element modal projection procedure will be 

developed, which facilitates the interpretations of the transient Finite Element analysis in particular 

the comparison between Finite Element calculations and the results of semi-analytical approaches 

available in the literature.  
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2. Problem formulation on the basis of a semi-analytical approach 

In the present section, the problem of parametric excitation of a composite cylindrical shell under 

pulsating axial loading is described on the basis of the governing equations and displacement 

functions for this problem following the formulation used in Ref. [17]. 

 

2.1. Governing equations 

The equations governing the nonlinear dynamic behaviour of a cylindrical shell are presented. The 

shell is loaded by an axial compressive force P and an external pressure p which can both depend 

on time. It is assumed that the radial displacement � is positive inward (see Figure 1). Applying the 

usual membrane stress resultants Nx, Ny and Nxy, and introducing the Airy stress function � defined 

by Nx = F,yy, Ny = F,xx and Nxy � �F,xy, the Donnell-type nonlinear imperfect shallow shell equations 

for an anisotropic material can be written as 
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where the variables � and � depend on the spatial coordinates x, y and time t, R is the shell radius,  

��  denotes a stress-free radial initial imperfection, ������� is the radial inertia term,�� is the averaged 

specific mass of the laminate, h is the reference shell thickness. 

 

The 4th order linear differential operators 

 

������ � ���
�
�������� ����

�
������� � ���	�

�
� ���

� �������   ��	�
�
�����   � �		

�
����            (3) 

      ������ � !�	
�
��������� ��!��

�
 !�	

� �������� � �!		
�

� !��
�

 �!��
� �������   

             ���!	�
�

 !��
� ������   � !	�

�
����                                                                               (4) 

������ � "		
�
��������� #"	�

�
������� � ��"	�

�
� �"��

� �������  � #"��
�
�����   � "��

�
����          (5) 

 

depend on the stiffness properties of the laminate, the elements of the partially inverted ABD-

matrix [17], and the nonlinear operator defined by 

 

����$� %� � $��� %�   �$�� %�� � $�  %���                          (6) 

 

reflects the geometric nonlinearity.  
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In particular, Eq. (1) guarantees the compatibility of the strains and the radial displacement field 

while Eq. (2) is the equation of motion (dynamic equilibrium equation) in radial direction. 

The first step for solving the equations is to transform them into a finite set of nonlinear ordinary 

differential equations (ODEs) using the Galerkin method, through which we can describe the 

deformation using a finite number of degrees of freedom (DOFs). 

The radial displacement ���� �� �� can be written as 

 

���� �� ��  ����������� �� �	�



���
 

 

The coefficients ����� are now the DOFs of the problem. After suitably expanding the Airy function 

and projecting the governing equations using the Galerkin procedure, one can obtain the following 

set of ODEs, 
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2.2. Displacement functions 

The choice of the trial functions used for the radial displacement w is crucial in order to obtain good 

quality results in the case of nonlinear vibrations; studies on convergence in the nonlinear case are 

reported in Refs. [12-15]. It is important to include axisymmetric modes in the expression for the 

radial displacement.  

Let us consider a circular cylindrical shell with classical, simply supported boundary conditions 

(SS-3 boundary conditions), excited by a radial "#$%&'() *&#+ ,(-" )($).*#$ /$01.0')2 3 -& vibrate 

in the resonant condition of the mode (m,n), where m is the number of longitudinal half-waves and 

n the number of circumferential full waves. It is important to include the following modes in the 

displacement function assumed for the radial displacement [11, 12]: 

4 resonant mode, including both driven and companion modes 

4 asymmetric modes with k × n circumferential full waves, where k  is an integer 

4 axisymmetric modes 
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In certain cases, additional modes with natural frequency close to the ratio 1:1, 1:2, 1:3 with respect 

to the frequency of excitation, which in general may have an influence in the response, should be 

included. In the numerical calculations in Ref. [12], the following 23-DOFs expansion was 

assumed: 

 

���� �� �� 

� � ���	
��� �������� � ��	
��� ���������������
�
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In the expansion presented in Ref. [17], the most essential modes were retained and the number of 

DOFs was thereby reduced to four. Driven and companion resonant modes and two specific 

axisymmetric modes were included. One of the axisymmetric modes satisfies a crucial coupling 

condition with the driven and companion mode. In the numerical calculations the expansion used in 

Ref. [17] is 
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where DR is EFGHIJ skewedness parameter, which is equal to zero in the case of an isotropic shell but 

can reflect the possible skewedness of the deflection pattern of an anisotropic shell. In the case of 

skewed modes and for large amplitude deflections, the expression satisfies the classical boundary 

condition SS-3 only approximately. 
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Figure 1. Shell geometry, coordinate system and applied loading within semi-analytical nonlinear dynamic analysis of 

composite cylindrical shells [17].  

 

 

 

Figure 2.  Shell geometry and coordinate system for Finite Element analysis. 
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3. Finite Element Analysis 

3.1. Nonlinear Dynamic Analysis 

The nonlinear dynamics simulations were performed using the Finite Element (FE) software 

Abaqus 2016 [25]. A four-node general-purpose shell element with reduced integration and finite 

membrane strains (the Abaqus S4R shell element) was employed. The time integration scheme used 

is the implicit HHT (Hilbert-Hughes-Taylor) method. This integration scheme is unconditionally 

stable for linear problems and has been shown to give appropriate stability properties also for 

certain nonlinear problems, but it introduces a certain amount of numerical damping in the system. 

In order to reduce the influence of this numerical damping, one must carefully set the parameters of 

the method in an approach in which small time increments are used to accurately represent the 

vibrational response of the structure while keeping the numerical energy dissipation at a minimum 

(���������� 	�
����� option in Abaqus, see Table 1).  

Regarding the time step of the integration, an automatic scheme of variable time step available in 

Abaqus is used. Three parameters are defined within this approach: initial suggested time step, 

minimum time step and maximum time step. After a convergence analysis, the initial and maximum 

time steps were always chosen smaller than 1/80 T, where T is the time period of the harmonic 

forcing; the integrator is free to use a smaller time step if needed. Using a low or negligible 

damping, the influence of the time step choice is crucial and one should apply a small time step in 

order to reduce the deviation of the solution.  

 

3.2. Modal projection procedure   

In order to simplify the interpretation of the dynamic response of the structure, an innovative post-

processing procedure was developed. The deflection of the cylindrical shell can be described using 

a time depending vector �����. The goal is then to obtain the best approximation of this vector using 

a reduced basis constituted of linearly independent (in general not orthogonal) vectors. Applying 

this approach to the Finite Element analysis results, for each time step of the time history output, a 

vector �� with components ��, the radial displacement associated with the node of the shell surface 

with coordinates (��� �� ���, can be easily assembled (considering only the radial displacement 

instead of all 6 DOFs at the node allows reducing the size of the problem considerably). The same 

procedure is used when assembling time independent vectors �
�
 corresponding to the modal shapes 

obtained via linear frequency analysis. These vectors, as linear independent vectors, are appropriate 

candidates for building the reduced basis �: 
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�  ��� � � ���      (11) 

 

where �� is corresponds to � ��	�
 ����� ���� �	���
������� �����
��������� �his means that, once 

a vector��� has been imported, � is defined as �  � !
"#$ �!%. For the actual deflection &', its 

approximation can be written in terms of reduced basis vectors, 

 

& ( &'  ) *+�+  �*,�+-�       (12) 

 

where *+  is time-dependent. In order to find the linear combination that gives the best fit of the real 

surface, one can minimize the norm of the error vector 

 

. /&, .0. &, 1 2*, . 0  &,0 1 &��*, 1 �*, &� 1 �*, �*,     (13) 

 

Imposing the gradient equal to be equal to zero, the following is obtained: 

 

3
3#4 5&,0 1 *�6�6&, 1 5*�6�67 &� 8 *�6�6 �*,7  3

3#4 5&,0 1 9*�6�6&, 8 *�6�6�*,7  (14) 

 

which leads to 

 

9&�6� 8 9*,6�6�  �6&� 8 �6�*,  :     (15) 

 

Defining the matrix ;  �6�, *, can be determined from 

 

;<��6&�  *�          (16) 

 

One can demonstrate that this corresponds to a minimum by evaluating the Hessian matrix, 

 

3
3#4 5�6&� 8 �6�*,7  �6�       (17) 

 

Since � has maximum rank, the Hessian matrix has only positive eigenvalues. The approximation 

error can be monitored, for instance by evaluating the following dimensionless form, 
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� � ��� ��� �� �       (18) 

 

where���  �� � ��	. For the results presented in the following, a reasonable tolerance of less than 

10% was specified for this dimensionless error. For assessing the quality of the projection this 

dimensionless error is compared with respect to the relative magnitude of the response                     

� �� �� � ���
� �, where ���
� corresponds to the maximum norm of ��. 

 

 

Parameter Transient 

fidelity  

Moderate 

dissipation 

� -0.05 -0.41421 

� 0.275625 0.5 

� 0.55 0.911421 

Table 1. HHT default parameters. 

 

 

 

 

 

 

 

 

Table 2. ������������� ��������� �� !! ����" 

 

 

 

 

 

 

 

 

Table 3. #������ ��������� �� !! ����" 

 

$%&'()%*+,-.s isotropic shell 

L 2 m 

R 1 m 

h 0.01 m 

E 4x1010 N/m2 

/  2500 kg/m3   

0  0.3 

1%2%*.3 +3%45%2+, 3-677 

L 0.4 m 

R 0.2 m 

h 2x10-3 m 

E 2.1x1011 N/m2 

/  7850 kg/m3   

0  0.3 
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Table 4. �������� ��������	�
 ��� ����� 

 

 

 

 

Boundary conditions 

Bottom edge nodes:  v = w = 0 

Symmetry edge nodes:  u = �� = ��= 0 

Mesh (structured) 

 Booton Popov Bogdanovich 

Element type  S4R S4R S4R 

Element size 0.0015m 

� 

0.0032m 

0.004m 

� 

0.02 m 

0.02m 

� 

0.1m 

Total number elements 8520 3140 3140 

Table 5. Boundary conditions for shells used in the Finite Element analysis. 

  

�������� ����������� �� !! 

Dimensions R=0.0678 m 

L=0.0959 m 

Laminate properties                          

Number of layers: 3 

 LAYER angle Thickness 

 1 outward +30° 0.226 mm 

 2 middle 0° 0.226 mm 

 3 inward -30° 0.226 mm 

Single layer properties 

Material   Glass-Epoxy 

Elastic properties "## $ %&'( )'
*
+,- 

  ".. $ )&/0 )'
*
+,- 

  1#. $ '&2/2 

  3#. $ %&/) )'
4
+,- 

Density     5 = 2778.62 kg/m3         
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4. Numerical results 

For the numerical calculations for shells under axial pulsating loading, examples from literature of 

circular cylindrical shell are considered. For the case of iso������ ���		�
 ������ shell [26] and 

�����������s [27] shell are considered. For the anisotropic shells, the static and dynamic 

��������� �� ������� ���		 [28] is considered. In Tables 2-4 the mechanical properties of these 

three shells are reported. In Figure 2 the coordinate system and conventions for the FE analyses are 

shown. In Table 5, the properties of the boundary conditions in the FE modelling are reported. 

The terms ������� ����� ��� ���������� ����� introduced for nonlinear vibration analysis of 

cylindrical shells will also be used in the following analysis of a cylindrical shell under axial 

parametric excitation� ��� ���� ������� ����� ������ �� the mode that is triggered through a 

corresponding imperfection or initial displacement. 

 

4.1.Transient response of reference shells 

Main response characteristics will be illustrated for �����������s isotropic shell and �������
anisotropic shell. 

Bogdanovich�� isotropic shell 

��� ����� ���� ����� �� ��� ������� �������� �� ������������ ��������� ���		 ����� ����	 ��	������

load. The shell considered is simply supported (SS-3), while a uniform membrane stress resultant 

on the edge is specified, 

 

� ! " #� $ %&'()*+       (19) 

 

In addition, a static axial pre-load is applied through the uniform membrane stress resultant �,!.  

The amplitudes of the dynamic and static excitations are normalized using the classical critical load  

�-. "
/01

234567819, corresponding to an axial force �-. "
/01

234567819 : ;<= equal to 1.5211 × >?@N 

using the data presented in Table 2. 

In the calculations, the following axial load amplitudes are considered: for the dynamic load 

� $/ �-. " AB " ?CDE and for the static pre-load  AF " �,!G �-. " 0, 0.1, 0.25, 0.5. 

A single mode imperfection is also considered 

 

HI " ?C?> : J : 'KL M<
!
NO : %&'(EP+       (;?+ 

 

and the damping is neglected. 
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In [17] the following 3 DOF expansion was used 

 

�  ����� � ����� ��� 	

��
� � � ���� ��� 	�

�
�� �������    (21) 

 

In the FE analysis, the radial displacement � is considered positive outward. Damping is neglected. 

Homogeneous initial conditions are applied, corresponding to the initial conditions in the semi-

analytical analysis in Ref. [17]: ����  �����  �����  ��� ���  �����  ��� ���  �.  

In order to analyse the linear and the nonlinear behaviour corresponding to the principal Mathieu-

Hill parametric instability, the shell is excited at frequency � close to �����, where ���� is the linear 

(small amplitude) frequency of the imperfect and preloaded shell. In order to obtain the frequency-

load curves for specified load amplitudes, the governing equations are integrated in a time interval 

equal to 50 forcing periods T and the maximum of the system response during this time interval is 

recorded.  

Finite Element analysis details of the model boundary conditions are listed in Table 5. It is to be 

noted that symmetry conditions have been used in the FE model; in particular, a symmetry plane 

located at  
�

 and perpendicular to the axis of the cylinder is considered. This choice has the aim 

to reduce the computational cost and allows us to model exactly the boundary conditions SS-3. In 

this case a response that is symmetric with respect to the shell is studied. It should be kept in mind 

that when considering the nonlinear response of the (full-length) shell, a possible nonlinear coupling 

can result in breaking the symmetry of the response. The load is applied with concentrated forces on 

the nodes of the shell edge. Single dynamic simulations for different frequency of excitation and 

preload levels are carried out. Referring to Eq. (12), where !�  are the modes selected for the 

response projection, the modal projection procedure developed considers the first 100 modes of the 

FE linear frequency analysis and the axisymmetric modes (1,0), (3,0) and (5,0) as !� . 

In Figure 3 the modal amplitude "#���, referring again to Eq. (12), is presented for modes  (1,0), 

(3,0), (5,0) and (1,5), (1,6). Both $%& 'driven( and 'companion( mode are considered. Besides the 

strong response of modes (1,5) and (1,6), the inward vibration of the mode (1,0) should be noted, 

confirming earlier observations in the literature about modes contributing in the nonlinear behaviour 

and more specifically the relevance of axisymmetric modes [12, 17]. Also the phase shift of )� 

*&$+&&, '-./0&,( 1,- '23451,/3,( 43-& should be noted, where ) is an integer. The value of the 

dimensionless error is negligible when the radial response is significant. The maxima of the modal 

amplitudes frequency-response curve are presented in Figures 4 and 5. Results when ordering the 

modes with respect to the maximum amplitude reached during the integration time are presented in 
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Table 6. Considering specifically the resonant mode (1,5) the curves presented in Figure 6 were  

obtained. The FE analysis shows a qualitatively good agreement with the semi-analytical results 

using only a small number of degrees of freedom shown in [17]. In the present study a jump to a 

remote configuration already occurs for a preload of ���� ���, while in the semi-analytical analysis 

a jump was observed for a preload of ��� ���.  

 

An interesting phenomenon relates to the relevant modes involved in the response. In the 

�waterfall� charts of Figure 7, the maximum absolute value of the response �	�
�, defined as 

��� � ������	�
���, is shown as a function of the excitation frequency (on the y-axis) and the 

projected mode (along the x-axis). The present results are in agreement with expectations [11, 12]. 

In particular, a strong response of the following modes can be observed: 

� both driven and companion modes 

� asymmetric modes with k × n circumferential waves, where k is an integer 

� axisymmetric modes 

 

B������� �������� �! �"#$$ 

A parametric excitation analysis was also performed for the simply %&''()*+, -((*(./% anisotropic 

cylindrical shell. In this case, the simulations were made without static pre-load. The dynamic axial 

load is imposed through the corresponding uniform membrane stress resultant 

 

01� � 2013 456�7
�      (22) 

 

where �13/ ��� � 89 � ��: and the classical buckling stress resultant ��� for a laminated shell is 

defined as 

 

0;< �
=>>?@

ABCDEFG>@@H
      (23) 

 

in which material properties of a layer of the laminate are used (see Table 4).  The three DOFs 

expansion used in Ref. [17] is 

 

I
? � J3�
� K JE�
� 456 L

MN�
O P K �
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�
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VW
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where the skewedness parameter �� imposed in [17] is equal to 0.002,  which corresponds to a very 

small skewedness.  The skewedness of the pattern that can be extracted from the results of the Finite 

Element linear frequency analysis is higher (around 0.03), but can still be considered to be small.         

In the semi-analytical analysis in Ref. [17], a two-mode imperfection is used: 

 

�
� � ���� ��	 �


��
� � � ���� 	�� ��

�
�� ��	 ��� �

��
� ��    (25) 

 

Because of the anisotropy of the shell, the shell response will not be symmetric with respect to the 

shell mid-length and for this reason the complete circular shell is modelled. In order to model the 

SS-3 boundary condition while avoiding unconstrained displacements at the shell edges in the axial 

direction, the bottom edge of shell was connected with a support by a set of soft springs. To 

represent an imperfect geometry corresponding to the imperfection shape used in the semi-

analytical approach, the Finite Element mesh node positions were defined via a MATLAB script. 

Also in these simulations damping is neglected. The maximum of the modal response was 

considered within the first 200 forcing periods T of the integration period. In the FE dynamic 

simulations the upper limit of the time step size was set equal to 1/160 T. In Figures 8 and 9 the 

results of the modal projection procedure are presented. The method makes it possible to identify 

the different modes involved in the response. The FE analysis shows a qualitatively good agreement 

with the semi-analytical results reported in Ref. [17].  

 

4.2. Critical dynamic load evaluation 

The present analysis is concerned with the evaluation of the critical dynamic load of a shell under 

axial pulsating loading. When the main parameters of the analysis case (such as the frequency of 

excitation) have been fixed, the stability properties of the system can be studied as a function of the 

load amplitude. The critical dynamic load (CDL) is defined as the load at which for small 

perturbations in an �asymmetric� mode, a growing solution of the asymmetric response, or a jump 

to a remote branch, occurs. 

This evaluation of the critical dynamic load will be carried out for a simply supported isotropic 

shell, � ! "#$ shell. %&' ()$'  * � ! "#$ $&'++ was earlier studied within a semi-analytical context 

in Ref. [12], where results were obtained via continuation methods, and in Ref. [17], via numerical 

time integration. Also in the present FE analysis, numerical time integration will be used. The shell 

is subjected to a harmonic excitation in which the frequency , is constant and close to 2-./0 and 

the amplitude is increased stepwise with an increment of 0.00112.. The duration of each step is 

1000 T, where T is the forcing period. In order to interrogate the stability of the dynamic response, 
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an initial condition for the displacement is imposed. In particular, the following initial condition for 

the radial displacement at time t = 0 is applied: 

 

������� ��  ���	 
 ������� ��� �
�
� ��  (26) 

 

and the consequence of this disturbance on the response of the shell is monitored. The expansion 

used in [24] is Eq. (10), with m=1, n=5 (��=0). In Refs. [19] and [24] modal damping is introduced. 

In the current FE analysis a corresponding Rayleigh damping with parameters reported in Table 7, 

is used. Also in the present analysis half cylinder is modelled, so that a response symmetric with 

respect to the shell mid-length can be captured. In Figure 10 the time history of the radial 

displacement of a node located on the peak of the resonant deformed shape wref is represented. It is 

noted that in the procedure of stepwise increasing the amplitude of the harmonic excitation, the 

critical load obtained (i.e. the load at which a growing solution of the asymmetric response occurs) 

can in certain cases depend on the starting amplitude for the analysis in combination with the initial 

conditions applied. Results are presented in Table 8. The modal projection procedure developed 

reveals the modes involved in the response, see Figure 11. 

 

4.3. Travelling wave investigation 

The nonlinear coupling between driven and companion mode may lead to the phenomenon of 

travelling waves in the circumferential direction of the shell. Considering the relevant terms related 

to the driven mode and companion mode in the expression for the radial deflection in Eq. (9), 

assuming that the time-dependent amplitudes ���� and ����  can be expressed as  

 

��� �!�  "�� #$%�&!� � '�� �!�  (�� #$%�&! ) *+�    (27) 

 

the radial response may be written as 

 

���� �� !�  ,"�� #$%�&!� #$%���� ) (�� #$%�&! ) *+� %-.����/%-. �
�0
� �    (28) 

 

If  *+=k1 with k=0,1,2,2 the response is a pure standing wave  

 

���� �� !�  3�"�� #$%���� 4 (�� %-.����� #$%�&!�5%-. �
�0
� �     (29) 
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whereas if ��  �� the response can be written as 

 

���� �� �� 	 
����� ������� � ���� ������ � ���� ������� � ���� ������ � �� � ������� �
 !
" #

 (30) 

which is the superposition of a standing wave and a travelling wave, that becomes a pure traveling 

wave if  ���� 	 ���� and �� 	
 
�. 

The modal projection procedure developed allows describing the response of the shell for each of 

the modes involved. For the driven mode and the companion mode, their time phase shift can be 

observed. If these two associated modes are in phase or in opposition of phase, there is no travelling 

wave effect. This is the case in Figure 12, which shows the projection of the $%&%'() )*+,,. This 

result corresponds to the findings in [17], where no travelling waves have been observed when 

-.-,/)0.1 $%&%'() )*+,, 2.3+4 &2,)-50.1 ,%-30.16  

It is interesting to note, that for the case of 7%%5%.() )*+,, under parametric excitation, energy 

exchanges between the driven mode and companion modes can be observed.  In these analysis 

cases, a travelling wave can arise, as can be seen in Figures 13 and 14, where the phenomenon 

occurs in the last part of the 200 forcing periods T of the integration period. In the analysis case 

89:lin = 1.9188 (Figure 15) a long duration integration in resonance condition was performed. In 

this last case the energy exchange between driven and companion mode occurs without the phase 

shift in time corresponding to a travelling wave. 
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������ 1.9068 ������ 1.9335 ������ 1.9601 ������ 1.9868 

Amax/h mode Amax/h mode Amax/h mode Amax/h mode 

3.4633 1,5 3.2063 1,5 3.0450 1,5 2.8232 1,5 

0.7823 1,0 0.6695 1,0 0.6229 1,0 0.5495 1,5 

0.6709 1,5 0.6229 1,5 0.5924 1,5 0.5400 1,0 

0.4811 1,10 0.3715 1,10 0.3593 1,10 0.3061 1,10 

0.3576 3,5 0.2528 3,5 0.2408 3,5 0.1770 3,5 

0.2608 3,10 0.2439 3,10 0.2156 3,10 0.1274 1,10 

0.2015 3,0 0.1822 5,5 0.1349 3,0 0.1078 3,0 

0.1871 5,5 0.1783 5,10 0.1248 1,10 0.1060 3,10 

0.1660 1,10 0.1669 3,0 0.1158 5,5 0.1048 5,10 

0.1442 5,10 0.1283 1,10 0.1056 3,10 0.0913 3,15 

0.1282 3,10 0.1182 3,10 0.0948 5,10 0.0617 5,5 

0.1029 7,10 0.0956 3,15 0.0717 7,10 0.0544 3,10 

0.0921 5,0 0.0853 5,0 0.0658 5,0 0.0464 5,0 

0.0891 1,15 0.0799 5,10 0.0564 3,15 0.0459 3,5 

0.0859 3,15 0.0792 7,10 0.0465 3,5 0.0411 3,15 

0.0684 3,5 0.0705 1,15 0.0451 1,15 0.0341 7,10 

0.0641 5,10 0.0520 3,15 0.0426 5,15 0.0253 5,10 

0.0594 5,15 0.0487 3,5 0.0426 5,10 0.0242 5,15 

0.0473 1,15 0.0486 5,15 0.0324 7,10 0.0211 5,15 

0.0473 3,15 0.0402 1,6 0.0317 3,15 0.0210 7,10 

0.0455 7,10 0.0366 1,15 0.0300 5,15 0.0206 1,15 

0.0420 1,6 0.0356 7,10 0.0242 1,15 0.0164 1,6 

0.0404 5,15 0.0344 5,5 0.0224 5,5 0.0111 1,6 

Table 6. Principal modes participation under parametric excitation for zero preload, ����	
������� ��������� �����. 
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Table 7. Damping values for ������� �����. 

 

 

 

 

 

 

 

 

 

 

 

Table 8. Critical dynamic load results comparison. *	�� �
���� � ���� ���� ������ ���� ��-��
� �����
� ���������

to a semi-analytical analysis including the in-plane inertia of the fundamental axial mode. 

 

 

Instance Ref. [24] Ref.  [19] Present work 

Type Modal damping  

(all modes) 

Modal damping  

(all modes) 

Rayleigh damping 

Value �i  =0.089 �i  =0.089 � = 267.85 

 � = 0.0000296 

� !lin Ref. [24]  Ref. [24] 

(in-plane 

inertia)* 

Ref. [19] Present 

work 

1.9 0.473 0.439 0.448 0.435         

2.0 0.434 0.400 0.416 0.401        

2.1 0.524 0.479 0.492 0.488         
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b) 

a) 

Figure 6. Frequency-response curves for cylindrical shell under pulsating axial loading of mode (1,5) for the static pre-

load levels  
 � ���� ��� � 0 (solid line), 0.1 (dashed line), 0.25 (dash-dot line), 0.5 (dotted line). a) present FE result, 

b) semi-analytical result from Ref. [17].  ���	 corresponds to the linear frequency of the respective pre-loaded shell. 

������������� ��������� ������  
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Figure 7. Waterfall chart for cylindrical shell under pulsating axial loading showing the contribution of various modes 

for varying excitation frequency.  ����������	
� �������� �	���. 
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b) 

 

 

 

 

 

 

 

 

 

 

 

 

a) 

Figure 9. Frequency-response curves for cylindrical shell under pulsating axial loading of mode (1,6) for zero pre-load, 

a) present FE result, b) semi-analytical result from Ref. [17].  
��� corresponds to the linear frequency of the shell. 

�������s anisotropic shell.  
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5. Concluding remarks 

In the present work dynamic stability investigations of isotropic and composite cylindrical shells 

under pulsating axial loading, in earlier work mainly investigated via semi-analytical procedures, 

have been carried out using transient Finite Element analysis. A combination of these two 

complementary approaches (Finite Element analysis and semi-analytical approach) is required to 

obtain reliable and accurate results in the complex and time-consuming nonlinear dynamic stability 

analysis. The modal projection procedure for Finite Element analysis developed allows extracting 

modal amplitudes which can be directly compared with the corresponding modal amplitudes in the 

semi-analytical approaches used in Refs. [19] and [24], so that a very good picture of the complex 

nonlinear behaviour occurring in the case of parametric excitation of cylindrical shells under axial 

loading can be obtained.  

Critical dynamic loads and frequency-response were shown to be generally in good qualitative 

agreement with the findings presented in Ref. [24]. The present Finite Element approach, when 

compared with the simplified transient analysis using a very limited number of assumed modes 

presented in Ref. [24], makes an improvement of the accuracy of the dynamic stability analysis of 

cylindrical shells possible. The analysis of the modal amplitude via the modal projection procedure 

developed gives the opportunity to study the interactions between the contributing modes and to 

interpret interesting phenomena such as the occurrence of travelling waves on the basis of a 

transient Finite Element analysis. 

 

Acknowledgements 

The first two authors (Fabio Rizzetto and Eelco Jansen) would like to acknowledge the very helpful 

support of Dr. Cristian Gebhardt through sharing his expertise during the research stay of the first 

author at the Institute of Structural Analysis, Leibniz Universität Hannover. 

 

  



Dynamic Stability of Shells via Transient Finite Element Analysis, Rizzetto et al. 

30 
Preprint submitted to Thin-Walled Structures 

References 

[1] Hsu, C. On the parametric excitation and snap-through stability problems of shells. Thin-Shell 

Structures. Theory, Experiment and Design. Prentice-Hall, New Jersey (1974) 103-131. 

[2] Yao, J.C. Dynamic stability of cylindrical shells under static and periodic axial and radial loads. 

AIAA Journal 1(6) (1963) 1391-1396. 

[3] Yao, J.C. Nonlinear elastic buckling and parametric excitation of a cylinder under axial loads. 

ASME Journal of Applied Mechanics 32(1) (1965) 109-115. 

[4] Vijayaraghavan, A., Evan-Iwanowski, R. M. Parametric instability of circular cylindrical shells. 

ASME Journal of Applied Mechanics 34 (1967) 985-990. 

[5] Nagai, K., Yamaki, N. Dynamic stability of circular cylindrical shells under periodic 

compressive forces. Journal of Sound and Vibration 58(3) (1978) 425-441. 

[6] Argento, A. Dynamic stability of a composite circular cylindrical shell subjected to combined 

axial and torsional loading. Journal of Composite Materials 27 (1993) 1722-1738. 

[7] Argento, A., Scott, R. Dynamic instability of layered anisotropic circular cylindrical shells: Part 

I. Theoretical developments. Journal of Sound and Vibration 162 (1993) 311-322. 

[8] Argento, A., Scott, R. Dynamic instability of layered anisotropic circular cylindrical shells: Part 

II. Numerical results. Journal of Sound and Vibration 162 (1993) 323-332. 

[9] Popov, A., Thompson, J., McRobie, F. Low-dimensional models of shell vibrations. Journal of 

Sound and Vibration 209 (1998) 163-186. 

[10] Gonçalves, P.B., Del Prado, Z.G. Nonlinear oscillations and Stability of Parametrically Excited 

Cylindrical Shells. Meccanica 37 (2002) 569-597. 

[11] Amabili, M. Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University 

Press, New York, USA, 2008. 

[12] Pellicano, F., Amabili, M. Stability and vibration of empty and fluid filled cylindrical shell 

under static and periodic axial loads. Journal of Solids and Structures 40 (2003) 3229-3251. 

[13] Strozzi, M., Pellicano, F. Nonlinear vibrations of functionally graded cylindrical shells. Thin-

Walled Structures 67 (2013) 63-77. 

[14] Pellicano, F., Amabili, M., Païdoussis, M.P. Effect of geometry on the non-linear vibration of 

circular cylindrical shells. International Journal of Non-Linear Mechanics 37 (2002) 1181-1198. 

[15� ���������� 	
� ��������� �
� ���������� �
� �������� �
 ���������� ����������� � � ��������

cylindrical shell with geometric imperfections. Computers and Structures 82 (2004) 2635-2645. 

[16] Jansen, E.L. Non-stationary flexural vibration behaviour of a cylindrical shell. International 

Journal of Non-Linear Mechanics 37 (2002) 937-949. 



Dynamic Stability of Shells via Transient Finite Element Analysis, Rizzetto et al. 

31 
Preprint submitted to Thin-Walled Structures 

[17] Jansen, E.L. Dynamic stability problems of anisotropic cylindrical shells via a simplified 

analysis. Nonlinear Dynamics 39 (2005) 349-367.  

[18] Rahman, T., Jansen, E.L., Tiso, P. A Finite Element-Based perturbation method for nonlinear 

free vibration analysis of composite cylindrical shells. International Journal of Structural Stability 

and Dynamics 11(4) (2011) 717-734. 

[19] Rahman, T., Jansen, E.L., Gürdal Z. Dynamic buckling analysis of composite cylindrical shells 

using a finite element based perturbation method. Nonlinear Dynamics 66 (2011) 389-401. 

[20] Saigal, S., Yang, T., Kapania, R. Dynamic buckling of imperfection sensitive shell structures. 

Journal of Aircraft 24 (1987) 718-724. 

[21] Yaffe, R., Abramovich, H. Dynamic buckling of cylindrical stringer stiffened shells. 

Computers and Structures 81 (2003) 1031-1039. 

[22] Bisagni, C. Dynamic buckling of fiber composite shells under impulsive axial compression. 

Thin-Walled Structures 43 (2005) 499-514.  

[23] Ganapathi, M., Patel, B., Sambandam, C. Parametric dynamic instability analysis of laminated 

composite conical shells. Journal of Reinforced Plastics and Composites 18(14) (1999) 1336-1346. 

[24] Dey, T., Ramachandra, L.S. Dynamic stability of simply supported composite cylindrical shells 

under partial axial loading. Journal of Sound and Vibration 353 (2015) 272-291. 

[25] �������� �����	
�� ����� �������� ��
��� ����
. Providence, Rhode Island, USA (2016). 

[26] Popov, A. Parametric resonance in cylindrical shells: a case of study in the nonlinear vibration 

of structural shells. Engineering Structures 25 (2003) 789-799. 

[27] Bogdanovich, A.E. Non-Linear Dynamic Problems for Composite Cylindrical Shells. Elsevier 

Applied Science, London (1993). 

[28] Booton, M., Tennyson, R.C. Buckling of Imperfect Anisotropic Circular Cylinders under 

Combined Loading. AIAA Journal 17(3) (1979) 278-287. 

 

 


