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Dynamic Stability of Shells via Transient Finite Element Analysis, Rizzetto et al.

Abstract

Nonlinear dynamic stability investigations for isotropic and composite cylindrical shells under
pulsating axial loading are carried out using transient Finite Element analysis. In particular,
important characteristics of the geometrically nonlinear behaviour are systematically studied
through Finite Element analysis. Thesults of the Finite Element analysis are compared with
results obtained in earlier studies using semi-analytical procedures. In order to facigtate th
evaluation and the comparison of these two complementary approaches, a modal projection
procedure has been developed for the Finite Element analysis. Critical dynamic loads and
frequency-response curves for isotropic and composite shells under pulsating loading obtained with
the Finite Element transient analysis are shown to be generally in good qualitative agreement with
the results of earlier semi-analytical work. The analysis of the modal amplitude achieved via the
modal projection procedure also makes it possible to study the interactions between contributing
modes and to observe and interpret interesting phenomena such as the occurrence of travelling

waves in the circumferential direction of the shell.

Keywords
Nonlinear vibrations, dynamic stability, cylindrical shells
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1. Introduction

Thin-walled shell structures are important structural components in many branches of engineering;
these structures are prone to buckling instabilities under static and dynamic compressive loading
and may be directly or parametrically excited into resonance at their natural frequenciesng dyna
loads. The stability of thin-walled structures under dynamic loading constitutes a relevant research
area; in particular, the parametric excitation (vibration buckling under pulsating loading) represent
an important topic in the dynamic stability of shell structures.

Because of the theoretical and practical significance of these structural components, the parametric
excitation and nonlinear vibration problem of cylindrical shells has received considerable attention.
The vibration buckling problem of shells under pulsating loading has often been investigated within
a semi-analytical context. It has been recognized that essential information about the nonlinear
dynamic behaviour of structures can be efficiently obtained by means of analytical-numerical, low-
dimensional models, i.e. models with a small number of degrees of freedom. The essential ideas of
parametric excitation for shell problems are discussed by Hsu [1]. Early investigations in the field
of the parametric excitation of cylindrical shells were carried out by Yao [2-3], Vijdyavag and
Evan-lwanowski [4] and Nagai and Yamaki [5]. Laminated structures have been studied by Argento
[6] and Argento and Scott [7-8]. Further semi-analytical work includes the work of Popb\3t

and Gongalves and Del Prado [10]. The extension of semi-analytical approaches to multi-mode
analyses has been presented and used in various works by Amabili, Pellicano acalléhgires

[11-15] on nonlinear vibrations and parametric excitation of cylindrical shells. A low-dimensional
model with a small number of degrees of freedom, introduced earlier by Jansen [16] to capture
important characteristics of the nonlinear vibration behaviour of shells, was used to analyse the
dynamic stability behaviour of anisotropic cylindrical shells under dynamic axial loading [17].
Using a Finite Element based reduced order approach, the nonlinear (large amplitude) vibration
analysis and the dynamic buckling of composite cylindrical shells under step loading have been
studied in Refs. [18, 19

The possibility to carry out a nonlinear transient analysis for shell structures is standardly available
within finite element codes. Because of their imperfection-sensitive behaviour, relevant shell
configurations such as cylindrical shells have received considerable attention in dynamic buckling
investigations, e.g. by Saigal et al. [20], Yaffe and Abramovich [21] and Bisaghi Fifite
element based transient analysis is, however, computationally expensive. This in particular holds
for shells under pulsating loading, which have been investigated through Finite Element Analysis,
e.g. Ganapathi et al23] and Dey and Ramachandra [24], but to date have not been analysed

through systematic transient Finite Element studies.
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In this paper, the large amplitude vibration behaviour of both isotropic and composite cylindrical
shells under pulsating loading is investigated by using transient Finite Element analysis in order to
obtain accurate solutions. The Finite Element analysis allows an accurate satisfaction of idealized or
realistic boundary conditions, makes it possible to include all relevant inertial effects, and enables
capturing the complicated interaction between ‘trévial”, axisymmetric fundamental dynamic

state and the parametrically excitégbntrivial”, asymmetric dynamic state. Key issues for the
numerical analysis will be addressed. Finite Element modal projection procedure will be
developed, which facilitates the interpretations of the transient Finite Element analysis in particular
the comparison between Finite Element calculations and the results of semi-analytical approaches
available in the literature.

3
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2. Problem formulation on the basis of a semi-analytical approach
In the present section, the problem of parametric excitation of a composite cylindrical shell under
pulsating axial loading is described on thesibaof the governing equations and displacement

functions for this problem following the formulation used in Ref. [17].

2.1. Governing equations

The equations governing the nonlinear dynamic behaviour of a cylindrical shell are presented. The
shell is loaded by an axial compressive fdcand an external pressupenhich can both depend

on time. It is assumed that the radial displacemerst positive inward (see Figure 1). Applying the
usual membrane stress resultadtsN, andN,y, and introducing the Airy stress functiéndefined

by Ny = Fyy, Ny = F xx andN,y = —F x,, the Donnell-type nonlinear imperfect shallow shell equations

for an anisotropic material can be written as

Lar(F) = L (W) = = = W,pu— > Ly, (W, W + 2) (1)

1 _ _
Lp«(F) = Lp+(w) = EF'xx+ Lyy(F,w+w) + p — phw, (2)

where the variables andF depend on the spatial coordinaxey and timet, R is the shell radius,
w denotes a stress-free radial initial imperfectjiwy,,, is the radial inertia ternp, is the averaged

specific mass of the laminatejs the reference shell thickness.

The 4" order linear differential operators

La () = A2 (rxxxx— 2426 (rxxxy T (2415 + Age) (Drxxyy— 2416 (rxyyy+ A11ryyyy 3)
Lg=() = B21(Drxxxx T (2B26 — Bg1) (Doxaxy+ (Bi1 + B2z — 2Bge) (Drxxyy
+(2B16 — Bs2) Orxyyy+ Bi2(Dryyyy (4)
Lp-() = D11 (oxxxx+ 4D16 (Drxxxy+ 2(D1z + 2D66) (Drxxyy+ 4D26 Drxyyy+ D2z (Dryyyy  (5)

depend on the stiffness properties of the laminate, the elements of the partially inverted ABD-

matrix [17], and the nonlinear operator defined by
LNL (S' T) = S:xx T'yy_ ZS'xy Tlxy+ S'yy T;xx (6)

reflects the geometric nonlinearity.
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In particular, Eg. (1) guarantees the compatibility of the strains and the radial displacement field
while Eq. (2) is the equation of motion (dynamic equilibrium equation) in radial direction.

The first step for solving the equations is to transform thdémarfinite set of nonlinear ordinary
differential equations @DEs) using the Galerkin method, through which van describe the
deformation using a finite number of degrees of freedom €OF

The radial displacememt(x, 8, t) canbe written as

N

(0,0 = ) a@Px0 ()

J=1

The coefficientsa;(t) are now the DOFs of the problem. After suitably expanding the Airy function

and projecting the governing equations using the Galerkin procedure, one can obtain the following
set of ODEs,

N N N N N N
él+2ijjéj+sz'ia‘+zzz a1a1+2222 ikaiajag = g(t) (8)

i=1 i=1i=1 i=1i=1 k=1

2.2. Displacement functions
The choice of the trial functions used for the radial displaceméntrucial in order to obtain good
guality results in the case of nonlinear vibrations; studies on convergence in the nonlinear case are
reported in Refg[12-15]. It is important to include axisymmetric modes in the expression for the
radial displacement.
Let us consider a circular cylindrical shell with classical, simply supported boundary conditions
(SS-3 boundary conditions), excited by a ratimonic load with circular frequency Q to vibrate
in the resonant condition of the mode (m,n), whaiis the number of longitudinal half-waves and
n the number of circumferential full waves. It is important to include the following modes in the
displacement function assumed for the radial displacement [11, 12]:

e resonant mode, including both driven and companion modes

e asymmetric modes witkx n circumferential full waves, whele is an integer

e axisymmetric modes
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In certain cases, additional modes with natural frequency close to the ratio 1:1, 1:2, 1:3 with respect
to the frequency of excitation, which in general may have an influence in the response, should be
included. In the numerical calculations in Ref. [12], the followingDZ3s expansion was

assumed:

w(x,0,t) =
Ym=1 Z}%=1[Am,n(t) cos(knd) + B, 5 (£) sin(knf)]sin(1,, x) +
Y1 A 0 () sin(Azpm_1%) 9)

In the expansion presented in Ref. [17], the most essential modes were retained and the number of
DOFs was thereby reduced to four. Driven and companion resonant modes and two specific
axisymmetric modes were included. One of the axisymmetric modes satisfies a crucial coupling
condition with the driven and companion mode. In the numerical calculations the expansion used in
Ref. [17 is

mmx

2
w(x,0,t) = Cy(t) + C,(t) cos ( ) + A(t) sin (mn %) cos (n@ — %Rx) + B(t)sin (mn %) cos (ne — %Rx) (10)
whererg is Khot’s skewedness parameter, which is equal to zero in the case of an isotropic shell but
can reflect the possible skewedness of the deflection pattenm anisotropic shell. In the case of
skewed modes and for large amplitude deflections, the expression satisfies the classical boundary

condition SS-3 only approximately.
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Figure 1. Shell geometry, coordinate system and applied loading within semi-anahgidaiear dynamic analysis of

composite cylindrical shells [17].

Figure2. Shell geometry and coordinate system for Finite Element analysis.

7
Preprint submitted to Thin-Walled Structures



Dynamic Stability of Shells via Transient Finite Element Analysis, Rizzetto et al.

3. Finite Element Analysis

3.1. Nonlinear Dynamic Analysis

The nonlinear dynamics simulations were performed using the Finite Element (FE) software
Abaqus 2016 [25]. A four-node general-purpose shell element with reduced integration and finite
membrane strains (the Abaqus S4R shell element) was employed. The time integration scheme used
is the implicit HHT (Hilbert-Hughes-Taylor) method. This integration scheme is unconditionally
stable for linear problems and has been shown to give appropriate stability properties also for
certain nonlinear problems, but it introduces a certain amount of numerical damping in the system.
In order to reduce the influence of this numerical damping, one must tasstuthe parameters of

the method in an approach in which small time increments are used to accurately represent the
vibrational response of the structure while keeping the numerical energy dissipation at a minimum
(“Transient Fidelity” option in Abaqus, see Table 1).

Regarding the time step of the integration, an automatic scheme of variable time step available in
Abaqus is used. Three parameters are defined within this approach: initial suggested time step,
minimum time step and maximum time step. Ai@onvergence analysis, the initial and maximum

time steps were always chosen smaller than T/8@hereT is the time period of the harmonic
forcing; the integrator is free to use a smaller time step if needed. @dmg or negligible
damping, the influence of the time step choice is crucial and one shouldasgrpail time step in

order to reduce the deviation of the solution.

3.2. Modal projection procedure

In order to simplify the interpretation of the dynamic response of the structure, an innovative post-
processing procedure was developed. The deflection of the cylindrical shell can be described using
a time depending vectai(t). The goal is then to obtain the best approximation of this vector using

a reduced basis constituted of lingaindependent (in general not orthogonal) vectors. Applying

this approach to the Finite Element analysis results, for each time step of the time historyaoutput,
vectori with componentsy;, the radial displacement associated with the node of the shell surface
with coordinates €;, R, x;), can be easily assembled (considering only the radial displacement

instead of all 6 DOFs at the node allows reducing the size of the problem considerably). The same
procedure is used when assembling time independent v@qtomresponding to the modal shapes

obtained via linear frequency analysis. These vectors, as linear independent vectors, are appropriate

candidates for building the reduced basis

8
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X=[¢, .« . Yy (11)

whereﬁi is corresponds t@modal shape with “displacement normalization”. This means that, once

L_IJ*

max y*;

a vectonp* has been imported} is defined asy = . For the actual deflection, its

approximation can be written in terms of reduced basis vectors,
T=i= z}ila@j =Xa (12)

wherea; is time-dependent. In order to find the linear combination that gives the best fit of the real

surface, one can minimizke norm of the error vector
IAGI?=|| u—Uall?=u?—uXa—Xau — Xaxa (13)
Imposing the gradient equal to be equal to zero, the following is obtained:
—@-a™XTa- @X") T +a"X"Xa) = — (@ - 2a"X"1 +a"X"Xa) (14)
which leadgo
20TX 4+ 2a"X"X = XTa +X™Xa=0 (15)
Defining the matrixs = X*X, a can be determined from
S"IXTo =7 (16)
One can demonstrate that this corresponds to a minioywevialuating the Hessian matrix,
= (X™T + X™Xa) = X"X (17)

SinceX has maximum rank, the Hessian matrix has only positive eigenvalues. The approximation

error can be monitored, for instartwgevaluating the following dimensionless form,
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e=[Aull/llall (18)

whereAu = U — Xa. For the results presented in the following, a reasonable tolerance of less than
10% was specified for this dimensionless error. For assessing the quality of the projection this
dimensionless error is compared with respect to the relative magnitude of the response

N/ Il Uygy Il, whereu,,,, corresponds to the maximum normuof

Parameter Transient M oder ate
fidelity dissipation
a -0.05 -0.41421
0.275625 0.5
Y 0.55 0.911421

Table 1. HHT default parameters.

Bogdanovich’sisotropic shell

2m

Im
0.01m
4x10'° N/m?
2500 kg/mi
0.3

m| = 3o

©

<

Table 2. Bogdanovich’s isotropic shell data.

Popov’s isotropic shell
0.4m
0.2m
2x10°m
2.1x10" N/n?
7850 kg/nd
0.3

m| = -

©

<

Table 3. Popov’s isotropic shell data.
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Booton’s anisotropic shell
Dimensions R=0.0678 m
L=0.0959 m

Laminate properties

Number of layers: 3
LAYER angle Thickness
1 outward +30° 0.226 mm
2 middle 0° 0.226 mm
3 inward -30° 0.226 mm

Single layer properties

Material Glass-Epoxy
Elastic properties E;; = 4.0210*MPa
E,, = 1.67 10*MPa
vy, = 0.363
Gy, = 4.61 103MPa
Density p = 2778.62 kg/m

Table 4. Booton’s anisotropic shell data.

Boundary conditions

Bottom edge nodes: v=w=0
Symmetry edge nodes: U=Rg=R,=0
Mesh (structured)

Booton Popov Bogdanovich
Element type S4R S4R S4R
Element size 0.0015m  0.004m 0.02m

X X X

0.0032m 0.02m 0.1m
Total number element: 8520 3140 3140

Table 5. Boundary conditions for shells used in the Finite Element analysis.

11
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4. Numerical results

For the numerical calculations for shells under axial pulsating loading, examples from literature of
circular cylindrical shell are considered. For the case afojse shells, Popov’s shell [26] and
Bogdanovich’s [27 shell are considered. For the anisotropic shells, the static and dynamic
behaviour of Booton’s shell [28] is considered. In Tables 2-4 the mechanical properties of these
three shells are reported. In Figure 2 the coordinate system and conventions for the FE arealyse
shown. In Table 5, the properties of the boundary conditions in the FE modelling are reported.
The terms“driven mode” and “companion mode” introduced for nonlinear vibration analysis of
cylindrical shells will also be used in the following analysis of a cylindrical shell under axial
parametric excitationThe term “driven mode” refers to the mode that is triggered through a
corresponding imperfection or initial displacement.

4.1. Transient response of reference shells

Main response characteristics will be illustrated Bagdanovich’s isotropic shell andBooton’s
anisotropic shell.

Bogdanovich’s isotropic shell

The first case study is the dynamic response of Bogdanovich’s isotropic shell under axial pulsating

load. The shell considered is simply supported (SS-3), while a uniform membrane stress resultant

on the edge is specified,
N, = —N, cos(2t) (29)

In addition, a static axial pre-load is applied through the uniform membrane stress régultant

The amplitudes of the dynamic and static excitations are normalized using the classical critical load

Eh? Eh?

_ : . _ _ ;
Ny = oL corresponding to an axial fordé, I 2nR equal to 1.5211 X 0’N

using the data presented in Table 2.

In the calculations, the following axial load amplitudes are considered: for the dynamic load
Ny/ N,, = A = 0.35 and for the static pre-load = N,/ N, = 0, 0.1, 0.25, 0.5.

A single mode imperfection is also considered
W = 0.01-h-sin(n%)- cos(56) (20)

and the damping is neglected.

12
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In [17] the following 3 DOF expansionagused

w = Cy(t) + C,(t) cos (2?) + A(t) sin (n %) cos(58) (21)
In the FE analysis, the radial displacement considered positive outward. Dampiageglected.
Homogeneous initial conditions are agpli corresponding to the initial conditions in the semi-
analytical analysis in Ref. [172(0) = A(0) = Cy(t) = Co(t) = C,(t) = C,(t) = 0.

In order to analyse the linear and the nonlinear behaviour corresponding to the principal Mathieu-
Hill parametric instability, the shell is excited at frequeficglose to2w;,, Wherew;, is the linear

(small amplitude) frequency of the imperfect and preloaded shell. In order to obtain the frequency-
load curves for specified load amplitudes, the governing equations are intégratgahe interval

equal to 50 forcing periodb and the maximum of the system response during this time interval is
recorded.

Finite Element analysis details of the model boundary conditions are listed in Table 5. It is to be

noted that symmetry conditions have been used in the FE model; in particular, a symmetry plane
located atx = % and perpendiculdo the axis of the cylinder is considered. This choice has the aim

to reduce the computatiahcost and allows us to model exactly the boundary conditions SS-3. In
this case a response that is symmetric with respect to the shell is studied. It should be kept in mind
that when considering the nonlinear response of the (full-length) shell, a possible nonlinear coupling
can result in breaking the symmetry of the response. The load is applied with concentrated forces on

the nodes of the shell edge. Single dynamic simulations for different frequency of excitation and

preload levels are carried out. Referring to Eq. (12), wijgreare the modes selected for the

response projection, the modal projection procedure developed considers the first 100 modes of the

FE linear frequency analysis and the axisymmetric modes (1,0), (3,0) and (5;0) as

In Figure 3 the modal amplitude (t), referring again to Eq. (12), is presented for modes (1,0),
(3,0), (5,0) and (1,5), (1,6). Bothe “driven” and“companiofi mode are considered. Besides the
strong response of modes (1,5) and (1,6), the inward vibration of the mode (1,0) should be noted,
confirming earlier observations in the literature about modes contributing in the nonlinear behaviour
and more specifically the relevance of axisymmetric modes [12, 17]. Also the phase &hift of
between “driven” and “companion” mode should be notedvherek is an integer. The value of the
dimensionless error is negligible when the radial response is significant. The maxima of the modal
amplitudes frequency-response curve are presented in Figures 4 and 5. Results arirem thed

modes with respect to the maximum amplitude reached during the integnagcare presented in
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Table 6. Considering specifically the resonant mode (1,5) the curves presented in Figure 6 were
obtained. The FE analysis shows a qualitatively good agreement with the semi-analytical results
using only a small number of degrees of freedom shown in [17]. In the present study a jump to a
remote configuration already occurs for a preload.p$ N, while in the semi-analytical analysis

a jump was observed for a prelazd.5 N.

An interesting phenomenon relates to the relevant modes involved in the response. In the
“waterfall’ charts of Figure 7, the maximum absolute value of the respotisge defined as
Amax = |max(a;(t))|, is shown as a function of the excitation frequency (on tagsy-and the
projected mode (along theaws). The present results are in agreement with expectations [11, 12].
In particular, a strong response of the following modes can be observed:

e both driven and companion modes

e asymmetric modes witkx n circumferential waves, whekes an integer

e axisymmetric modes

Booton’s anisotropic shell
A parametric excitation analysis was also performed for the sisapported Booton’s anisotropic
cylindrical shell. In this case, the simulatiomere made without static pre-load. The dynamic axial

load is imposed through the corresponding uniform membrane stress resultant
N, = —N, cos(2t) (22)

where N,/ N, = A = 0.1 and the classical buckling stress resultsipt for a laminated shell is

defined as

_ E 1h?
Ncl

T RY3(1-vi,2) (23)

in which material properties of a layer of the laminate are used (see Table 4). The three DOFs

expansion used in ReflT] is

% = Cy(t) + C,(t) cos (2:—)6) + A(t) sin (n %) cos (60 - %Rx) (24)

14
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where the skewedness parametgeimposed in [17] is equal to 0.002, which corresponds to a very
small skewedness. The skewedness of the pattern that can be extracted from the results of the Finite
Elementlinearfrequency analysis is higher (around 0.03), but can still be considered to be small.

In the semi-analytical analysis in Ref. [1d@}wo-mode imperfection is used:

21X
L

==

= 0.04 cos ( ) — 0.05sin (n %) cos (69 — %Rx) (25)
Because of the anisotropy of the shell, the shell response will not be symmetric with respect to the
shell mid-length and for this reason the complete circular shell is modelled. In order to model the
SS3 boundary condition while avoiding unconstrained displacements at the shell edges in the axial
direction, the bottom edge of shell was connected with a supyo#t set of soft springs. To
representan imperfect geometry corresponding to the imperfection shape used in the semi-
analytical approach, the Finite Element mesh node positions were defined/MWRLAB script.

Also in these simulations damping is neglected. The maximum of the modal response was
considered within the first 200 forcing periodsof the integration period. In the FE dynamic
simulations the upper limit of the time step size was set equal to T/160Figures 8 and 9 the
results of the modal projection procedure are presented. The method makes it possible to identify
the different modes involved in the response. FBanalysis shows a qualitatively good agreement

with the semi-analytical results reported in Ref. [17].

4.2. Critical dynamic load evaluation

The present analysis is concerned with the evaluation of the critical dynamic load of a shell under
axial pulsating loading. When the main parameters of the analysis case (such as the frequency of
excitation) have been fixed, the stability properties of the system can be studiethetson of the

load amplitude. The critical dynamic load (CDL) is defined as the load at which for small
perturbations iran “asymmetri¢ mode, a growing solution of the asymmetric response, or a jump
to a remote branch, occurs.

This evaluation of the critical dynamic load will be carried out for a simply supported isotropic
shell,Popov’s shell. The case of Popov’s shell wasearlier studied within a semi-analytical context

in Ref.[12], where resultsvere obtained via continuation methods, and in Ref. [17], via humerical
time integration. Also in the present FE analysis, numerical time integration will be used. The shell
is subjected t@ harmonic excitation in which the frequen@yis constant and close tawg,, and

the amplitude is increased stepwise with an increment of ®Q0OThe duration of each step is

1000T, whereT is the forcing period. In order to interrogate the stability of the dynamic response,

15
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an initial condition for the displacement is imposed. In particular, the following initial condition for

the radial displacement at time O is applied:
. Vs
Wi—o(6,x) = 0.01 h cos(58) sin (Z x) (26)

and the consequence of this disturbance on the response of the shell is monitored. The expansion
used in [24] is Eq. (10), with m=1, n=bz0). In Refs. [19] and [Zdmodal damping is introduced.

In the currenFE analysis a corresponding Rayleigh damping with parameters reported in Table 7

is used. Also in the present analysis half cylinder is modelled, so that a response symmetric with
respect to the shell mid-length can be captured. In Figure 10 the time history of the radial
displacement of a node located on the peak of the resonant deformedvghepeepresented. It is

noted that in the procedure of stepwise increasing the amplitude of the harmonic excitation, the
critical load obtained (i.e. the load at which a growing solution of the asymmetric response occurs)
can in certain cases depend on the starting amplitude for the analysis in combination with the initial
conditions applied. Results are presented in Table 8. The modal projection procedure developed

reveals the modes involved in the response, see Figure 11.

4.3. Travelling wave investigation

The nonlinear coupling between driven and companion mode may lead to the phenomenon of
travelling waves in the circumferential direction of the shell. Considering the relevant &tauesl r

to the driven mode and companion mode in the expression for the radial deflection (), Eq.
assuming that the time-dependent amplitutigsandB, ,, can be expresset

Ain () = a;pcos(wt), By (t) = byycos(wt + @) (27)

the radial response may be written as

w(x,0,t) = [al’n cos(wt) cos(n) + by, cos(wt + ¢5) sin(n@)]sin (?) (28)
If ¢,=km with k=0,1,2,.. the response is a pure standing &av

w(x,0,t) = [(ay, cos(nf) £ by, sin(nh)) cos(wt)]sin (%) (29)
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whereas iip, # kr the response can be written as

w(x, 8,t) = {[ay, cos(wt) + by, sin(wt + ¢,)] cos(nd) + by, sin(nf — wt — ¢,)}sin (%)

(30)
which is the superposition of a standing wave and a travelling wave, that becomes a pure traveling
T

wave |f al’n = bl,n and¢2 = ;

The modal projection procedure developed allows describing the response of the shell for each of
the modes involved. For the driven mode and the companion mode, their time phase shift can be
observed. If these two associated modes are in phase or in opposition of phase, there is no travelling
wave effect. This is the case in Figure 12, which shows the projection Bbjthe’s shell. This

result corresponds to the findings in [17], where no travelling waves have been obsermed whe
analysing Popov’s shell under pulsating loading.

It is interesting to note, that for the caseBafoton’s shell under parametric ekation, energy
exchanges between the driven mode and companion modes can be observed. In these analysis
casesa travelling wave can arise, as can be seen in Figures 13 and 14, where the pbanomen
occurs in the last part of the 200 forcing periddesf the integration period. In the analysis case

Q/wjin = 1.9188 (Figure 1pa long duration integration in resonance condition was performed. In

this last case the energy exchange between driven and companion mode occurs without the phase

shift in time corresponding to a travelling wave.
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Preprint submitted to Thin-Walled Structures



Dynamic Stability of Shells via Transient Finite Element Analysis, Rizzetto et al.

Qlwy;, =1.9068 Qlwy;, =1.9335 Qlwy;, =1.9601 Qlw;;, =1.9868
Ama/h mode Ama/h mode Ama/h mode Ama/h mode
3.4633 15 3.2063 1,5 3.0450 15 2.8232 1,5
0.7823 1,0 0.6695 1,0 0.6229 1,0 0.5495 1,5
0.6709 1,5 0.6229 1,5 0.5924 15 0.5400 1,0
0.4811 1,10 0.3715 1,10 0.3593 1,10 0.3061 1,10
0.3576 3,5 0.2528 3,5 0.2408 3,5 0.1770 3,5
0.2608 3,10 0.2439 3,10 0.2156 3,10 0.1274 1,10
0.2015 3,0 0.1822 55 0.1349 3,0 0.1078 3,0
0.1871 5,5 0.1783 5,10 0.1248 1,10 0.1060 3,10
0.1660 1,10 0.1669 3,0 0.1158 55 0.1048 5,10
0.1442 5,10 0.1283 1,10 0.1056 3,10 0.0913 3,15
0.1282 3,10 0.1182 3,10 0.0948 5,10 0.0617 5,5
0.1029 7,10 0.0956 3,15 0.0717 7,10 0.0544 3,10
0.0921 5,0 0.0853 5,0 0.0658 5,0 0.0464 5,0
0.0891 1,15 0.0799 5,10 0.0564 3,15 0.0459 3,5
0.0859 3,15 0.0792 7,10 0.0465 3,5 0.0411 3,15
0.0684 3,5 0.0705 1,15 0.0451 1,15 0.0341 7,10
0.0641 5,10 0.0520 3,15 0.0426 5,15 0.0253 5,10
0.0594 5,15 0.0487 3,5 0.0426 5,10 0.0242 5,15
0.0473 1,15 0.0486 5,15 0.0324 7,10 0.0211 5,15
0.0473 3,15 0.0402 1,6 0.0317 3,15 0.0210 7,10
0.0455 7,10 0.0366 1,15 0.0300 5,15 0.0206 1,15
0.0420 1,6 0.0356 7,10 0.0242 1,15 0.0164 1,6
0.0404 5,15 0.0344 5,5 0.0224 55 0.0111 1,6

Table 6. Principal modes participation under parametric excitation for zero pré3ogdanovich’s isotropic shell.
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Instance Ref. [24]

Ref. [19]

Present work

Type Modal damping

Modal damping

Rayleigh damping

(all modes) (all modes)
Value g =0.089 ¢ =0.089 a =267.85
3 =0.0000296
Table 7. Damping values foPopov’s shell.
Q/wjn Ref. [24] Ref. [24] Ref. [19] Present
(in-plane work
inertia)*
1.9 0.473 0.439 0.448 0.435
2.0 0.434 0.400 0.416 0.401
2.1 0.524 0.479 0.492 0.488

Table 8. Critical dynamic load results comparisoffht values in Ref. [24] denoted with “in-plane inertia” correspond

to a semi-analytical analysis including the in-plane inertia of the foedtal axial mode.
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Figure 3. Time history of relevant modes for cylindrical

modal projection procedure.

shell under pulsating axial loading for zero preload through

Bogdanovich’s isotropic shell.
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Bogdanovich shell - No preload - 50 periods integration
T T T T T

—8—mode 1,0
—©—mode 3,0

mode 5,0
—8—mode 1,5

mode 1,5
—6—mode 1,6] |
—&—mode 1,6

Figure 4. Frequency-response curves for cylindrical shell under pulsating axial loading for zero preload showing

softening behaviour. Bogdanovich’s isotropic shell.

Bogdanovich shell - preload 0.1 Ncl - 50 periods integration
4 T T T T T

—&-— mode 1,0
mode 3,0
mode 5,0 [~
—@-— mode 1,5

mode 1,5
—6— mode 1,6 |
—&— mode 1,6

Figure 5. Frequency-response curves for cylindrical shell under pulsating axial loading for 0.1 N preload showing

softening behaviour. Bogdanovich’s isotropic shell.
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Figure 6. Frequency-response curves for cylindrical shell under pulsating axial doaidinode (1,5) for the static pre-
load levelsA = N,/ N, = 0 (solid line), 0.1 (dashed line), 0.25 (dash-dot line), 0.5 (dottejl k) present FE result,
b) semi-analytical result from Ref. [17¢;;, corresponds to the linear frequency of the respective pre-loaded shell.

Bogdanovich’s isotropic shell.
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Figure 7. Waterfall chart for cylindrical shell under pulsating axial loading showingdhg&ibution of various modes

for varying excitation frequencyBogdanovich’s isotropic shell.
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Figure 8. Time history of relevant modes for cylindrical shell under pulsating axial loading through modal projection
procedure, mode (1,5) - driven and companion mode, and mode (1,6) - driven and companion mode. Booton’s

anisotropic shell.
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Figure 9. Frequency-response curves for cylindrical shell under pulsating axial doafinode (1,6) for zero pre-load
a) present FE result, b) semi-analytical result from Ré&f. [wy;, corresponds to the linear frequency of the shell.

Booton’s arisotropic shell.
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Figure 10. Time history and corresponding deformed shape for cylindrical shell under pulsating axial loading for Q/wy;,
= 2.0 for increasing load amplitude. Radial displacement of a reference node at a maximum of the driven mode.

Popov’s isotropic shell.
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Figure 11. Time history of relevant modes for cylindrical shell under pulsating axial loading through modal projection
procedure, showing occurrence of instability. Driven and companion modes and axisymmetric modes. Popov’s isotropic

shell.
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Figure 12. Time history of relevant modes for cylindrical shell under pulsating axial loading near parametric resonance
through modal projection procedure. Driven mode and companion mode. A travelling wave phenomenon is not seen to

occur. Popov’s isotropic shell,
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Figure 13. Time history of relevant modes for cylindrical shell under pulsating axial loading near parametric resonance
through modal projection procedure showing, phase shift and travelling wave phenomenon. Driven mode and

companion mode. Q/wy;, = 1.9237. Booton’s anisotropic shell.
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Figure 14. Detail of the time history of relevant modes for cylindrical shell under pulsating axial loading near
parametric resonance through modal projection procedure, showing phase shift and travelling wave phenomenon.

Driven mode and companion mode. Q/wy;, = 1.9237. Booton’s anisotropic shell.
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Figure 15. Long duration time history of relevant modes for cylindrical shell under pulsating axial loading near

parametric resonance through modal projection procedure, showing energy exchange between driven mode and

companion mode. Q/wy, = 1.9188. A travelling wave phenomenon is not seen to occur. Booton’s anisotropic shell.
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5. Concluding remarks

In the present work dynamic stability investigations of isotropic and composite cylindrical shells
under pulsating axial loading, in earlier work mainly investigated via semi-analytical procedures,
have been carried out using transient Finite Element analysis. A combination of these two
complementary approaches (Finite Element analysis and semi-analytical approach) is required to
obtain reliable and accurate results in the complex and time-consuming nonlinear dynamic stability
analysis. The modal projection procedure for Finite Element analysis developed allows extracting
modal amplitudes which can be directly compared with the corresponding modal amplitudes in the
semi-analytical approaches used in Refs. [19] and [24], so that a very good picturearhhex
nonlinear behaviour occurring in the case of parametric excitation of cylindrical shells under axial
loading can be obtained.

Critical dynamic loads and frequency-response were shown to be generally in good qualitative
agreement with the findings presented in Ref. [24]. The present Finite Element approach, when
compared with the simplified transient analysis using a very limited number of assumed modes
presented in Ref. [24jnakes an improvement of the accuracy of the dynamic stability analysis of
cylindrical shells possiblélhe analysis of the modal amplitude via the modal projection procedure
developed gives the opportunity to study the interactions between the contributing modes and to
interpret interesting phenomena such as the occurrence of travelling waves on the basis of a

transient Finite Element analysis.
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