
HAL Id: hal-02263575
https://hal.science/hal-02263575v1

Preprint submitted on 5 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extended Finite State Machine based test generation for
an OpenFlow switch

Asma Berriri, Natalia Kushik, Djamal Zeghlache

To cite this version:
Asma Berriri, Natalia Kushik, Djamal Zeghlache. Extended Finite State Machine based test genera-
tion for an OpenFlow switch. 2019. �hal-02263575�

https://hal.science/hal-02263575v1
https://hal.archives-ouvertes.fr

Extended Finite State Machine based Test Generation for an OpenFlow
Switch

Asma Berriri1 , Natalia Kushik1 and Djamal Zeghlache1

1SAMOVAR, CNRS, Télécom SudParis, Université Paris-Saclay, 9 rue Charles Fourier, 9100 Évry, France
{asma.berriri, natalia.kushik, djamal.zeghlache}@telecom-sudparis.eu

Keywords: Software Defined Networking (SDN), OpenFlow Switch, Formal Methods, Testing, Extended FSM.

Abstract: Implementations of an OpenFlow (OF) switch, a crucial Software Defined Networking (SDN) component,
are prone to errors caused by developer mistakes or/and ambiguous requirements stated in the OF documents.
The paper is devoted to test derivation for related OF switch implementations. A model based test generation
strategy is proposed. It relies on an Extended Finite State Machine (EFSM) specification that describes the
functional behaviour of the switch-to-controller communication while potential faults/misconfigurations are
expressed via corresponding mutation operators. We propose a method for deriving a test suite that contains
distinguishing sequences for the specification EFSM and corresponding mutants. The proposed approach is
implemented as a testbed to automatically derive and execute the test suites against different versions of an OF
implementation. Preliminary experimental evaluation has shown the effectiveness of the proposed approach.
Further on, the derived test suites have been able to detect a number of functional inconsistencies such as
erroneous responses to the Flow Mod adding rules with specific ‘action’ values in an available Open vSwitch
implementation.

1 INTRODUCTION

Software Defined Networking is a new network-
ing paradigm where a logically centralized controller
orchestrates a distributed set of switches to provide
high level networking services to end-host applica-
tions. An OpenFlow switch acts as a forwarding de-
vice receiving and sending network packets in ac-
cordance with a set of configured rules through the
data plane interface. It also sends events such as
traffic statistics, topology changes and acknowledg-
ments to the controller. The controller can (re-) con-
figure the switches through network commands such
as installing new rules. This switch-to-controller in-
teraction is performed through OF protocol, it en-
ables the implementation of network applications’
policies such as routing and load balancing. Nonethe-
less, the OF specification is extremely complex and
lacks uniform standardization. For example, just the
rule installation command (Flow Mod) is more than
two pages long (Open Networking Foundation, 2014).
This might increase misinterpretation or cause con-
flicts due to multiple or duplicated requirements.

To address this challenge, in this paper, we pro-
pose an EFSM based technique for test generation
that aims to verify the OF switch-to-controller inter-

action with respect to requirements described in the
OF specification. Correspondingly, the EFSM model
is derived based on the OF requirements. Potential
incorrect implementations are also modelled as EF-
SMs that are obtained by injecting specific types of
(user-driven) faults into the model, i.e., through mu-
tants generation. For each mutant, a distinguishing
sequence (DS) is sought that separates the original
specification from the mutated one. We present an
effective algorithm that derives a test suite T S formed
by the corresponding DSs.

Several approaches have been proposed in the lit-
erature for deriving conformance tests when the sys-
tem specification is represented by an EFSM. On one
hand, a group of these works have proven to be effec-
tive in deriving tests with guaranteed fault coverage.
For example, these approaches have been proposed in
the works by Bochmann et al. (Bochmann and Pe-
trenko, 1994), El-Fakih et al. (El-Fakih et al., 2003),
and Petrenko et al. (Petrenko et al., 2004). How-
ever, the authors are not aware of the corresponding
techniques being applied to tackle the correctness of
SDN-enabled components. On the other hand, an-
other group of works relying on EFSM for test gen-
eration have been proposed for SDN application area
(Yao et al., 2014b), (Zhang et al., 2016), however, no

related fault model has been introduced and thus, no
fault coverage has been proven (see Section 2).

In this paper, we propose to lessen this gap and ad-
vance the state of the art research on model based test-
ing applied to SDN. An effective heuristic approach to
derive distinguishing sequences for the specification
EFSM and its mutants is presented for testing SDN
switch-to-controller communication.

The main contributions of this paper are the fol-
lowing. Firstly, we formalize a part of the OF re-
quirements and propose an EFSM based testing ap-
proach applied to an OF switch. Secondly, to demon-
strate the effectiveness of the proposed approach, an
experimental evaluation is performed which aims at
the assessment of the derived test suites fault coverage
on one hand and at the execution of the derived tests
against an OF implementation under test, on the other
hand. To this end, a testbed is developed which aims
at the automation of the generation and execution of
the derived tests against an OF implementation under
test.

The conducted evaluation has shown on the one
hand the effectiveness in terms of fault coverage of
the derived test suites. Indeed, compared to ran-
domly generated test suites, the ones derived by our
approach have shown an average mutation score of
60.07% against 21.75% for the randomly generated
T Ss. On the other hand, experiments have revealed
several implementation faults and specification am-
biguities when we have tested a switch implemen-
tation, namely Open vSwitch 2.5.0. Examples of
detected faults include several misbehaviours when
rules with some specific values of the ‘action’ field
of the Flow Mod input have been installed, in addi-
tion, a misbehaviour in updating the statistics about
the installed rules has been observed.

The paper is structured as follows. Section 2
presents related work. Section 3 provides the back-
ground information. Section 4 gives an overview of
the EFSM model of the switch. The test generation
process is described in Section 5. Section 6 presents
the experimental evaluation and results. Section 7
concludes the paper.

2 RELATED WORK

A large number of contributions have applied both
verification and testing methods to the SDN data
plane in general. Several research efforts have fo-
cused on verification techniques where different prop-
erties can be checked, e.g. reachability, loop free-
dom, etc. For example, SAT solving (McGeer, 2012),
(Zhang and Malik, 2013), symbolic execution/SMT

solvers (Dobrescu and Argyraki, 2015), model check-
ing over temporal logic (Ruchansky and Proserpio,
2013) and theorem proving (Chen et al., 2014) have
been utilized for this purpose.

Despite formal verification can guarantee that the
properties hold for the model, some implementation
faults might still manifest. Therefore, active test-
ing has been applied as well to the data plane (and
the switch) where the latter is stimulated by test in-
puts. These works can be divided into two main
groups. The approaches of the first group propose
testing based on mechanisms of formal verification
(Perešı́ni et al., 2015), (Bu et al., 2016), (Zeng et al.,
2014), (Fayaz et al., 2016), (Stoenescu et al., 2016);
in particular, Kuzniar et al. (Kuzniar et al., 2012)
have proposed interoperability testing for the switch-
to-controller interaction. The approaches of the sec-
ond group rely on model based testing techniques
when formal models are used to describe the desired
behaviour of the data plane/switch under test (Zhao
et al., 2017), (Fayaz and Sekar, 2014), (Alsmadi et al.,
2015), (López et al., 2018), (Yao et al., 2014a), (Yao
et al., 2017). In particular, the closest research to our
work has been conducted in (Yao et al., 2014b) and
(Zhang et al., 2016). Indeed, the authors in these
works have also investigated the possibility of mod-
elling the switch behaviour via a state machine, how-
ever, in contrast to our approach, they rather model
the pipeline processing in a switch. Moreover, their
approaches rely on a composition of finite state mod-
els and verify the packet processing while we are in-
terested in testing the switch-to-controller communi-
cation.

To the best of our knowledge, model based testing
approaches for checking the OF switch-to-controller
communication are not yet present in the literature.
We therefore propose one of them where the underly-
ing model is expressed in terms of an Extended Finite
State Machine.

3 BACKGROUND

3.1 OpenFlow Switch

An OF switch reacts to OF messages and data plane
packets it receives. Therefore, it exposes two in-
terfaces, i.e., the southbound interface (SBI) to han-
dle the communication with the controller and the
data plane interface taking care of the packets for-
warding. The OF specification (Open Networking
Foundation, 2014) describes the behaviour of the
switch and its communication with the controller. It
specifies OF messages handling via the SBI. Exam-

ples of messages received/sent by the switch include
OFPT HELLO message for connection establishment;
OFPT FEATURE for advertising the supported capabil-
ities; FLOW MOD for handling modification of rules
in the switch; OFPT BARRIER related to when a given
command is applied; OFPT MULTIPART for reporting
statistics and OFPT ECHO for sensing the liveness.

Before any messages can be exchanged, the con-
nection establishment process takes place implying
OF version and capability negotiation. Both ends of
the connection exchange HELLO messages immedi-
ately after the lower layer (TCP/TLS) connection es-
tablishment. Afterwards, to be aware of the capabil-
ities of the switch, FEATURE is exchanged. In case
this message is not received by the controller and af-
ter a timeout, the latter disconnects the switch. Once
the connection is successfully established, different
messages can be exchanged, e.g., ECHO, FLOW MOD,
BARRIER and MULTIPART.

A rule installed by the FLOW MOD message con-
tains a matching part and an action part. The OF
requirements define actions which can be applied to
incoming packets and including modification of IP
and VLAN values. If an OF implementation complies
with the requirements, the exchange of these mes-
sages should be performed correctly with the speci-
fied parameters.

3.2 EFSMs

Let X and Y be finite sets of inputs and outputs; INp,
OUTp and Cv be finite disjoint sets of input/output
parameters and context variables respectively. Some
inputs (outputs) are related to subsets of parameters.
For x ∈ X , let INpx ⊆ INp be the set of input param-
eters of x and let DINpx be the set of input vectors,
each component of an input vector corresponds to an
input parameter associated with x. The set of output
parameters and vectors are similarly defined. Let DCv
be the set of context vectors v. Given an input x and a
(possibly empty) set of input vectors, a parameterized
input is a tuple (x,px) where px is an input parameter
vector. A sequence of parameterized inputs is called a
parameterized input sequence. Parameterized outputs
and their sequences are defined similarly.

An EFSM (Petrenko et al., 2004) S over X ,Y ,
INpx, OUTpy, Cv, DINpx , DOUTpy and DCv is a pair
(S,T) of a finite set of states S and a finite set of tran-
sitions T between states in S, such that each transition
t ∈ T is a tuple (s,x,P,op,y,up,s′), where
• s,s′ ∈ S are the initial and final states of the transi-

tion, respectively;
• x ∈ X is the input of the transition;
• y ∈ Y is the output of the transition;

• P, op and up are functions, defined over input pa-
rameters and context variables
– P : DINpx×DCv →{True,False} is the predicate

of the transition;
– op : DINpx ×DCv → DOUTpy is the output param-

eter function of the transition;
– up : DINpx×DCv→Cv is the context update func-

tion of the transition.
If a transition t has a predicate, the latter must be sat-
isfied in order for t to be enabled. A configuration of
S is a pair (s,v).

An EFSM S is
•Deterministic if any two transitions outgoing from
the same state with the same input have mutually ex-
clusive predicates;
•Complete if for each pair (s,x) ∈ S×X , there exists
at least one transition at state s with the input x, oth-
erwise S is called partial;
•Initially connected if each state of S is reachable
from the initial state. Hereafter, the specification
EFSM modelling the behaviour of an SDN switch is
deterministic, partial and initially connected.

A path in S is the set of (parameterized) inputs of
the successive transitions that are enabled from one
configuration to another. Let S have the initial con-
figuration (s0,v0). A test sequence is the sequence of
input/output pairs of S that starts from (s0,v0) to a
given configuration (s,v) (i.e., a path from (s0,v0) to
(s,v)).

Given a (parameterized) input sequence α, if α

is defined at the initial states for machines S and
M , initial configurations (s0,v0) of S and (s0′,v0′)
of M are distinguishable by α (DS) if the (parame-
terized) output sequences produced respectively by S
and M in response to α are different, i.e., out(S ,α) 6=
out(M ,α). We furthermore refer to S as the specifi-
cation machine describing the desired behaviour of an
OF switch, while M denotes a potential faulty imple-
mentation of it. M is distinguishable from S (can be
detected) if there exists such a DS α. Otherwise, M
is quasi-equivalent to S .

3.3 User-Defined Mutation and Fault
Model

In this work, we assume that the specification ma-
chine S has a set of selected transitions, referred to
as suspicious that are defined by a ‘user’ (can be
an expert, tester, developer, etc.). We focus on out-
put, transfer, predicate and update function faults at
these transitions. Given a ‘suspicious’ transition t =
(si,x,P,op,y,up,s j) of S , t has an output fault if its
(parameterized) output is distinct from that specified
in S . t has a transfer fault if its final state is differ-

ent from that specified by S . t has an update function
fault if its update function is omitted. t has a predicate
fault if its predicate is negated 1.

Note that the introduced faults could be more so-
phisticated. For example, one can consider alter-
ing the operators of an update function. Nonethe-
less, even with these types of faults, our approach
has proven to detect faults in an OVS implementa-
tion. Also, we note that in this work, only first-order
mutants are considered.

As usual, a fault model is a tuple of the specifi-
cation, conformance relation and fault domain, 〈S ,'
,F D〉 (Petrenko et al., 2016). In this paper, the spec-
ification machine S is represented by an EFSM, and
the conformance relation ' is the quasi-equivalence,
i.e., an implementation M conforms to the specifica-
tion S if for each input sequence for which S is de-
fined, M produces the same output sequence as de-
fined by S . F D is a set of implementation machines;
faulty implementations are simulated by the mutants
of interest. As usual, we are interested in deriving
exhaustive test suites for 〈S ,',F D〉, i.e., such test
suites that detect each non-conforming (faulty) imple-
mentation M ∈ F D.

4 OF SWITCH MODEL

Formal models may be used as the basis for au-
tomating parts of the testing process and can lead to
more efficient and effective testing (Hierons et al.,
2009). Moreover, FSMs/EFSMs are widely used and
have proven their effectiveness in various application
domains, such as modeling and testing communica-
tion protocols, and other reactive systems. These for-
mal models can be successfully adopted in specifying
the properties of the OF switch and in capturing its
functioning, particularly its communication with the
controller. It is therefore of paramount importance to
have a model which can capture the main interaction
part between the controller and the switch, is able to
model the main communication messages going from
switch to controller (and vice versa), and can be easily
extended to include additional parts of the OF speci-
fication or even the entire specification. The model
proposed in this paper is an attempt in that direction.

1The specification can stay deterministic if other outgo-
ing transitions are mutated accordingly. In our model, no
more than two transitions with the same (parameterized)
input (and different predicates) are defined at a state, thus
when introducing a predicate fault we can simply change
the predicates assigned to such two outgoing transitions.
We assume this mutant is still of first order because it can
correspond to a single fault in an implementation, e.g., un-
intentional swapping of the ‘if-then-else’ statements.

The proposed EFSM model (the specification S)
for the switch is derived from the OF requirements
(Open Networking Foundation, 2014) only consid-
ering its interaction with the controller because our
goal is to test a switch at the OF interface (and not
at the data plane interface). The model is partially
illustrated in Fig. 1 and is composed of five states,
two non parameterized inputs and nine parameterized
inputs, eleven non parameterized and seven param-
eterized outputs. It contains also two context vari-
ables, seven output parameter functions, fifteen predi-
cates and three context update functions. Note a level
of abstraction in this model, for example not all in-
puts/outputs of the original protocol are modelled. As
the requirements do not describe precisely what the
switch should reply in case of the success of a request
received from the controller (e.g., response to a suc-
cessful FLOW MOD), in our model, we assume that
the reply is a non-parameterized NULLo output.

The sets of states S, inputs X and outputs Y are as
follows:

S = {CLOSED,WAIT HELLO,WAIT FEATURE,

CONNECTION ESTABLISHED, FAIL MODE};
X = {connected,HELLOi,NULLi,disconnected,

FEATURE REQ,ADD,MULTIPART REQ,

DELETE,BARRIER REQ,ECHO REQ, PACKET OUT};
Y = {HELLOo,Error,ERROR1,ERROR2,ERROR3,

ERROR4,ERROR5,ERROR6,ERROR7,ERROR8,

ERROR9,ERROR10,MULTIPART REP,NULLo,

FEATURE REP,ECHO REP,BARRIER REP,

FLOW REMOVED}.
The EFSM reflects that the switch supports con-
nection version negotiation (parameterized input
HELLOi) and preserves the behaviour of correct
exchange of FEATURE, ADD and DELETE (mod-
elling the FLOW MOD message), BARRIER, ECHO,
PACKET OUT and MULTIPART messages. The hand-
shake and version negotiation are handled by pred-
icates of t0, t1 and t2. For example, transition t2 in
Fig. 1 is written as

t2 =(WAIT HELLO,HELLOi,P2,−,NULLo,−,
WAIT FEATURE)

where WAIT HELLO and WAIT FEATURE are the
initial and final states of t2 respectively, HELLOi is
the parameterized input. P2 is the predicate check-
ing the values of parameters type and version of the
input. NULLo is the output sent by the switch rep-
resenting a success of the HELLOi request. Once
in t2’s final state and upon receipt of the param-
eterized input FEATURE REQUEST, if the predicate
of t5 evaluates to True (indicating non expiry of
a timeout), the machine outputs the parameterized

FEATURE REPLY (containing the switch capabilities)
and moves to the state CONNECTION ESTABLISHED.
In case FEATURE REPLY is not sent after a timeout
(predicate of t3 evaluates to True), the machine moves
to the initial state CLOSED indicating a disconnec-
tion. Some of the exchanged messages are modelled
as self-looping transitions once the connection is suc-
cessfully established and the machine being in the
CONNECTION ESTABLISHED state.

We note that the values of input/output parameters
have rather small domains. For example, the input pa-
rameter version of HELLOi input takes only the single
value 0x04 and the input parameters for the input ADD
are

[
type table match action f lags

]
and their

values have small domains as well. The same for out-
put parameters.

The machine has the set of two context variables;
Cv = {nbFlows,TLS timeout} denoting respectively
the number of rules in the switch and the TLS ses-
sion timeout. nbFlows can take distinct values in the
range [0..max entries] where max entries is a con-
stant that denotes the maximal number of rules the
switch can insert and depends on the switch charac-
teristics (takes the value of 106 in our model). In
case TLS timeout expires, the switch loses the con-
nection with the controller and the machine moves
to state CLOSED (t4). The OF requirements specify
that the connection maintenance is done by the un-
derlying TLS/TCP connection mechanisms and since
currently supported protocols have the same default
timeout value of 300 seconds, we set TLS timeout to
this value.

Note that the finite state model proposed in this
paper can be extended to model additional parts of
the OF requirements, or even the entire specifica-
tion. For example, the configuration messages han-
dling groups, queues, and meters can be added as
self-looping transitions after the connection establish-
ment, or other states can be added as well. The
model allows the detection of potential faults and
misinterpretations as it will be shown by our exper-
iments. However, its expanding would eventually re-
quire more significant upfront time. Naturally, an
evaluation of such expanding is needed and hence
forms a direction of future work.

5 TEST GENERATION

As mentioned above, we are interested in deriving
test cases that check that the suspicious transitions of
S are correctly implemented in the switch. Our ap-
proach is a depth first search based heuristic that pro-
gressively constructs a test suite T S. First, a set of

CLOSED

WAIT HELLO

WAIT FEATURE

CONNECTION ESTABLISHED

FAIL MODE

t 0

co
nn

ec
ted

/H
ELLO o

t2
HELLO

i /NULLo

t 5

FEATURE
REQ/FEATURE

REP

t6
ADD/NULLo

t 7

MULTIP
ART

REQ/M
ULTIP

ART
REP

t...
. . .

t8

ADD/Error

t9

DELETE/FlowRemoved

t24
disconnected/NULLo

t 1

HELLO i/E
rro

r

t30

connected/ERROR1

t31

HELLOi/ERROR2

t3
N

U
L

L
i /N

U
L

L
o

t 4
E

C
H

O
R

E
Q

/N
U

LL
o

t10
N

U
L

L
i /N

U
L

L
o

t25

connected/ERROR3

t26

HELLOi/ERROR4

t27
DELETE/ERROR5

t 28

FEAT
URE

REQ/E
RROR 6

t 2
9

A
D

D
/E

R
RO

R 7

Figure 1: Part of the specification EFSM of the switch.

user-defined mutants for suspicious transitions is de-
rived. Then for each mutant Mi of the set, for check-
ing the distinguishability between a reached configu-
ration (s,v) where the suspicious transition is defined
in S and the corresponding configuration reached in
Mi, the approach tries to append the DSs if they exist
up to a certain predefined positive depth l.

The construction of a DS, say σ, of S and a given
Mi is performed in the following way. It is formed
of a preamble α and a postamble that is appended
to α to form the distSeq. The preamble α is an in-
put sequence that takes S from the initial configura-
tion (s0,v0) to the configuration where the suspicious
transition is defined. The distSeq is constructed by a
depth first search that will repeatedly expand deeper
configuration nodes in the EFSM and explore the suc-
cessive configurations. In other words, configurations
at depth l (which corresponds to length |α|+ l start-
ing from the initial configuration) are treated as if they
have no outgoing transitions (successors). The algo-
rithm therefore progressively increases the depth until
it finds that the outputs of S and Mi are different or
that the limit l for the depth is reached (i.e., the length
|α|+ l is reached).

The approach is formalized in the following algo-
rithms. Algorithm 1 captures the main flow of the
proposed approach. It first assigns T S to an empty
set. Then, for each mutant Mi in the set F D, it looks
for the corresponding DS. Since our EFSM is ini-
tially connected, we are only interested in configu-

rations that are reachable from the initial configura-
tion. A preamble α is generated to first reach the sus-
picious transition. The specification S is then sim-
ulated over α and the sequence σ is first empty and
is later extended with the (parameterized) sequence
DISTSEQ if it exists to satisfy the distinguishability
between the two configurations reached in S and the
mutant respectively. Therefore, for a length going
from |α| to |α|+ l, i.e., from the depth of the start-
ing suspicious transition to the defined depth limit l,
the algorithm repeatedly calls DISTINGUISHINGSE-
QUENCEAPPEND illustrated in Algorithm 2 which
takes care of suitable extensions. Eventually, Algo-
rithm 1 will find a DS if one exists up to depth l (i.e.,
length |α|+ l from the initial configuration). Finally,
if such sequence exists, it is added to T S while the
mutant is marked as distinguishable, i.e., added to the
set F D′ ⊆ F D. When all derived mutants are con-
sidered, T S is returned along with F D′ containing
distinguished mutants.

Proposition 1. If Algorithm 1 returns a test suite T S
then this test suite is exhaustive w.r.t. the fault model
〈S ,',F D′〉.

Proof.
Indeed, F D′ contains only distinguishable mutants.
Moreover, the derived test suite T S is formed by all
the input sequences that distinguish the specification
S and each mutant of the set of mutants F D′. There-
fore, each faulty implementation/mutant is detected
by the derived test suite T S.

Below, we show an example of a mutant and the
corresponding DS returned by Algorithm 1.

Consider the following transition t6
t6 = (CONNECTION ESTABLISHED,ADD,P6,op6,

NULLo,up6,CONNECTION ESTABLISHED)
where up6 indicates that nbFlows is increased by one.
A mutant M0 considers an issue that sometimes de-
velopers forget to update the value of a variable. The
idea here is that M0 is derived by omitting the update
function up6 of t6.

up6 : Z+→ Z+

nbFlows← nbFlows+1
It suggests the switch will not update its statistics

after adding a new rule. The corresponding DS re-
turned by Algorithm 1 is shown below.

Algorithm 1: Algorithm that derives a test suite
T S and a set F D′ of distinguishable mutants.

Input : EFSM S , initially connected and
deterministic, a set F D of mutants,
an upper bound positive integer l > 0

Output: A test suite T S and a set of mutants
F D′ that can be detected or
NoSolution

1 T S← /0

2 F D′ ← /0

3 foreach Mi ∈ F D representing a fault at a
‘suspicious’ transition
ti = (si,xi,Pi,opi,yi,upi,si′) do

4 Let α be a (parameterized) input sequence
that takes S from the initial configuration
(s0,v0)

S to the configuration (si,vi)
S

where the predicate Pi of ti can be
evaluated to True and a (parameterized)
input xi is defined

5 Simulate S applying α and reach
configuration (si,vi)

S

6 σ← empty
7 for length← |α| to (|α|+ l) do
8 DISTSEQ← DISTINGUISHINGSE-

QUENCEAPPEND(S ,Mi, (si,vi)
S ,

length)
// depth limited search

9 if DISTSEQ 6= NoSolution then
10 σ← σ.DISTSEQ

11 if |σ|> |α| then
12 T S← T S∪{σ}
13 F D′ ← F D′∪{Mi}

14 if |T S|==0 then
15 return NoSolution

16 return T S and F D′

DS =connected(OFPT HELLO,0x04)
HELLOi(OFPT HELLO,0x04)
FEATURE REQ(FEATURE REQUEST,0x04)
BARRIER REQ(BARRIER REQUEST)

ADD(OFPT FLOW MOD,0,any,1,0)
BARRIER REQ(BARRIER REQUEST)

MULTIPART REQ(OFPMP TABLE)

BARRIER REQ(BARRIER REQUEST).

Algorithm 2: DISTINGUISHINGSE-
QUENCEAPPEND(S ,M , (si,vi), length).

Input : Initially connected and deterministic
EFSMs S and M , a configuration
(si,vi), an upper bound positive
integer length

Output: A test sequence or NoSolution
1 NoSolutionHappen← False
2 seq← input sequence of the path up to (si,vi)
3 if out(S ,seq) 6= out(M ,seq) then
4 return seq

5 if |seq|==length then
6 return NoSolution

7 foreach transition t = (si,xi,Pi,opi,yi,upi,si′)
outgoing from the configuration (si,vi) with Pi
evaluating to True do

8 successor← (si′,vi′) // vi′ is the
result of upi applied to vi

9 path← DISTINGUISHINGSEQUENCEAP-
PEND(S ,M , successor, length)

10 if path == NoSolution then
11 NoSolutionHappen← True

12 else
13 return path

14 if NoSolutionHappen then
15 return NoSolution

6 EXPERIMENTAL EVALUATION
AND RESULTS

6.1 Evaluation of the Approach

First, given the depth l to which Algorithm 1 is al-
lowed to explore the generated transitions tree start-
ing from the suspicious transition of interest, we have
investigated the impact of this depth on the effective-
ness of the generated test suites (fault coverage). For
this purpose, we have varied the depth l and we have
generated corresponding test suites, then we have
measured the mutation score of each generated test
suite. In the second part, we have further assessed the
effectiveness of the test suites derived by the proposed
approach by comparing them to test suites generated
randomly, i.e., an approach that randomly selects in-
puts from the input set. We refer to this approach as
RG (Random Generation). The goal is to compare the
T Ss derived by our test generation method with size-
equivalent test suites that do not follow any systematic
test generation strategy. Though this provides only

a baseline and a comparison with alternative testing
methods is definitely relevant, it is a necessary start-
ing point.

In order to perform an experimental evaluation, a
number of software tools have been developed. The
experimentation process is composed of four main
steps. The first step is to generate mutants of dif-
ferent kinds. The second step is to generate the test
suites based on the two approaches aforementioned.
The third step of the experiment is to produce JUnit
files that can run the test suites. The fourth and final
step is running the generated test suites against the
generated mutants.

Further on, automation of test suite generation is
paramount. Similarly, mutant generation should be
automated. However, in our experiments, we have
generated two sets of mutants. A first set of user-
defined mutants have been manually generated and
added to the second set of automatically (randomly)
generated ones. We have therefore developed a test-
ing framework. The framework is composed of two
main modules. The first allows the test engineer to
produce test suites according to two different test gen-
eration methods; using our proposed approach and
using RG. The mutants have been generated and the
test suites have been automatically constructed. The
second module of the testing framework helps to ex-
ecute the randomly generated test suites against the
different generated mutants. Note that the random test
suites generation is based on the random function pro-
vided by the Java programming language.

We discuss our measurement of performance and
effectiveness (at finding faults) using two metrics as
follows. On one hand, concerning the performance,
we focus precisely on the execution CPU time met-
ric. On the other hand, concerning the effectiveness
of our testing technique, we focus on mutation analy-
sis to compare the capability (of fault detection) of the
derived test suites based on our approach against the
capability of randomly generated test suites in terms
of mutation score.

One issue to be addressed is the detection of
equivalent mutants, i.e., mutants that have the same
behaviour as the specification machine and therefore
cannot be killed by test sequences. There are stud-
ies proposing techniques to automate the detection of
equivalent mutants, and a commonly used heuristic
is to consider survived mutants not killed by any test
suite in the overall test pool (i.e., in test suites be-
ing compared) as equivalent mutants (DeMillo et al.,
1978). In this work, we have used this heuristic. Since
we compare test suites between one another, this as-
sumption should not introduce a significant threat to
validity of our results. In our experiments, we have

produced output, transfer, predicate and update func-
tion mutants.

We have created a total of 288 mutants where 70
have been manually generated. 20 of them (not killed
by any of our test suites) were equivalent. Over-
all, we have therefore used 268 mutants where 67
are output, 67 are transfer, 67 are predicate, and 67
are update function. 10 test suites have been gener-
ated using our approach. This has been performed
by increasing the depth l until 10 and for each fixed
depth l = {1, . . . ,10}, a corresponding test suite has
been generated. To generate size-equivalent random
test suites, for each generated test suite using our ap-
proach, we have measured the average length of all of
its test sequences. For each of these length values, a
corresponding test suite of that same length has been
randomly generated using the RG approach. Hence,
10 test suites have been randomly generated.

Figure 2 illustrates the mutation score as the depth
increases using our approach. The mean mutation
score and the execution CPU time (in minutes) for
both our approach and RG are shown in Figure 3.

Figure 2: Mutation score as the depth increases

Figure 3: Average mutation score and execution time for
T Ss derived by the proposed approach Vs T Ss randomly
generated

The results for randomly generated test suites
show an average mutation score of 21.75% (Figure 3).
This is significantly lower than the 60.07% average
that has been obtained with the proposed EFSM based
method (with the depth l varying from 1 to 10). The
average mutation score is even significantly higher
than the maximal score with random test suites. We
can then conclude that, factoring out the cost of test-
ing, the EFSM based testing technique is rather rele-
vant. It is able to outperform the effectiveness of ran-
domly generated test suites by achieving the highest
mutation score. We conjecture that this is due to not

only the ability of our technique to cover more tran-
sitions in the EFSM model, but also to its ability to
distinguish between configurations which the random
approach does not do.

However, as shown in Figure 3, the CPU time that
our proposed technique requires is higher compared
to the RG approach. Therefore, there is a trade-off
between the performance and the quality of the gen-
erated test suites using the two methods.

6.2 Experiments on an OVS Switch
Implementation

To evaluate the effectiveness of the EFSM based ap-
proach in revealing OF switch implementation faults,
we have developed another module of our testing
framework that includes two main components. First,
there is a translation module that maps the generated
test sequences described in Section 5 into OF-syntax
messages. It uses an input file specifying the derived
inputs to fill the different input parameter values and
construct a T S ready to be executed against the SUT.
A second component takes care of the comparison of
observed and expected outputs specified in the input
file as well. The framework allows to send T Ss to an
SUT, collect the observed outputs and compare them
against the specified expected ones to finally print a
conclusion displaying ‘OK’ or ‘Fail’ message to the
user.

Experiments have been performed on the OVS
version 2.5.0. To emulate a ‘close-to-real’ test en-
vironment, Mininet (De Oliveira et al., 2014) tool
has been utilized. In the testing set up, Mininet has
been executed under Mint 18.1 with 8GB of RAM
and 1 core of a 2.4 GHz Intel Core i7. The Flood-
light 1.1 controller has been used. The SUT has been
connected to a testing engine containing an emulated
controller that is capable of sending and capturing OF
messages in a controlled manner. Figure 4 shows the
SUT (V M1) and the testing engine (V M2). The source
code of OVS 2.5.0 has been directly cloned from its
Git repository on V M1. The SUT may receive any of
the inputs from the input alphabet X emitted from the
controller interface of V M2.

The test suites T Ss of interest have been executed
against the OVS implementation of interest. In the
following, we present the bugs detected in OVS 2.5.0
implementation along with the related DSs and their
lengths.

The existence of a fault in OVS 2.5 implemen-
tation has been revealed by a test sequence (DS) of
one of the generated T Ss. It concerns the instal-
lation of a new rule with parameter action set to
‘OFPActionPushVlan’ which pushes a new VLAN tag

Figure 4: Test architecture.

onto the packet matching the entry. In this case,
the SUT has replied with an Error message with
parameters type = OFPET BAD ACTION and code =
OFPBAC BAD ARGUMENT. The observed reply re-
veals a fault in the SUT in association with installing a
new rule having an action that pushes a new VLAN tag
to the matching packet. The switch has behaved as if
an action in the Flow Mod message ADD had a value
that is invalid, however the ‘OFPActionPushVlan’ ac-
tion is specified to be supported. The length of the DS
capable of detecting such fault is 7.

Another fault has been detected by another test
sequence and concerns the installation of a new rule
with parameter action set to OFPP ALL which is sup-
posed to forward the matching packet to all ports
of the switch under test. In this case, the SUT has
replied with an Error message as well instead of a
NULLo reply. The parameters of the observed Error
reply are type = OFPET BAD ACTION and code =
OFPBAC BAD ARGUMENT. In this case, the length
of the DS capable of detecting this fault is 7 as well.

A similar fault has been detected which concerns
the installation of a new rule with parameter action
set to OFPP IN PORT. When the SUT receives a
Flow Mod message with the indicated parameter, it
is supposed to reply with a NULLo reply and install the
rule which forwards the matching packet to all ports
except the input one. However, the observed reply has
been an Error message similar to the previously men-
tioned one. The length of the DS capable of detecting
such fault is also 7.

The next detected fault concerns the
MULTIPART REQ for reporting statistics about
installed rules. The input sequence α ∈ T S is
intended to add a rule to the SUT (when nbFlows is
less than max entries) and request the SUT about
statistics. The expected reply should show incre-
ment of the total number of rules nbFlows by one.
However, the SUT reply contains the exact same

number of rules than before applying the DS. This
means that the switch when adding the rule, does
not update statistics. The DS capable of detecting
such fault is derived based on an update function
mutant and it contains a Flow Mod input and a
MULTIPART REQ input for adding a new rule and
then getting the statistics. The type parameter of the
MULTIPART REQ is set to OFPMP TABLE. The reply
to this DS contains the active number of installed
rules. The DS in this case has length 8.

Another type of fault has been detected as well. It
concerns a table overflow. The DS of interest includes
the parameterized input ADD 106 times followed by
another input ADD. In this case, the SUT has replied
with 106 NULL messages followed by another NULL
and has added the ‘extra’ rule. Note that in section
6.4 of the OpenFlow requirements (Open Network-
ing Foundation, 2014), it is stated that “If a switch
cannot find any space in the requested table in which
to add the incoming flow entry, the switch must send
an o f p error msg with OFPET FLOW MOD FAILED
type and OFPFMFC TABLE FULL code”. This indeed
reports a fault in the OVS 2.5 under test and confirms
our intuition that in the implementation, the variable
nbFlows is not checked for reaching its extreme value
max entries. The DS has length 106 + 6. Thus it has
not been derived by our implementation but rather de-
rived manually using our model. Once the configu-
ration of interest is reached in the model, the tran-
sition with the parameterized input ADD and having
the predicate [nbFlows < max entries] has been sim-
ulated to be traversed 106 times.

Discussion

There are several threats that could potentially affect
the validity of our study. One of the threats suscep-
tible to affect our study is the one referring to gener-
alizability of our findings. In this preliminary study,
it is clear that the results we have obtained are a pri-
ori limited as they are based on one case study (as a
baseline) involving the comparison of our approach
to the RG approach. Therefore, more investigations
and comparisons are necessary in order to be able to
generalize. Another point worth mentioning is related
to checking the scalability of the proposed approach
w.r.t. the size and complexity of the built model. In
other words, if the proposed model is extended to in-
corporate additional parts of the OF requirements, it
would be interesting to investigate how the complex-
ity of the proposed test derivation algorithm will grow
accordingly. This question also forms a direction of
planned future work. In contrast, as we have used
mutation score being a surrogate metric of evaluat-
ing the effectiveness at detecting faults and as a test

suite mutation score has proven to be correlated with
its real fault detection rate (Aichernig et al., 2014),
we believe there is little threat to the validity in gen-
eral. Besides, we have experimented on an OF switch
implementation which has allowed us to detect some
faults.

7 CONCLUSION

In this paper, an EFSM based testing technique for
an OF switch-to-controller communication has been
presented. Given an EFSM model of the switch-to-
controller interaction derived from OF requirements,
and a set of mutants representing faults defined by a
user at suspicious transitions, the method derives a
test suite formed by distinguishing sequences aiming
at detecting the mutants of interest.

We have evaluated the proposed test derivation
technique by comparing it to a random generation ap-
proach. The results have shown that the designed al-
gorithm is relevant. Further, preliminary experiments
with an Open vSwitch have confirmed the effective-
ness of the proposed approach in revealing some im-
plementation faults. However, the findings presented
in this work should be interpreted in the context of
limitations related to the model design decisions and
the number of user-driven mutants. In the future, we
plan to improve the operation efficiency of the ap-
proach and apply it to larger SDN models on one hand
and compare it to other (EFSM based) test generation
techniques on the other hand.

Finally, the testing framework features are
planned to be enhanced so that interested testers / de-
velopers could execute their own test suites against
SDN switches in a fully automated manner. The is-
sues and challenges listed above form the directions
for the future work.

REFERENCES

Aichernig, B. K., Auer, J., Jöbstl, E., Korošec, R., Krenn,
W., Schlick, R., and Schmidt, B. V. (2014). Model-
based mutation testing of an industrial measurement
device. In International Conference on Tests and
Proofs, pages 1–19. Springer.

Alsmadi, I., Munakami, M., and Xu, D. (2015). Model-
based testing of sdn firewalls: a case study. In Trust-
worthy Systems and Their Applications (TSA), 2015
Second International Conference on, pages 81–88.
IEEE.

Bochmann, G. V. and Petrenko, A. (1994). Protocol testing:
review of methods and relevance for software testing.

In Proceedings of the 1994 ACM SIGSOFT interna-
tional symposium on Software testing and analysis,
pages 109–124. ACM.

Bu, K., Wen, X., Yang, B., Chen, Y., Li, L. E., and Chen, X.
(2016). Is every flow on the right track?: Inspect sdn
forwarding with rulescope. In Computer Communica-
tions, IEEE INFOCOM 2016-The 35th Annual IEEE
International Conference on, pages 1–9. IEEE.

Chen, C., Jia, L., Zhou, W., and Loo, B. T. (2014). Proof-
based verification of software defined networks. In
ONS. USENIX.

De Oliveira, R. L. S., Schweitzer, C. M., Shinoda, A. A.,
and Prete, L. R. (2014). Using mininet for emula-
tion and prototyping software-defined networks. In
Colombian Conference on Communications and Com-
puting (COLCOM), pages 1–6. IEEE.

DeMillo, R. A., Lipton, R. J., and Sayward, F. G. (1978).
Hints on test data selection: Help for the practicing
programmer. Computer, 11(4):34–41.

Dobrescu, M. and Argyraki, K. (2015). Software dat-
aplane verification. Communications of the ACM,
58(11):113–121.

El-Fakih, K., Prokopenko, S., Yevtushenko, N., and
Bochmann, G. v. (2003). Fault diagnosis in extended
finite state machines. In Proceedings of the IFIP Inter-
national Conference on Testing of Software and Com-
municating Systems, pages 197–210. Springer.

Fayaz, S. K. and Sekar, V. (2014). Testing stateful and dy-
namic data planes with flowtest. In Proceedings of
the third workshop on Hot topics in software defined
networking, pages 79–84. ACM.

Fayaz, S. K., Yu, T., Tobioka, Y., Chaki, S., and Sekar, V.
(2016). Buzz: Testing context-dependent policies in
stateful networks. In NSDI, pages 275–289. USENIX.

Hierons, R. M., Bogdanov, K., Bowen, J. P., Cleaveland,
R., Derrick, J., Dick, J., Gheorghe, M., Harman, M.,
Kapoor, K., Krause, P., et al. (2009). Using formal
specifications to support testing. ACM Computing
Surveys (CSUR), 41(2):9.

Kuzniar, M., Peresini, P., Canini, M., Venzano, D., and Kos-
tic, D. (2012). A soft way for openflow switch inter-
operability testing. In Proceedings of the 8th inter-
national conference on Emerging networking experi-
ments and technologies, pages 265–276. ACM.

López, J., Kushik, N., Berriri, A., Yevtushenko, N., and
Zeghlache, D. (2018). Test derivation for sdn-enabled
switches: A logic circuit based approach. In IFIP In-
ternational Conference on Testing Software and Sys-
tems, pages 69–84. Springer.

McGeer, R. (2012). Verification of switching network prop-
erties using satisfiability. In The IEEE International
Conference on Communications (ICC), pages 6638–
6644. IEEE.

Open Networking Foundation (2014). Open-
flow Switch Specification Version 1.3.4.
https://www.opennetworking.org.

Perešı́ni, P., Kuźniar, M., and Kostić, D. (2015). Mono-
cle: Dynamic, fine-grained data plane monitoring. In
Proceedings of the 11th ACM Conference on Emerg-

ing Networking Experiments and Technologies, pages
1–13. ACM.

Petrenko, A., Boroday, S., and Groz, R. (2004). Confirming
configurations in efsm testing. IEEE Transactions on
Software Engineering, 30(1):29–42.

Petrenko, A., Timo, O. N., and Ramesh, S. (2016). Test gen-
eration by constraint solving and fsm mutant killing.
In IFIP International Conference on Testing Software
and Systems, pages 36–51. Springer.

Ruchansky, N. and Proserpio, D. (2013). A (not) nice way
to verify the openflow switch specification: Formal
modelling of the openflow switch using alloy. SIG-
COMM Comput. Commun. Rev., 43(4):527–528.

Stoenescu, R., Popovici, M., Negreanu, L., and Raiciu, C.
(2016). Symnet: Scalable symbolic execution for
modern networks. In Proceedings of the 2016 ACM
SIGCOMM Conference, pages 314–327. ACM.

Yao, J., Wang, Z., Yin, X., Shi, X., Li, Y., and Li, C. (2017).
Testing black-box sdn applications with formal be-
havior models. In 25th International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), pages 110–
120. IEEE.

Yao, J., Wang, Z., Yin, X., Shi, X., Wu, J., and Li, Y.
(2014a). Test oriented formal model of sdn applica-
tions. In Performance Computing and Communica-
tions Conference (IPCCC), pages 1–2. IEEE Interna-
tional.

Yao, J., Wang, Z., Yin, X., Shiyz, X., and Wu, J. (2014b).
Formal modeling and systematic black-box testing of
sdn data plane. In 22nd International Conference on
Network Protocols (ICNP), pages 179–190. IEEE.

Zeng, H., Kazemian, P., Varghese, G., and McKeown, N.
(2014). Automatic test packet generation. IEEE/ACM
Trans. Netw., 22(2):554–566.

Zhang, S. and Malik, S. (2013). Sat based verification of
network data planes. In International Symposium on
Automated Technology for Verification and Analysis,
pages 496–505. Springer.

Zhang, Z., Yuan, D., and Hu, H. (2016). Multi-layer mod-
eling of openflow based on efsm. In 4th International
Conference on Machinery, Materials and Information
Technology Applications, pages 524–529.

Zhao, Y., Zhang, P., Wang, Y., and Jin, Y. (2017). Sdn-
enabled rule verification on data plane. Communica-
tions Letters, pages 1–1.

