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ADDENDUM to Mathematics of Thermodynamics

After the presentation of my paper "The Mathematics of Thermodynamics", based on ideas of B. Finzi [one of the professors at Milan Politecnico] to be found in a paper

Introduction

In order to understand the argument, we ask the reader to refer to the document "The Mathematics of Thermodynamics", and revise the known facts given there about the temperature, the thermal equilibrium, the transformation of energy (mechanical, kinetic, gravitational, electromagnetic, nuclear, …, heat), the state variables, the 1 st and the 2 nd Principles of Thermodynamics.

All the researchers (but very few) agree that the 1 st Principle of Thermodynamics states the Conservation of Energy. In Thermodynamics it is written as dU = d*W + d*Q

[in differential form it is (for an infinitesimal transformation)] where  dU is the exact differential of the state function U  d*W is a differential form NOT exact  d*Q is a differential form NOT exact For a cyclic process we have ∮ = 0

This 1 st principle stating that a change in internal energy in a system can occur as a result of energy transfer by heat, by work, or by both, is essentially presented in one form and it is very important, but it makes no distinction between processes that occur spontaneously and those that do not. The figure shows what can happen in practice: asymmetry between Work and Heat…

The situation depicted in the figure shows that there is a hierarchy between the various forms of energy: heat has a lower hierarchy than work; heat is a degraded form of energy, because < 50% of heat can be transformed into work. This strong limitation gave origin to the 2 nd Principle of Thermodynamics.

There are various forms of the 2 nd Principle which are the postulates to develop the theory; all the (kinds of) postulates state the impossibility of some types of processes.

Notice that the first 3 postulates are related to "engines" (operating cyclically) while the last 2 refer to reversible adiabatic transformations.

We recall some postulates, and the Farkas one (is the last here)  pure heat exchange transformations for which d*Q0 are considered, where only temperature change (only the mean kinetic energy of the molecules changes) in order to understand its meaning. We use the following figures; the 1 st (on the left) is a cycle drawn on a p, V diagram, while the 2 nd shows the different trend of the isothermal transformations versus the adiabatic.

Adiabatic transformation pv k =const

The figure on the right shows clearly that the temperature changes for any transformation on the left figure. In an adiabatic expansion the internal energy decreases and the system generate work, while the temperature decreases. In an adiabatic compression the work made on the system increases the internal energy and the system temperature. Moreover there cannot exist any transformation for which only the temperature changes. Does the depicted transformations (on the left figure) satisfy Farkas postulate? NO, because during the transformation BC there is heat exchange AND volume increase, while during the transformation DA there is heat exchange AND pression decrease… ONLY the adiabatic transformations satisfy the first part of Farkas postulate. In reversible processes the heat elements absorbed by the bodies always have integrating divisors, and one of them is for each body an identical function of the empirical temperature dS = Q/T, that is there exist an absolute entropy and absolute temperature scale (up to a constant multiplier). Notice that dS is a differential (exact) and it is not said if Q is a differential as well (not exact). Notice also that the two authors recall various statements in German Language, which obviously is not so easy.

2.

How the two authors deal with entropy

The two authors in their paragraph 3 [K. Martinas and I. Brodszky] say A statement about the existence of entropy in the case of two variables though limited in its scope is not without usefulness. It is interesting to note at this point that the construction developed by PLANCK and HAUSEN (1934) actually uses in its proof as a tool a system of bodies characterized with two variables. For completing the proof they naturally had to use another principle (the nonexistence of perpetual motion engines of the second kind). After that, in their paragraph 4, we find the "Discussion of the n-Dimensional Case"; they write W. VOIGT, professor of Göttingen, in his book (Vol. I) examined the expression of elementary heat in the case of n variables. He realized that the existence of an (not specified) integrating divisor for the heat is mathematically equivalent with the existence of n -1 dimensional adiabatic surfaces (which are the geometrical place of all those states that are adiabatically accessible from a given state).

The isothermal surfaces are introduced as well.

The Clausius principle, applied in a gedanken experiment identifies the originally unspecified integrating factor with the absolute temperature. However, in Voigt's approach, the existence of the adiabatic surfaces is only an assumption. Finally in , in their paragraph 5, we find the "Contribution of Gyula Farkas":

Upon reading Voigt's book, Gyula Farkas published a paper in which he outlined his own construction. He showed that the Clausius postulate (and the equivalent Kelvin postulate) requires that the adiabatic processes on are surfaces. The existence of adiabatic surface implies the existence of an integrating factor. To develop it, he first introduced a new impossibility principle (Farkas Lemma), namely that it is impossible that in a reversible adiabatic process only the temperature changes. Compare this with the postulate given above… Do they say the same concept?

We use now some symbol different from the paper entitled "Thermodynamics of Gyula Farkas -A new (old) approach to entropy" [by Katalin Martinas and Ildikó Brodszky], in order to be coherent with the document "The Mathematics of Thermodynamics". For a given system, the differential d*Q is written as a function of n independent state variables; one of them is the empirical temperature : , a, b, c, …. Then the "elementary" heat is (h c is the heat capacity, when a, b, c, …. are held constant) d*Q=h c d+Ada+Bdb+Cdc+…..

For this system G. Farkas provided his special form of the inaccessibility principle:

Farkas lemma: In reversible processes no body or system of bodies can go adiabatically into a state to which it can go by means of pure heat exchange, i.e. by changing only the temperature by supplying or abstracting heat.

Let states  1 ( 1 , a, b, c, ….) and  2 ( 2 , a, b, c, ….) two points of a transformation; then the  1 ( 1 , a, b, c, ….)   2 ( 2 , a, b, c, ….) must not be a reversible adiabatic process.

The two authors [K. Martinas and I. Brodszky] say

Farkas formulated the following corollary of his lemma: Corollary 1 In a quasi-static adiabatic process the temperature is always entirely defined by the momentary values of the other state variables and it is independent of the path.

They add

That corollary implies the existence of the integrating factor. In quasi-static adiabatic processes one of the independently chosen n state variables (namely the temperature) is completely defined by the other n-1 variables. So for adiabatic processes the n dimensional space reduces to an n-1 dimensional one. That is the adiabatic process takes place on a surface. In adiabatic changes the functional relationship of the variables is an equation of a surface: s(, a, b, . . .) = const. That is equivalent with the statement that in adiabatic changes the Pfaffian equations:

h c d+Ada+Bdb+Cdc+….=0
is integrable and the integrated form is as follows, for a simple system s(, a, b, . . .) = 0 NOTICE the error! The two rows s(, a, b, . . .) = const. s(, a, b, . . .) = 0 are contradictory!!! (the second is a typing mistake?) The paper "peer reviewers" or referees did not notice the mistake ….

NOTICE also the following….

In adiabatic changes both ds and d*Q disappears. Since d*Q is not a total differential, it must be of the form: * = that is there exists an integrating factor, which is defined for a simple system in the form:

= h c /(ds/d). NOTICE that this (according F. Galetto) is not a proof of the existence of an integrating factor, when there are n thermodynamic variables!!!!!!!!!!! Anyway, if one accepts the previous statements he can use the better Theory given in the F. Galetto document "The Mathematics of Thermodynamics". There (see….) it is proved that the elementary quantity of heat * can be written as * where = ( ) is the absolute temperature, and the state function ENTROPY, has the differential where d*Q r is elementary energy transfer by heat during a reversible process between two infinitesimally separated equilibrium states and the entropy is the state function

= ( ) +

The two authors [K. Martinas and I. Brodszky end their paper with the words Farkas' construction seems to lead in the shortest way from Clausius' postulate or from Kelvin's postulate to the exact proof of the existence of an integrating divisor and its identification with the absolute temperature and to the definition of an entropy function. After he proved his lemma from the Clausius principle everything else is shown to be mere mathematical consequence. It is interesting to note that this construction does not exclude the negative absolute temperature. Farkas' paper remained unnoticed because of its extraordinary terseness. and then they give the paragraph 8. Example of an Ideal Gas, where they compute the entropy of an ideal gas.

3.

Entropy insight

Here we try to provide the reader with the true meaning of the concept ENTROPY. We begin with a Theorem due to Clausius:

For any thermodynamic cycle ∮ * ≤ Introducing the concept of entropy for irreversible processes S irr , we can write this as *

+ ∆ =

where S irr is the "entropy generation due to irreversibility of a process, say YZ". S irr is computed through any reversible transformation connecting the states Y and Z.

For reversible cycles S irr =0.

The change in entropy for a system undergoing any reversible, cyclic process is zero.

For any transformation AB, we have * ≤ ( ) -( )

The equality is for system undergoing any reversible transformation AB.

It is well known quantum physics theory is able to explain phenomena at sub-microscopic level for matter and energy. Phenomena such as the electromagnetic radiation from a hot object, the Brownian motion, the photoelectric effect [light incident on certain metallic surfaces causes electrons to be emitted from those surfaces (with absorption of one photon and the ejection of the corresponding electron, energy is transferred into the system by electromagnetic radiation, the photon)] and the nuclear energy could not be explained by classical physics. Thermodynamics was part of classical physics, but could took advantage from the new nonclassical ideas. Any thermodynamic system is made of molecules (and there "constituent" atoms, hadrons, electrons, subparticles, quarks, …) following their own physical laws. Internal energy U and entropy S of the system are macroscopic state variables which depend on the "internal (quantum)" states of the molecules: U and S are a sort of averages of the "internal (quantum)" states of the molecules; at any thermodynamic macrostate (identified by the variables p, v, T, U, …) there correspond a very huge number of "internal" microstates. Let's consider phase space of position coordinates and momenta coordinates of the particles considered; we divide the space in cells of volume q 1 q 2 …q n p 1 …p n =h n according to the quantum theory (q and p are the coordinates for positions and momenta, and each particle has n degrees of freedom). If N is the number of particles, then N 1 , N 2 , … are the number of particles in the cells 1, 2, …; the quantity ! ! ! … ! … . = ( + + ⋯ + + ⋯ . )! ! ! … ! … . = 1 Π is the multinomial coefficient of the multinomial distribution; the ratios N 1 /N, N 2 /N, … provide the "statistical configuration" of a possible microstate related to a given "thermodynamic macrostate".

It really interesting that the numbers N i are proportional to

, where E i is the "unknown energy" of the N i particles such that + + ⋯ + + ⋯ = where E is the total energy of the (thermodynamic) system. Let d be the infinitesimal volume in the phase space and E() the energy of the particles in the volume d we have Π = / ∫ / as the probability of finding the point (representing the particle with n degrees of freedom) in d. Since, in quantum theory, d must be h n , we have

Farkas postulate states [named as Farkas lemma, by

   the Clausius postulate states: Heat (energy) does not transfer spontaneously [that is without using (spending) energy by work] from a cold object to a hot object. In simpler terms, work input is required to do that transfer.  Kelvin-Planck postulate states the following: It is impossible that the input of energy by heat from a single reservoir and to transform completely the heat into work, operating in a cycle.  Ostwald postulate states: It is impossible the "perpetuum mobile of second kind".  Caratheodory postulate states: y 1 , y 2 ,…, y n  are the state coordinates In any infinitesimal neighbourhood of every equilibrium state =y 1 , y 2 ,…, y Martinas&Brodszky] In reversible processes no body or system of bodies can go adiabatically into a state to which it can go by means of pure heat exchange, i.e. by changing only the temperature by supplying or abstracting heat.

	We could find this postulate in a paper (suggested to us by J. Starikow) entitled "Thermodynamics
	of Gyula Farkas -A new (old) approach to entropy" [by Katalin Martinas and Ildikó Brodszky].
	The two authors write:
	Gyula Farkas (or as his name is used in his German publications according to the
	contemporary fashion in a translated form: Julius Farkas), a Hungarian physicist and
	mathematician (1847-1930), was the professor of theoretical physics in the University of
	Kolozsvár. In 1886 he published a paper in which he opened the way of mathematically
	rigorous introduction of entropy.
	The two authors also state:
	… is a consequence of Clausius postulate of Second Law.
	and, moreover,
	The Farkas method is not only earlier than the Caratheodory approach
	to integrating multiplier, but it is superior.
	Let's try to analyse the Farkas postulate about:
	 reversible adiabatic transformations are considered [as Caratheodory postulate] for
	which d*Q=0 and therefore the work increases (or decreases) the internal energy
	dU (which depends only on the temperature, i.e. the mean kinetic energy of the
	molecules)

n  there are states * that are adiabatically inaccessible from =y 1 , y 2 ,…, y n , through reversible adiabatic transformations. 

This formula provides the microscopic "distribution" of the N "systems" in equilibrium at the temperature T, given E the total energy of the (thermodynamic) total system. Both U and S are extensive variables: for a system , made of two systems  1 and  2 , the energy and entropy are U=U 1 +U 2 and S=S 1 +S 2 With these ideas we can identify the form of the entropy as function of : we set S=f() for the system , S 1 =f( 1 ) for the subsystem  1 and S 2 =f( 2 ) for the subsystem  2 . Since = 1  2 , we have the functional relationship f( 1 ) + f( 2 ) = f()

It follows that the function f is of the form f(x)=k ln(x) [as the result we got before], with k an unknown constant. Near 1900 Boltzmann proved that k is the Boltzmann constant and then

S = k ln()

This result is consistent with the following facts:

 Entropy S is conserved in all the reversible adiabatic transformations  S increases for all the reversible isothermal expansions; in this case the system makes work  S decreases for all the reversible isothermal compressions; in this case the system gets energy by external work  S increases for all the irreversible transformations Combining the 1 st and the 2 nd principles we get, in differential form [for an infinitesimal transformation] dU = d*W + TdS from which we see that the internal available energy, in general, is partially converted into "useful" work; the other part of the energy is energy unavailable, because it cannot be converted into useful work [this last statement is misleading for isothermal expansion transformations, because at constant temperature dU=0 and then d*W=-TdS: but in this case actually TdS is the heat that the system gets from the source at constant temperature T (dS=d*Q/T)].

So we can think that entropy is a measure of this unavailable energy (the entropy may be regarded as the unavailable energy per unit temperature): This is connected with the Boltzmann formula, by which we can say that increase in entropy implies a transition from on ordered to a less ordered state of affair of any system: disordered states for systems are more probable than ordered states.

We can define here three important state functions,  the enthalpy H=U-Yy,  the first potential energy [Helmholtz free energy] A=U-TS, when T=constant and Y=constant  the second potential energy [Gibbs free energy] G=H-TS, when T=constant and y=constant

For any reversible cycle the three state functions are 0.

We can derive = = and = -= and = and = 0 A=U-TS=W, at constant temperature, tells us that the change in Helmholtz free energy equals the reversible or maximum work for a process performed T=constant. A=W-ST, for a reversible adiabatic expansion. When the variables are p, V we have = -

When the variables are T, p, we have = and = -G=H-TS=W, at constant temperature, tells us that the change in Gibbs free energy equals the reversible or maximum work for a process performed T=constant.

Due to the previous relationships it is conceivable that could exist a linear function of enthalpy H versus entropy S; this can be seen as competition between energy and entropy in isobaricisothermal situation (p=constant and T=constant).

Using 

where  is the symbol of variation (in the sense of Variation Theory), Y are the generalised Forces, y are the generalised Displacements and U is the internal energy.

 is the symbol of variation related to all the virtual transformations "according to the constraints" of the thermodynamic variables S, y, U…. considered. 

IF

Entropy interpretation

Here we combine the authors ideas with those of B. 

( 1 )

we have an important relationship between the energy E and the temperature T.

Integrating we get

We can find the entropy of the system (made of N particles)

Comparing this with S = k ln() we find

From these two last relationships we find mathematically the very important physic fact: at T=0 the entropy is 0 (Nernst Theorem). We know that specific heat varies with temperature. If, however, temperature intervals are not too great, the temperature variation can be ignored and c can be treated as a constant. However near T=0 we know that the specific heat c V decreases with the temperature. We find, as well, a known physical fact that the specific heat c V at T=0 is 0, so that the Nernst Theorem applies: S=0 at T=0

Some hints for understanding …. The 2 nd Principle of Thermodynamics is TOO YOUNG in order to find an exception to it: mathematically it is VERY PROBABLE so that the increase of entropy is VERY PROBABLE for isolated systems (like the Universe). Then the 2 nd Principle of Thermodynamics is to be considered as a principle of (statistical) evolution which explains the irreversibility.

We know for certain that, IF there was the so called "Big Bang", from the "first" energy amount at very high temperature, after some "time" (seconds?) the Nature Forces (e.g. electromagnetic, gravity, nuclear, ….) arose who generated the matter [=energy; particles (quarks, bosons, fermions, nuclear evolution to…), atoms (chemical evolution to…), molecules, stars, planets, galaxies, …) and … after billions of years (biologic evolution to…) the LIFE, … anthropologic evolution. At that "time period" there was not a general increase of "disorder"; on the contrary "ordered system" arose! A cell is one of the most ordered systems; cells replicate each other and the differentiate according a well specified "program" contained in their DNA…. So the very first "time period" of the universe, our universe developed in opposition to the 2 nd Principle of Thermodynamics, unless we accept that the entropy present in the actual universe (today) "comes from quantistic fluctuations of the Big Bang".

Since the first potential energy is = -= -/ we see that the entropy is "dispersion of energy between the atoms/molecules of the system + surrounding":

The same we find from the second potential energy (Gibbs free energy) with = -.

So we confirm what we said before, entropy is a measure of this unavailable energy (entropy=unavailable energy per unit temperature):

See the
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