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Testing for high frequency features in a noisy signal

Mathieu Mezache∗ Marc Hoffmann† Human Rezaei‡ Marie Doumic§

Abstract

The aim of this article is to detect high frequency (HF) features in a noisy signal. We
propose a parametric characterization in the Fourier domain of the HF features. Then we
introduce a procedure to evaluate these parameters and compute a p-value which assesses in a
quantitative manner the presence or absence of such features, that we also call ”oscillations”.
The procedure is well adapted for real 1-dimensional signals. If the signal analyzed has
singular events in the low frequencies, the first step is a data-driven regularization of its
Fourier transform. In the second step, the HF features parameters are estimated. The third
step is the computation of the p-value thanks to a Monte Carlo procedure. The test is
conducted on sanity-check signals where the ratio amplitude of the oscillations/level of the
noise is entirely controlled. The test detects HF features even when the level of the noise is
five times larger than the amplitude of the oscillations. The test is also conducted on signals
from Prion disease experiments and confirms the presence of HF features in these signals.
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Introduction

Motivation

In a one-dimensional signal, transient oscillations may reveal key features of the underlying
processes. As an example, and original motivation for our study, fast oscillations have been
visually observed in experimental measurements of the infectious agent in Prion diseases, see
Figure 1.
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Figure 1: Human PrP amyloid fibrils (Hu fibrils) depolymerisation monitored by
Static Light Scattering (see Appendix for details). A: The overall view of the 0.35µM Hu-
fibrils depolymerisation at 550C. B-E correspond to a zoom-in on different time-segments of
the depolymerisation curve A. As shown in B, from time 4h to time 5h oscillations have been
observed when for time segment corresponding to time 15.3 to 15.5h only noise has been detected
(D). (Figure taken from [9])
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A major difficulty to infer such transient oscillations and to evaluate their significance is
that they are mixed up with noise. Hence it is of major interest to rely on a rigorous procedure
which detects high frequency (HF) features - amplitude, frequency - in real signals and to
distinguish quantitatively these features of the signal from its noise.

To our knowledge, there exist only few methods to detect and estimate the HF features in
a signal. The Singular Spectrum Analysis (SSA) introduced by Broomhead and Jones in [3] is
one of those and allows one to visualize qualitative dynamics from noisy experimental data. The
SSA is based on the decomposition of a time series or signal into several additive components
interpreted as trend components, oscillatory components, and noise components. It was then
widely used to identify intermittent or modulated oscillations in time series, see e.g. [22, 17, 10].

A statistical test of hypothesis to discriminate between potential oscillations and noise has
been introduced in [1] and [16]. This test is called the Monte Carlo SSA and has been applied
almost exclusively to meteorological data. Since SSA transforms the original data in a complex
way, no theoritical result has yet been proved on the Monte Carlo SSA. Prior knowledge on the
signal (such as the trend or assumptions on the noise) are also needed in order to calibrate the
procedure and improve the result of the statistical test. The Monte Carlo SSA is by construction
a non-parametric procedure and the oscillations detected by this test are not characterized
quantitatively but qualitatively.

In this paper, we propose another method, based on the Fourier transform of the signal,
to infer a parametric characterization of HF features, based on their amplitude and frequency
detection. This method is detailed in Section 1. We then introduce a statistical test to discrim-
inate HF features from noise in Section 3, apply our methodology to a simulated example in
Section 2, and then to the experimental measurements of PrP protein displayed in Figure 12 in
Section 4.

Model and assumptions

For some (large) n ≥ 1, we have measurements yni of a noisy signal localized around i/n, so
that i is a location parameter and n a frequency parameter. We may idealise our data via a
representation of the form

yni = xni + σξni , i = 0, . . . , n− 1, (1)

where (xni )0≤i≤n−1 is the true (unknown) signal of interest and the ξi are independent and
identically distributed noise measurement, that we assume here to be standard Gaussian. The
quantity σ > 0 is a (fixed) noise level. In this nonparametric regression setting, we aim at
detecting from the data (yni )0≤i≤n−1 whether (xni )0≤i≤n−1 exhibits high-frequency features (HF
features) such as oscillations, a term that still needs to be defined properly. Since we do not know
in advance whether such high-frequency features are present and where they are located, we need
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to investigate the shape of (xni )0≤i≤n−1, which requires some smoothing in order to get rid of
the noise (ξni )0≤i≤n−1. However, any smoothing procedure tends to wipe out high-frequencies in
the data, which is adversarial to our goal.

Results and organisation of the paper

The statistical test to differentiate HF features from noise in a signal is data-driven and is based
on the study of the projection of the signal in the Fourier domain. We propose in Section 1 a
parametric characterization of the HF features of a signal. This characterization also provides
an algorithmic procedure for the computation of the HF features, implemented in the Python
language at https://github.com/mmezache/HFFTest (see Appendix B). The procedure consists
in three steps: in the first step, a regularization procedure is applied to the experimental data in
order to smooth the fast variations that may exist in the low frequency range. The second step
of the procedure is the detection and localization of significant peaks in the Fourier domain.
The third step is the computation of the HF features parameters by selecting one of these
peaks. The construction of the statistical test of hypothesis and the computation of the p-value
is described in Section 2.

The numerical examples are performed in Section 3 with sanity-check signals. They are
constructed around parameters which control their trend, their transient oscillations and their
noise. We vary the ratio of the amplitude of the HF features over the noise level (i.e. its standard
deviation), which sheds light on the robustness of the procedure: the transient oscillations are
detected by the procedure even if the noise level is significantly high. The procedure is then
applied to static light scattering (SLS) experiments of PrPSc fibrils, in Section 4. They are
characterised by their singular slow-varying components (non-monotonous trend) and their fast-
varying components (isolated discontinuous jumps, transient oscillations, noise). We compute the
HF features parameters of SLS signal experiments for different initial concentration of PrPSc.
We conclude that these signals have significant HF features, i.e. the signals display transient
oscillations coming from biochemical reactions and not from the experimental noise.

1 Characterisation of high frequency features

The discrete Fourier transform (DFT) DFTn : Rn → Rn transfers a real-valued discrete signal
(xni )0≤i≤n−1 of length n into a frequency domain via

DFTn
[
(xni )0≤i≤n−1

]
=
( n−1∑
i=0

xni e−j2πki/n
)
0≤k≤n−1

=
(
ϑn,k

)
0≤k≤n−1. (2)

The single-sided amplitude spectrum gives all the information needed to visualise the signal
(xni )0≤i≤n−1 in the Fourier basis.
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Our typical experimental signals have a specific low frequency trend combined with HF
features or transient oscillations that shall persist beyond denoising. The presence of a trend
implies that there are large Fourier coefficients ϑn,k on the scale corresponding to the low
frequency information. Transient oscillations can be characterised by large coefficients in mid
or high frequencies that are relatively well localised. As displayed by the test signal in Figure 2,
a typical signal displaying oscillations would thus consist, in the frequency domain, of large
coefficients in the low frequency, then a decay to a minimum value, and then one or more peaks
in mid or high frequencies and a decay as the frequency grows further. Hence HF features in
a signal corresponds to a level of energy (measured by the norm of the DFT coefficients) at
a specific distance from the low frequency DFT coefficients in the frequency domain (cf Figure 3).

Figure 2: Graph of a test signal with HF features and its single-sided amplitude spectrum. Left:

Plot of zi = f(0.4i) for i = 0, . . . , 300 where f(x) = 1√
x+1

+ 0.3 sin
(
2πx
5

)
1[40,80](x). Right: Plot of the amplitude

spectrum of (zi)0≤i≤300.

For a discrete signal (xni )0≤i≤n−1 given in terms of its Fourier transform ϑn = (ϑn,k)0≤i≤n−1
via (2), we characterise a HF feature by two nonnegative parameters: a location parameter g(ϑn)
(in the frequency domain) and an intensity parameter d(ϑn) (see Figure 3).
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Figure 3: Idealized scheme of the parametrization of the HF features of a signal in the Fourier

Domain. The parameter g(f) is the location parameter in the frequency scale which corresponds to the distance

of the HF features from the low-frequency components of the signal. The parameter d(f) is the intensity parameter

which corresponds to the relative amplitude of the HF features.

First step: Pre-processing the signal

Replacing xni by xni +C for some arbitrary constant C, with no loss of generality, we may (and
will) assume that

|ϑn,0| > max
0≤k≤n−1

|ϑn,k|. (3)

Condition (3) is in force from now on. We transform ϑn = (ϑn,k)0≤i≤n−1 into a non-decreasing

sequence µ
(m)
n = (µ

(m)
n,j )m≤j≤n−m that depends on a certain smoothing parameter m (with 0 ≤

m ≤ n− 1) defined as follows:

µ(m)
n,m = min

k
ϑ
(m)
n,k ≤ µ

(m)
n,m+1 ≤ . . . ≤ µ

(m)
n,j ≤ µ

(m)
n,n−m = max

k
ϑ
(m)
n,k

where

ϑ
(m)
n,k =

(
1

2m+1

k+m∑
l=k−m

|ϑn,l|2
)1/2

, m ≤ k ≤ n−m− 1. (4)

6



In other words, the sequence µ
(m)
n is the order statistics of a 2m-regularised version of ϑn.

Remark 1. The smoothing parameter m is needed as soon as the signal observed displays
singularities e.g. a jump discontinuity or a fast transition of monotonicity of the trend. These
phenomena are approximated by the harmonic sequence {ej2πk·, k ∈ Z}, and when projected
in the Fourier domain, the amplitude spectrum displays a serie of spikes (cf Figure 4). These
phenomena are related to Gibbs phenomenon ( [24], chapter 2) and give rise to spikes in the
Fourier domain which can be falsely interpreted as HF features. The regularization with an
adequate choice of the parameter m solves this issue (cf Figure 4 and Section 3).

Figure 4: Graph of a test signal with a jump and a change of monotonicity and its single-sided

amplitude spectrum. Top: Graph of the signal with a decreasing, increasing and stationary part. Middle:

Zoom on the low frequency of the amplitude spectrum for n = 10000 samples of the signal. The blue dot markers

emphasize one over ten samples of the signal. Bottom: Plot of the amplitude spectrum of the test signal (plain

line). The dash line corresponds to the plot of (ϑ
(3)
n,k)3≤k≤n−4 defined by (4) with m = 3.

Remark 2. The regularisation of order 2m transforms the sequence ϑn of n terms into a se-
quence of n − 2m terms in order to avoid boundary effects. We label the indices of the series
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from m to n−m− 1 in so that the parameter k in ϑ
(m)
n,k is reminiscent of a frequency parameter

and we formally have ϑ
(0)
n,k = |ϑn,k|.

Second Step: Detection and Localization of significant features in the Fourier do-
main.

Define, for x ≥ 0

a(x) = a(m)
n (x) = min

{
k | m ≤ k ≤ n−m− 1, ϑ

(m)
n,k ≤ x

}
(5)

and

b(x) = b(m)
n (x) = max

{
arg max

{
ϑ
(m)
n,k | a(x) ≤ k ≤ n−m− 1

}}
. (6)

Remark 3. The index a(x) is the minimal frequency at which searching for HF features starts,
getting rid of the potentially high energy levels arising from the low frequency part of the signal.
The index b(x) is a maximal frequency for which the energy level x is reached in the search zone
{a(x), a(x) + 1, . . . , n−m}.

Define the sets

A(m)
n =

{
µ
(m)
n,j | µ

(m)
n,j = ϑ

(m)

n,b(µ
(m)
n,j )

, m ≤ j ≤ n−m− 1
}

and
S(m)
n =

{
µ
(m)
n,j ∈ A

(m)
n | b(µ

(m)
n,j ) > a(µ

(m)
n,j ), m ≤ j ≤ n−m− 1

}
.

Remark 4. The set A(m)
n represents potential candidates for maximum energy levels of a HF

feature, while S(m)
n represents the set of intensities of the spikes of ϑn.

Third Step: Definition of the HF features parameters.

To define the HF features, we now select in the set S(m)
n the feature with maximum relative

amplitude. Let us define

d(x) = d(m)
n (x) = x−min

{
ϑ
(m)
n,k | m ≤ k ≤ b(m)

n (x)
}

(7)

and we obtain a maximum intensity of HF feature as

ι(m)
n (ϑn,·) ∈ max

{
arg max
x∈S

(
x− min

m≤k≤b(m)
n (x)

ϑ
(m)
n,k

)}
= max

{
arg max
x∈S

d(m)
n (x)

}
if S(m)

n is non empty and ι
(m)
n (ϑn,·) = 0 otherwise. Moreover if the set arg maxx∈S d

(m)
n (x) is not

reduced to a singleton taking its maximum ensures us to obtain a unique element for ι
(m)
n (ϑn,·)

i.e. the feature of maximum relative amplitude and maximum intensity. We are ready to give a
quantitative definition of a HF feature:
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Definition 1. To any discrete signal ϑn = (ϑn,k)0≤i≤n−1 given in the Fourier domain, we
associate a high-frequency feature (HF feature)

(
Gn,m(ϑn),Dn,m(ϑn)

)
at discretisation level n ≥ 1

and smoothing level m ≤ n−1
2 as follows:

Gn,m(ϑn) = b(m)
n

(
ι(m)
n (ϑn)

)
− a(m)

n

(
ι(m)
n (ϑn)

)
and

Dn,m(ϑn) = d(m)
n

(
ι(m)
n (ϑn)

)
,

where b
(m)
n , a

(m)
n and d

(m)
n are defined in (6), (5) and (7) respectively.

Remark 5. The parameters Gn,m(ϑn) and Dn,m(ϑn) are two distances (Gn,m(ϑn) is a distance
on the frequency axis and Dn,m(ϑ) on the intensity axis). This couple of parameters provides a
characterization in the discrete Fourier domain of events defined as HF features. For each signal,
the parametric characterization is unique. It describes the peak with the highest distance between
its amplitude and the minimum amplitude of the Fourier coefficients of lower frequencies (with
Dn,m(ϑn)). The parameter Gn,m(ϑn) gives the distance in frequency indices between the peak and
the components in the low frequencies with the same intensity (see Figure 3).

2 Testing for HF features

We keep-up with the statistical setting introduced in Equation (1): we observe

yni = xni + σξni , i = 0, . . . , n− 1, (8)

where (xni )0≤i≤n−1 is the signal of interest and the σξni are independent centred Gaussian random
variables with noise variance σ2, for some (large) n ≥ 1, interpreted as a maximal discretisation
resolution level or equivalently a maximal frequency of observation. Applying the discrete Fourier
transform DFTn on both sides of (8), we equivalently observe

ϑ̂n,k = ϑn,k + σξ̃k,n, k = 0, . . . , n− 1,

where the σξ̃k,n are independent centred Gaussian random variables with variance σ2 as well,
thanks to the fact that DFTn is an orthogonal linear mapping. From data (yni )0≤i≤n−1 or rather

(ϑ̂n,k)0≤k≤n−1, we wish to construct a statistically significant test of the absence of HF feature
as the null, against a set of local alternatives where some HF features are present.

2.1 Construction of a statistical test

Thanks to the characterisation of HF features via
(
Dn,m(ϑn),Gn,m(ϑn)

)
given in Definition 1,

we test the null
H0
n,m,ν,c : Gn,m(ϑn) < ν, Dn,m(ϑn) < c
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against the local alternatives

H1
n,m,ν,c : Gn,m(ϑn) ≥ ν and Dn,m(ϑn) ≥ c

where ν > 0, c > 0 are thresholds to determine significant HF features. The null hypothesis H0,
is that there is no significant HF feature in the signal tested. On the contrary, the hypothesis H1

implies that the signal has significant HF feature. For the test to be powerful, the main problem
is to define the couple (ν, c): for too small values any signal shall reject H0 whereas for large
values, any signal shall accept H0. We obtain simple test statistics for

(
Gn,m(ϑn),Dn,m(ϑn)

)
by

setting
Ĝn,m = Gn,m(ϑ̂n) = b(m)

n

(
ι(m)
n (ϑ̂n)

)
− a(m)

n

(
ι(m)
n (ϑ̂n)

)
and

D̂n,m = Dn,m(ϑ̂n) = d(m)
n

(
ι(m)
n (ϑ̂n)

)
.

In order to compute the p-value of the test, we design a Monte Carlo procedure simulating a
proxy of the data (yi)0≤i≤n−1 under the null H0. Using the proxy, we define a reject region of
our test for a risk level α and the p-value of the data (yi)0≤i≤n−1.

Rejection zone at risk level α.

We first simulate N times y
(0)
λ,n defined in (14) below, which is a simulated proxy of the data

(yni )0≤i≤n−1 with HF features removed from the signal (xni )0≤i≤n−1. Repeating independently
N times the procedure, we obtain a Monte Carlo sequence

y
(0),k
λ,n k = 1, . . . , N.

In a second step, we denote by E0
N the cloud of points representing the HF features parameters

of these simulated signals (with HF features removed but with Gaussian noise):

E0
N =

{(
Gn,m

(
DFT[y

(0),k
λ,n ]

)
,Dn,m

(
DFT[y

(0),k
λ,n ]

))
| k = 1, . . . , N

}
. (9)

We define the function P : R2
+ → F ⊂ [0; 1]:

P (g, d) = N−1
N∑
k=1

1{
Gn,m

(
DFT[y

(0),k
λ,n ]

)
≥g, Dn,m

(
DFT[y

(0),k
λ,n ]

)
≥d
}. (10)

Hence P (g, d) is the proportion of points in E0
N located in the North-East quarter of the

plane centered on (g, d) (cf Figure 5). In order to reduce the computation cost, we only consider
the restriction of P to the set E0

N . Thus if E0
N is reduced to a singleton, then the image set

P (E0
N ) is equal to {1}, on the contrary if E0

N contains N disjoint points then the minimal bound
on P (E0

N ) is 1
N . For a risk level α ∈ P (E0

N ), the rejection zone of our test is defined as
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Ĝk

D̂k

P (Ĝk, D̂k) = 1
3

P (Ĝk, D̂k) = 2
3

P (Ĝk, D̂k) = 1
3

Figure 5: Cloud of points
(
Ĝk, D̂k

)
=
(
Gn,m

(
DFT[y

(0),k
λ,n ]

)
,Dn,m

(
DFT[y

(0),k
λ,n ]

))
for k = 1, 2, 3.

Rm,n
(
κα1 , κ

α
2

)
=
{

(yi)1≤i≤n defined by (1) s.t. Ĝn,m ≥ κα1 , D̂n,m ≥ κα2
}

(11)

where (Ĝn,m, D̂n,m) is the test statistics and
(
κα1 , κ

α
2

)
∈ E0

N are such that

P (κα1 , κ
α
2 ) = α. (12)

Remark 6. The risk level α is imposed by the Monte Carlo sequence, α ∈ P (E0
N ) ⊂ [ 1

N ; 1].
For example, Figure 5 represents an arbitrary set E0

N for N = 3. Consequently, we note that
1
3 ≤ α ≤ 1 in order to obtain candidates κα1 , κ

α
2 . For α < 1

3 no candidate can be obtained by this
procedure and its associated reject region is not defined. Moreover there can be multiple reject
regions defined for the same risk level α (in the example whe have two reject regions for α = 1

3).

The main idea behind the computation of the couples(
Gn,m

(
DFT[y

(0),k
λ,n ]

)
,Dn,m

(
DFT[y

(0),k
λ,n ]

))
is to generate random outcomes under the null

H(0) that enable us to compute risk level by Monte Carlo. The couples correspond to the
relative amplitude and the frequency gap for a non-oscillating signal with noise. We also get
reject region(s) of level α thanks to the threshold(s)

(
κα1 , κ

α
2

)
. We do not need uniqueness of

the reject region in order to define and compute the p-value, see below.

Definition of the p− value.

The p− value of the observations (yni )0≤i≤n−1 is defined as

p− value
(
(yni )0≤i≤n−1

)
= min

{
α ∈ P (E0

N ) | Ĝn,m ≥ κα1 , D̂n,m ≥ κα2
}
. (13)
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An equivalent definition of the p-value of the observations (yni )0≤i≤n−1 is obtained via

p− value
(
(yni )0≤i≤n−1

)
= inf

{
α ∈ P (E0

N )| (yni )0≤i≤n−1 ∈ Rm,n
(
κα1 , κ

α
2

)}
.

Ĝkn,m

D̂k
n,m (

κ
1/3
1 , κ

1/3
2

)

(
κ
2/3
1 , κ

2/3
2

)

(
Ĝn,m, D̂n,m

)
(
κ
1/3
1 , κ

1/3
2

)

Figure 6: Point cloud
(
Ĝkn,m, D̂

k
n,m

)
for k = 1, 2, 3 (black dots) and HF feature parameters(

Ĝn,m, D̂n,m
)

(red dot).

Remark 7. The computation of the p−value is illustrated schematically in Figure 6. We observe
the point cloud formed by

(
Ĝkn,m, D̂

k
n,m

)
(the black dots) for k = 1, 2, 3. On the vertical axis we

have the relative amplitude and on the horizontal axis we have the gap in frequency between
the oscillations and the trend in the Fourier domain. The red dot illustrates the HF features
parameters subject to the test. We use the

(
Ĝkn,m, D̂

k
n,m

)
as our grid to compute the p-value.

Using (12), we compute the level α and obtain consequently the (κα1 , κ
α
2 ) for each element of the

grid. The p-value is 2
3 in this example.

The p − value gives a confidence index for non-rejecting the null. This index is meaningful
provided the test has a good power, i.e. if the probability of making a type II error is small.
Hence the p − value of

(
(yni )0≤i≤n−1

)
is our measure of confidence in non-rejection of the null

H0. The main difficulty however lies in solving (11) since ϑn remains unknown under the null
and that there are no reason that Ĝn,m or D̂n,m are pivotal statistics under the null. We describe

below a numerical procedure based on Monte Carlo simulation that estimates y
(0)
λ,n a proxy of

the data with HF features removed but with noise.
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2.2 A Monte Carlo procedure for the simulation of the null

In order to evaluate (11) and (13), we first build a low-frequency estimator x̂
(0)
λ,n from the data

(yni )0≤i≤n−1 that removes the potential HF features. The estimator depends on a regularisation
parameter λ. We next define

y
(0)
λ,i,n = x̂

(0)
λ,i,n + σ̂nε

n
i , i = 0, . . . , n− 1, (14)

where the εni are independent centred Gaussian random variables that we simulate and σ̂n is an

estimator of the standard deviation of the noise. The simulated signal (y
(0)
λ,i,n)0≤i≤n−1 obtained

by estimating a proxy of f with HF features removed with additional simulated noise serves as
a proxy of the data (yni )0≤i≤n−1 under the null H0.

Numerical computation of f̂
(0)
λ,n

Trend estimation or filtering for mimicking a signal with HF features removed has many appli-
cations and hence it has been extensively studied. It has given rise to the smoothing and filtering
methods such as the moving average [23], smoothing splines [21], Hodrick-Prescott filtering [20],
`1-trend filtering [12] and so on. The trend is considered as the general shape of a signal or a
time series. Although the trend is often understood and perceived intuitively, its estimator relies
on the definitions given to the trend. The differences between the various definitions of the trend
are a matter of interpretation. Considering the different definitions of the trend, the choice of
the method to estimate this component is more likely qualitative. In the following, the trend is
considered as the underlying slowly varying component of the signal and we choose the `1-trend

filtering method described in [12] to estimate it. The estimator of x̂
(0)
λ,n as a n-dimensional vector

is then the solution of the following optimisation problem:

x̂
(0)
λ,n ∈ arg min

x∈Rn

1

2

n−1∑
i=1

(yni − xni )2 + λ

n−2∑
i=1

|xni−1 − 2xni + xni+1|, (15)

where λ ≥ 0 is a regularisation parameter which controls the trade-off between the smoothness

of x̂
(0)
λ,n and the residual

∑n−1
i=0

(
x̂
(0)
λ,n,i−y

n
i

)2
. We note that the second term

n−2∑
i=1
|xni−1−2xni +xni+1|

is the `1-norm of the second order variations of the sequence (xn) (i.e. the discretization of the
corresponding L1-norm of the second derivative of a function). Moreover, for any sequence (xn),

|xni−1 − 2xni + xni+1| = 0, ∀i = 0, . . . , n− 1 ⇐⇒ xni = αi+ β, with α, β ∈ R, ∀i = 0, . . . , n− 1.

Thus only an affine function has its `1-norm equal to 0. Hence this method gives an estimator
of the trend such that:

(i) x̂
(0)
λ,n is computed numerically in O(n) operations,
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(ii) as λ→ 0, max0≤i≤n−1 |x̂(0)λ,n − y
n
i | → 0, the estimator converges to the original data,

(iii) as λ→∞, the estimator converges to the best affine fit of the observations. This conver-
gence happens for a finite value of λ [12].

(iv) x̂
(0)
λ,n is piecewise linear, i.e. there are indices 0 = j1 < j2 < . . . < jK = n− 1 for which:

x̂
(0)
λ,n,i = αki+ βk, jk < i < jk+1, k = 1, . . . ,K − 1.

The `1-trend filtering method is well suited to extract the trend components of the signals
studied in Section 3. Since the signals display singularities such as discontinuous jumps, the
trend extracted is well approximated by a piecewise linear function. Moreover the HF features
in the signals are components looking like sine waves and varying at an intermediate pace.
However interpolating a sine wave by a piecewise linear function requires a fine scale and thus
the parameter λ has to be close to 0. Rising slightly the value of λ allows us to capture the
trend without the HF features. Moreover there exists a threshold λmax ∈ R+ [12] such that

x̂
(0)
λmax,n

is the trend estimator corresponding to the best affine fit. It implies that the choice of
λ is restricted to the bounded open interval (0, λmax). Since there is no optimal criterium to
choose λ, the choice of the parameter is qualitative and motivated empirically (see Section 3).

Numerical estimation of the noise level σ̂n

The estimator of the standard deviation of the noise is the second ingredient needed in order to

compute f̂
(0)
λ,n in (14). The methods to estimate the level of noise are closely linked to the methods

of signal denoising and thus have been extensively studied. The method chosen to estimate the
noise level is the median absolute deviation and the denoised signal is obtained thanks to the
wavelet shrinkage methods [5, 6, 7, 8].

We assume that our data y = (yi)0≤i≤n−1 are such that n = 2J+1 for J > 0. We then consider
an orthogonal wavelet transform matrix W for a given filter. Choosing wavelets (e.g. Coiflet,
Daubechies, Haar) and varying the combinations of parameters M (number of vanishing mo-
ments), S (support width) and j0 (low-resolution cut-off) one may construct various orthogonal
matrices W (see for details [15], chapter 7). In this paper we use the Symmlet with parameter
8 which has M = 7 vanishing moments and support length S = 15. The wavelet coefficients of
y are denoted by w and

w =Wx+ σξ̃,

where ξ̃ = Wξ is a standard Gaussian random vector by orthogonality of W. For convenience,
we index dyadically the vector of the wavelet coefficients

wj,k j = 0, . . . , J, k = 0, . . . , 2j − 1.
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We make the legitimate assumption that empirical wavelet coefficients at the finest resolution
level J are essentially pure noise. Hence the standard deviation estimator σ̂n is the median
absolute deviation

σ̂n =
median(wJ,·)

Φ−1(3/4)
, (16)

where Φ−1(·) is the inverse of the cumulative distribution function for the standard normal distri-
bution. Thus σ̂n is a consistent estimator of σ. It is interesting to note that further computations
give the VisuShrink estimator x̂n of the signal (xni )0≤i≤n−1

x̂n =WT • ŵn,j0 •W, (17)

where j0 denotes a low resolution cut-off and ŵn,j0 is the estimator in the wavelet domain

ŵn,j0 =

{
wj,· j < j0
sign(wj,·)

(
|wj,·| − σ̂n(2 log n)1/2

)
+

j0 ≤ j ≤ J
.

The first reason that motivated this choice is that the shrinkage methods attempt to remove
whatever noise is present and retain whatever signal is present regardless of the frequency [8].
The goal of this paper is to estimate HF features in noisy signals. However the traditional
methods of noise removal such as low-pass filters are based on frequency-dependent estimators,
which can also impact and distort the results of the HF feature procedure. The second reason is
that these methods are data-driven and no specific assumptions on the signal are required. The
wavelet shrinkage is spatially adapted and the method is efficient for a wide variety of signals
even when the signals exhibit spatial inhomogeneities [8]. Finally these methods are proven to be
nearly optimal for the mean squared error criterion when the smoothness of the original signal
is unknown [7].

3 Simulation example: sanity check of the procedure.

Pre-processing: a data-driven choice of m

We first address the delicate issue of choosing the smoothing parameter m. Define a sequence
(mi)1≤i≤K such that

1 = m1 < m2 < . . . < mK ≤ n−1
2 .

We can take for instance mi = i for i = 1, . . . ,K. Note that K ∈ {1, . . . , n−12 } is the parameter
defining the length of the finite sequence (mi)1≤i≤K . This parameter can be fixed by the user in
order to reduce the number of iterations of the procedure to compute the HF features. However,
a standard choice of K to obtain a data-driven procedure is K = n−1

2 , since averaging the signal
over more than half of the sample size is obviously meaningless. A good rule of thumbs is that
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K = n
1
2 , since it reduces the number of calculations and remains pertinent compared to the

range of the signal. Let
i? ∈ arg max

1≤i≤K

∣∣Ĝn,mi − Ĝn,mi−1

∣∣,
then

m̂ =

{
mi? if Ĝn,mi? > Ĝn,mi?−1

mi?−1 otherwise.
(18)

As previously stated in Remark 1, the empirical signals observed are non-monotonous, contain
singularities and transient oscillations. Their amplitude spectra display a series of spikes in the
low-frequencies and in the mid or high frequencies. Hence without a pre-processing step, the
HF feature parameters (Definition (1)) characterize the low frequencies features (i.e. the trend
represented in the amplitude spectrum by spikes in the low frequencies, see Figure 4).
In order to solve this problem, we regularize the Fourier coefficients as defined in (4). The se-
quence (mk)1≤k≤K gradually smoothes the Fourier amplitude spectrum: the spikes in the low
frequencies merge together whereas the isolated spikes in the mid or high frequencies (corre-
sponding to transient oscillations) slightly decrease in amplitude but remain significant. The
data-driven choice of m is well adapted to regularize the empirical signals since it chooses the
parameter m̂ from the sequence (mk)1≤k≤K which maximizes the difference between the local-

isation parameters Ĝ for two consecutive smoothing parameters. Thus the spikes located in a
close frequency range have been smoothed and the remaining spikes of significant amplitude for
the regularization parameter m̂ are isolated in the Fourier amplitude spectrum.

Defining a test signal

To study numerically the validity of the procedure and the statistical test, we first compute a
simulated signal where all the parameters are known. To do so, we superimpose three signals:
one for the general trend of the curve, one for the HF features, and one for the noise. The signal
obtained is the vector (Si)0≤i≤n−1:

Si = Ti +Oi + σξi, (19)

where σ > 0 is the parameter corresponding to the level of noise and ξi are realizations of
independent and identically normally distributed random variables. Moreover (Ti)0≤i≤n−1
corresponds to the trend and (Oi)0≤i≤n−1 to the HF features (cf Figure 7).

For the general trend, we choose the Lennard Jones potential [11], since we notice that
its DFT is not monotonously decreasing in the low frequency range (see Figure 2) and that it
displays a similar shape as the experimental signals presented in Section 4. The Lennard Jones
potential is defined by Pi:

Pi =

(
c1

[(c2
i

)p
− c3

(c2
i

)q]
+ c4

)
.
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Since this potential is not defined at 0, we link the potential to an affine function. Hence we
introduce the index j (0 < j < n − 1) which connects the potential to the affine function. We
denote the trend by the vector (Ti)0≤i≤n−1:

Ti =

(
Pj+1 − Pj
j + 1

i+ Pj

)
1{0≤i≤j} + Pi1{j+1≤i≤n−1}.

The HF features in the test signal correspond to sine waves and are located at a specific time

Figure 7: Simulation of the test signal defined by (19).The x-axis is the time in hours. (Up) Plot of

(Ti)0≤i≤105 with parameters c1 = 0.4, c2 = c3 = c4 = 2, p
2

= q = 3, j0 = 1700, j1 = 3400. (Middle) Plot of

(Ti + Oi)0≤i≤105 with the same parameters and ca = 0.05, cf = 10. (Down) Plot of (Si)0≤i≤105 with the same

parameters and σ = 0.025.

interval. Hence we introduce the indices 0 < j0 < j1 < n − 1 which localize the oscillations in
the signal, and we define the oscillations by the vector (Oi)0≤i≤n−1:

Oi = ca(i− j0)(j1 − i) sin(2πcf i)

(
4

(j1 − j0)2

)
1{j0≤i≤j1} (20)

where ca (resp. cf ) is the parameter for the amplitude ( resp. the frequency) of the oscillations.
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σ 1
10ca

1
2ca ca 2ca 10ca

m̂ 6 6 6 6 24

Ĝn,m̂ (Hz) 2.069e−3 2.044e−3 2.145e−3 1.943e−3 8.437e−2

D̂n,m̂ 1.73e−4 1.807e−4 1.807e−4 1.844e−4 2.768e−3

p-value 5e−5 5e−5 5e−5 5e−5 4.023e−1

Figure 8: Table of estimators and p-values of the sanity-check signals. The simulation
of the null is performed with the real trend of the signals.

Numerical computations and robustness of the procedure. We want to understand the
robustness of the numerical procedure when the frequencies and the amplitudes of the oscillations
are fixed but the level of noise varies. Other said, for which parameters of the oscillations and
for which level of noise does the test return that the signal oscillates (or not)? In order to answer
this question, we propose the following sensitivity analysis.

First we remind the parameters in our system. From the signal construction, we have three
parameters :

• σ the standard deviation of the normal distributed noise,

• ca the parameter corresponding to the amplitude of the oscillations,

• cf the parameter corresponding to the frequency of the oscillations (since the time scale
is in hours, cf/3600 is expressed in Hz).

The smoothing parameter m̂ is chosen thanks to the data-driven procedure described previously
(18).

The relevant output of our model is the p-value of the signals computed thanks to the
numerical procedure. A natural way to study the sensitivity of the p-value to the parameters is
to fix all parameters but one and observe the effect on the p-values obtained. In this example
the varying parameter is the level of noise σ ∈

{
1
10ca,

1
2ca, ca, 2ca, 10ca

}
.

First sanity check test

Since we are working with a constructed sanity check signal, we obtained (Ĝkn,m̂, D̂
k
n,m̂) in Figure 9

by applying the procedure of detection of the HF feature parameters setting ca = cf = 0 (it
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Figure 9: Numerical results of the procedure on the sanity-check signal when the simulation of

the null is performed with the real trend. (Left column) Plot of (Si)1≤i≤105 (19) with the parameters c1 =

0.4, c2 = c3 = c4 = 2, p
2

= q = 3, t0 = 1.43, t1 = 3.30, ca = 0.05, cf = 10 and σ ∈
{

1
10
ca,

1
2
ca, ca, 2ca, 10ca

}
from top to bottom. The x-axis is the time in hours. (Right column) The black dots are the cloud of points of

the simulation of the null, for N = 20000. The red diamond corresponds to the HF features parameters of the

corresponding signal on the left column. The x-axis is the localization parameters Ĝn,m̂ and the y-axis is the

relative amplitude D̂n,m̂.

corresponds to Si = Ti+σξi in (19)). Thus the simulation of the null in Section 2.2 is performed
using the real trend of the signal in (14). Then the signal tested (Figure 9) are constructed signal
with parameters ca = 0.05, cf = 10 and σ ∈ { 1

10ca,
1
2ca, ca, 2ca, 10ca} in (19). The results of

the detection of HF features and the statistical test are in Table 8. We note that for standard
deviations of the noise between a tenth and the double of the amplitude of the oscillations,
the p-value of the test is equal to 5e − 5. Hence, we are inclined to reject the hypothesis H0

which corresponds to the event that the signal displays no oscillations. Moreover we note that
the signals with standard deviations of the noise between 1

10ca and 2ca have almost the same

HF feature parameters where (Ĝn,m̂, D̂n,m̂) ≈ (2e− 3, 1.8e− 4). In contrast, for the signal with
the standard deviation of the noise of 10ca, the p-value is equal to 0.4, hence we are inclined to
accept that the signal has not significant enough HF feature.
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Second sanity check test

The second step is to test the procedure on the same signals but using the trend estimate
given by (15) and the noise estimation procedure described in the first step of Section 2.2. The
method chosen to estimate the trend of the signal is the `1-trend filtering [12]. As displayed
in Figure 10, the trend estimation is less robust as the standard deviation of the noise rises.
However this method is qualitatively the right one to estimate the trend of a signal displaying
jumps or spikes.

Figure 10: Numerical estimation of the trend on the sanity check signals. The x-axis is the time in

hours.The parameter in the `1-trend filtering is λ = 301. (Up) Plot of (Pi + Oi)0≤i≤105 in (19) with parameters

c1 = 0.4, c2 = c3 = c4 = 2, p
2

= q = 3, t0 = 1.43, t1 = 3.30 ca = 0.05, cf = 10. The dashed line is the `1-trend

estimator when σ = 1
10
ca. (Middle) The dashed line is the `1-trend estimator when σ = ca. (Down )The dashed

line is the `1-trend estimator when σ = 10ca.

Hence we compute the procedure to obtain the HF features parameters for the sanity check
signals using (19) with standard deviation level σ ∈

{
1
10ca,

1
2ca, ca, 2ca, 10ca

}
. The p-values

are computed using the `1-trend estimators in order to obtain the couples (Ĝkn,m̂, D̂
k
n,m̂) where

k = 1, . . . , 20000. The results are in Table 11. Similarly to the first sanity check, the p-values for
the signals with a level of noise from 1

10ca to 2ca is equal to 5e− 5. Hence the procedure detect

significant HF features where Ĝn,m̂ ≈ (2e− 3, 2e− 4). Also for a standard deviation of the noise
of 10ca, the p-value is 5.32e−2, so that HF feature parameters are not significant enough.
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σ 1
10ca

1
2ca ca 2ca 10ca

m̂ 3 3 3 3 18

Ĝn,m̂ (Hz) 2.095e−3 2.095e−3 2.044e−3 2.12e−3 1.181e−1

D̂n,m̂ 1.768e−4 1.784e−4 1.918e−4 2.394e−4 3.593e−3

p-value 5e− 5 5e−5 5e−5 5e−5 5.32e−2

Figure 11: Table of estimators and p-values of the sanity-check signals. The simulation
of the null is performed with the `1-estimate of the trend (15) of the signals.

4 Empirical analysis on biological data

The Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group
of animal and human brain diseases. The neurodegenerative processes are poorly understood and
hence fatal. However the largely accepted hypothesis suggests that the infectious agent (PrPsc) is
the misfolded form of the normal Prion protein (PrPc). The PrPsc forms multimeric assemblies
(fibrils) which are the prerequisite for the replication and propagation of the diseases [19]. To
follow the aggregation kinetics of these fibrils, compare it to mathematical models and get a
better understanding of these diseases, several experimental and measurement devices are used,
among which the Static Light Scattering (SLS). The Static Light Scattering (SLS) signal is an
experimental measurement which describes the temporal dynamics of PrP amyloid assemblies
formed in vitro [13] see Fig. 1 taken from [9] (see Appendix A).These signals correspond to an
affine transformation of the second moment of the size distribution of protein polymers or fibrils
through time [18]: ∑

i∈I
i2ci(t) + σ,

where I denotes the set of the sizes of the fibrils, ci the concentration of fibrils of size i which
is varying with the time t and σ > 0 is the experimental noise (σ can be time-dependent). At
the beginning of the experiment the fibrils are large, containing in average several hundreds of
monomers, which undergo an overall depolymerization process and leads to a decay in the signal.
The experiment is carried out with six initial concentrations of fibrils (Figure 12) ranging from
0.25µmol to 3µmol; at higher initial concentrations (0.5µmol and higher), a re-polymerisation
process can be observed, which may be viewed by the fact that the trend of the signal increases
again before reaching a plateau. Moreover the SLS signals differ in terms of variance of noise
and amplitude of oscillations (noticed by sight). We thus study each signal independently.
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Figure 12: SLS experiments and trend estimates. The x-axis is the time in hours. The parameter in the

`1-trend filtering is λ = 31. (Top left) Plot of n = 32768 samples of SLS outputs with initial concentration (I0)

of 0.25µmol of PrPSc fibrils.The dashed line is the `1-trend estimator. (Middle left) I0 = 0.35µmol (Bottom left)

I0 = 0.5µmol. (Top right) I0 = 1µmol. (Middle right) I0 = 2µmol. (Bottom right) I0 = 3µmol.

In order to test whether the signals display HF features, we submit the observations to the
statistical test described above. The denoised signal and hence the standard deviation of the
noise are estimated thanks to the VisuShrink method and the median absolute deviation (cf [8],
[6]) using the symmlet wavelet with 8 vanishing moments and the library Wavelab [4] (the same
results have been obtained with the homemade python library, see Appendix B). The trend of
the signal is estimated with the `1-trend filtering method with the parameter λ = 31 (λ is fixed
qualitatively in order for the trend to include the discontinuous jumps of the SLS experiments).
The results of the statistical test are summarized in Table 13.

We note that all signals display oscillations more or less pronounced (cf. Figure 14). The
relative amplitude of the oscillations D̂n,m̂ differs from one signal to another for three reasons.
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Concentration (µmol) 0.25 0.35 0.5 1 2 3

σ̂ 3.553e− 3 4.72e− 2 1.11e− 2 3.09e− 2 8.44e− 2 1.287e− 1

m̂ 4 3 5 7 9 7

Ĝn,m̂ (Hz) 4.954e−3 7.53e−3 5.656e−3 8.375.e−3 2.698e−3 4.971e−3

D̂n,m̂ 9.649e−6 1.863e−5 1.012e−4 6.526e−4 3.345e−4 1.01e−3

p-value 5e− 5 5e−5 5e−5 5e−5 5e−5 5e−5

Figure 13: Table of estimators and p-values for the test of presence of HF features in
the SLS experiments

First of all, each signal corresponds to an experiment with a specific initial concentration. The
calibration of the experiments is not identical for experiments with different initial concentra-
tions. Secondly, the signals are not on the same scale. The signal with initial concentration of
0.25µmol goes from 0.5 to 2.2 in amplitude, and the signal of initial concentration of 3µmol goes
from 16 to 28 in amplitude. Finally, they do not have the same regularization coefficient m̂.

However the frequency localization parameters are comparable. In Table 13, we note that
the parameters Ĝn,m̂ are in the same range of value with a factor of less than 4 between the

minimum and maximum Ĝn,m̂. Finally all the p-value of the tests are equal to 5e− 5, the tests
confirm that the signals display significant HF features.

Through this study, we demonstrated the existence of oscillatory behavior in the SLS experi-
ments. The immediate biochemical consequences are the coexistence of structurally distinct PrP
assemblies within the same media and the unstable behavior, i.e. out of the thermo-dynamical
equilibrium, of the chemical system formed by theses assemblies. Indeed the observation of oscil-
lations in these light-scattering experiments has shed light on the existence of a complex chemical
reaction network beyond the existing aggregation-fragmentation models. This has paved the way
for new mechanistic models, e.g. a system of reactions which possibly involve several conforma-
tions of PrP assemblies [9], capable of explaining such phenomena. Also it has been reported
that the existence of multiple conformations of PrP assemblies within an isolate contributes to
the adaptation and evolution of Prion as a pathogen to a new environment and a new host [14].

Further biochemical characterizations are required to explore the dynamics of these oscilla-
tions and to establish more precise kinetic models. The methodology developed in the present
work will lead to analyze and characterize with specific parameters transient oscillations. These
parameters will lead to evaluate physico-chemical conditions as well as the dynamic of the present
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Figure 14: HF features of the SLS experiments and numerical results of the estimation of the HF

features parameters.(Left column) Zoom on the SLS experimentation signals with initial concentration in µmol

from the top to the bottom of I0 ∈ {0.25, 0.35, 0.5, 1, 2, , 3} The x-axis is the time in Hours. (Right column) The

black dots are the cloud of points (Ĝkn,m̂, D̂
k
n,m̂) corresponding to the simulation of the null for k = 1, . . . , 20000. The

red diamond corresponds to the HF features parameters (Ĝn,m̂, D̂n,m̂), defined by Definition 1, of the corresponding

signal on the left column. The x-axis is the localization parameter of the HF features and the y-axis is the relative

amplitude of the HF .

complex system.

5 Conclusion

In this study, we have introduced a method, based on the discrete Fourier transform, to quantify
the high frequency features of a given non stationary discrete signal, and then test whether the
parameters characterizing these features may be considered as significant or not. We then tested
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our method on simulated and experimental data, which shed light on its efficiency, since HF
features may be detected even with a noise of the same amplitude. Moreover, the two parameters
estimated from the data to characterize the HF are informative per se: they could be used by
the experimentalists to compare different experimental conditions and their influence on such
transient phenomena in the signals. They may also reveal useful in the search for quantitative
comparison between mechanistic models, such as the one proposed in [9], and experimental data.

The test to detect HF feature is based on the projection of the signal in a discrete Fourier
basis. A further step, in order to localize them, would be to define them in a wavelet basis. The
number of parameters will then be equal to three (one for the resolution, one for the amplitude
and one for the localisation on the time-scale), and the test of hypothesis has to be extended
to this framework. This is a direction for future work.
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A Materials and methods of the depolymerisation experiment
shown in Figures 1 and 12

Formation of amyloid fibrils: PrP amyloid fibrils were formed using the manual setup proto-
col described previously in [2]. Fibril formation was monitored using a ThT binding assay [2].
Samples were dialysed in 10 mM sodium acetate, pH 5.0. Then fibrils were collected by ultracen-
trifugation and resuspended in 10 mM sodium acetate, pH 5.0. A washing step was performed
by repeating the ultracentrifugation and resuspension steps in 10 mM sodium acetate, pH 5.0.
Static light scattering: Static light scattering kinetic experiments were performed with a ther-
mostatic homemade device using a 407-nm laser beam. Light-scattered signals were recorded at
a 1120 angle. Signals were processed with a homemade MatLab program. All experiments have
been performed at 550C in a 2mmX10mm cuve.

B Library in python to implement the numerical simulation

The numerical simulations have been made with the Python library accessible at
https://github.com/mmezache/HFFTest. The functions of the library are explicitely commented
in the file ”README.md”. The functions are organized in four categories in the library:

1. the procedure to compute the HF features parameters,

2. the procedure to simulate the null hypothesis,

3. the Monte Carlo procedure to compute the p-value,

4. the procedure to compute test signals such as the ones displayed in Figures 2, 4, 7.

The file ”ExampleHFF.py” is a python program which computes the complete procedure for a
test signal. The users may change at will the following parameters:

27



• the length of the signal,

• the standard deviation of the noise,

• the amplitude of the oscillations,

• the parameter of the `1-trend filtering,

• the number of iteration of the Monte Carlo procedure,

• the choice of the test signal.

The program displays the test signal obtained, the trend estimate, the cloud of points corre-
sponding to the HF features of the null (blue dots) and the point corresponding to the HF
features of the tested signal (red dot), and the single-sided amplitude spectrum of the signal
which emphasizes the points where the computations of the HF features are performed (cf Fig-
ure 3).

The computational time may be significantly long if the number of iterations of the Monte
Carlo procedure is large (over 100). However the Monte Carlo procedure can be computed in a
parallelized framework which reduces drastically the computational time.

Moreover the automatic choice of the smoothing parameter m̂ is efficient for signals which
display oscillations of ”high” frequency, i.e. if the spike corresponding to the oscillations in
the single-sided amplitude spectrum is located away from the low-frequency components (cf
Section 3 and Example 2 in ”ExampleHFF.py”). The procedure was designed to identify os-
cillations ”hidden” in the noise, a situation which corresponds to the experimental signals. If
the signal tested has oscillations located in the low frequencies, the users are advised to fix the
smoothing parameters (see Example 1 in ”ExampleHFF.py”).
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