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Abstract: Automatic test systems can evaluate the 
functionality of measurement and/or control 
hardware by simulating real world signals and 
verifying the expected response. Simulation takes 
the dynamics of real-world environments and models 
them using software to test the performance of 
critical system hardware components. Sensor 
simulation is the process of providing realistic sensor 
signals to the inputs of a device under test and 
evaluating how a piece of equipment will respond 
across a broad range of operating conditions. This 
paper will discuss the benefits of sensor simulation, 
and specifically reference the additional advantages 
to using an FPGA-based implementation. 
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1. Introduction 

The greatest benefit to simulating sensors is the 
ability to push past the operational limits of a specific 
environment and test fault conditions that would 
otherwise be damaging or dangerous. Corrective 
changes to system components can also be 
implemented and tested without fear of destroying 
expensive equipment. An engine control unit (ECU), 
for example, can be verified without running an 
actual engine at high temperatures for extended 
periods of time. The signals being simulated can 
range from simple analog waveforms to custom 
digital protocols, and in the past, each type of sensor 
required its own piece of custom hardware with a 
dedicated microcontroller for concurrent simulation. 
This architecture tends to be very costly and 
expensive to maintain. By taking advantage of 
inherent parallel processing, field-programmable 
gate array (FPGA) hardware provides the 
performance and flexibility to simultaneously 
simulate a variety of sensors in real-time. 

2. FPGA for Sensor Simulation 

2.1 Benefits 

FPGA-based hardware is ideal for sensor simulation, 
primarily because of the ability to adapt to multiple 
sensor types with precise timing requirements. Each 
sensor output can be customized down to 

nanoseconds, and various signals can be completely 
synchronized to realistically create a specific state of 
operation. In many cases, however, sensors function 
independently and update at different rates. The true 
parallel nature of FPGAs also allows dedicated 
blocks of silicon to operate without any interference 
from other parts of the application. 

 

Deterministic operation is essential for sensor 
simulation, in order to accurately characterize the 
performance of the controller. A processor-based 
approach will typically use a real-time operating 
system to schedule and prioritize all parts of an 
application, since only one operation can execute at 
a time. Different tasks must compete for processor 
time, and can often preempt one another. This can 
severely affect the deterministic response required 
when trying to simulate sensors. By embedding code 
on an FPGA chip, sensor logic can achieve the 
maximum level of determinism, with true hardware-
timed reliability. 

 

While the majority of sensors produce an analog 
signal based on their measurements, there are many 
sensors that convey information digitally, using 
methods like pulse width modulation or serialized 
protocols. An FPGA-based approach can easily 
integrate the processing required to generate 
complex digital signals as well as arbitrary analog 
waveforms without affecting the performance of 
other tasks in the application. A common example is 
SPI communication, in which sensors pass data 
values serially at high-speeds. Each bit on the data 
line is latched using a master clock line, and then 
translated into engineering units based on the 
specifications of the sensor. Other types of digital 
output sensors could use I2C, RS-232 or even 
custom digital protocols. FPGAs also include 
embedded block RAM, in which look-up tables can 
reside for translating sensor values into data all in 
real-time. Once developed, the function blocks for 
specific protocols can then be reused in different 
parts of the FPGA application and none of the 
processing required to simulate these digital sensors 
will affect the update rates of other analog sensors 
being simulated. 
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2.2 Challenges 

As performance demands increase, many 
applications will find that typical computer software is 
no longer effective. When an application 
necessitates increased speed and efficiency, many 
engineers consider hardware implementations. 
While there are obvious advantages to using FPGA 
hardware for various sensor simulations, there is a 
clear question of implementation for those who might 
be inexperienced in FPGA programming. 
Historically, FPGA technology has been limited to 
hardware design engineers with in-depth knowledge 
of hardware description languages (HDLs). Many 
experts in the field of Automated Test Equipment 
(ATE), however, have little or no background in 
FPGA development, seldom having knowledge of 
mainstream HDLs like Verilog or VHDL (VHSIC 
Hardware Description Language). When it comes 
time to start programming the FPGA, the need for 
higher-level tools becomes quite apparent. 
Traditionally, these test engineers did not have the 
means to simulate a sensor output and may have 
been forced to use the actual sensor for validating 
controller prototypes. As FPGA technology grows in 
popularity, industry needs to give domain experts 
and design engineers alike a higher-level language 
for programming FPGAs. Take, for example, the 
different levels of abstraction for computer 
programming, and notice how going from 
programming in assembly to C++ and beyond has 
enabled more people to create increasingly complex 
software. Continued abstraction of hardware is 
equally as crucial for continued innovation and 
increased accessibility for a larger pool of potential 
FPGA users. 

 

2.3 Levels of Abstraction 

 

There are some vendors in the marketplace who 
have products tackling part of this software/hardware 
abstraction issue. [1] FPGA vendors have tools for 
generating VHDL IP, but they are still based on 
current HDLs. Other vendors have created C-to-
VHDL converters, which are certainly a much-
needed step in the right direction. Many engineers 
typically have at least a working knowledge of C-
style programming. Even though there are significant 
differences in these converters and a typical C 
language, the paradigm is familiar.  

The most commonly used design ’style’ for 
synthesizable VHDL models is what can be called 
the ’dataflow’ style. A larger number of concurrent 
VHDL statements and small processes connected 
through signals are used to implement the desired 
functionality. Reading and understanding dataflow 
VHDL code is difficult since the concurrent 
statements and processes do not execute in the 
order they are written, but when any of their input 

signals change value. It is not uncommon that to 
extract the functionality of dataflow code, a block 
diagram has to be drawn to indentify the dataflow 
and dependencies between the statements. The 
readability of dataflow VHDL code can compared to 
an ordinary schematic where the wires connecting 
the various blocks have been removed, and the 
block inputs and outputs are just labeled with signal 
names. [2] 

Utilizing graphical programming, LabVIEW FPGA for 
example is a function block, dataflow, graphical 
programming language which is compiled for 
FPGAs. FPGA implementations are often modeled 
as a state diagram or flow chart for visualization 
purposes. LabVIEW FPGA takes the next step by 
allowing the FPGA to be actually programmed using 
intuitive diagrams. This approach allows domain 
experts or test engineers to configure and visualize 
complex systems in hardware without any 
knowledge of VHDL or C, while retaining the power 
afforded by either. Layers of abstraction increase the 
number of people that can take advantage of FPGA 
technology for automated test application. With low-
level I/O details abstracted from the user, system 
developers can focus on test algorithms and system-
level concerns. This means that simulating a sensor 
with an FPGA does not have to include code for 
communicating with a digital-to-analog converter 
(DAC), or other code necessary to retrieve and 
assert pre-defined test vectors. With higher level 
languages, test engineers can spend more time on 
the actual test, adding coverage and reliability, with 
less time spent ironing out details of the sensor 
simulation implementation itself. 

 

 
Figure 1: FPGA block diagram with parallel loops 
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Figure 1 is an example of using a graphical 
approach to FPGA programming. 

The block diagram in Figure 1 shows three loops 
running simultaneously in a single FPGA application. 
The top loop is generating a sine wave signal using 
a digital-to-analog converter (DAC) that updates 
every microsecond. The middle loop, however, is 
generating a user-defined waveform that is being 
streamed across the PCI bus and updated at a user-
customizable rate. The third loop uses a timed loop 
structure to execute once every 25ns, and generate 
a pulse-width modulated signal. The duty cycle of 
the output signal can be varied by changing high 
pulse and low pulse parameters accordingly. While 
each loop is running at completely independent 
rates, they are all referencing the same register for a 
synchronized stop condition. This shows how 
multiple loops can access the same resource for 
global parameterization. 

3. Sensor Examples 

For the following specific implementation examples 
we will use LabVIEW FPGA as a higher-level 
programming language for sensor simulation with 
FPGAs. The hardware options for LabVIEW FPGA 
include integrated analog and digital I/O, as well as 
data communication circuitry and standard bus 
interfaces. This section will focus on the 
implementation of three different sensor types: 
thermocouples, LVDTs (Linear Variable Differential 
Transformers), and resolvers, while discussing 
others at a high level. 

A LabVIEW FPGA program is divided into two 
applications, called VIs: the host VI and the FPGA 
VI. The host VI runs in either a host PC or a real-
time system. Typically, the host stores test vectors, 
implements a user-interface, and performs 
preliminary floating point math before passing digital 
data to the FPGA VI. The FPGA VI receives the 
digital data representing the simulated signal, 
performs various processing steps, and outputs the 
correct voltage levels with tight control. The FPGA 
may need to generate or receive excitation signals 
which are often integrated in the final simulated 
sensor signal. In addition, the FPGA chip can be 
used to simulate noisy environments for realistic 
conditions. 

3.1 Simulating Thermocouples 

Before simulating any type of sensor, we must 
understand how the sensor works at its lowest level. 
Thermocouples, for example, use the Seebeck 
effect, which says that the junction of two dissimilar 
metals creates a small passive voltage proportional 
to temperature [3]. Figure 2 is a depiction of how 

thermocouples work. Because of the robust 
materials and absence of electronics, thermocouples 
are extremely durable in harsh environments and 
have the ability to measure extreme temperatures, 
all without excitation. From a hardware standpoint, 
simulating this sensor is particularly difficult because 
it requires very small voltages. Most thermocouple 
signals are in the range of -10 mV to 50 mV with a 
resolution of roughly 50 µV to 100 µV per degree. 
However, from the software side it is a matter of 
outputting a simple DC, albeit low, voltage. 

 

Figure 2: How thermocouples work 

Keep in mind that this thermocouple sensor may be 
part of a system with many other types of needed 
sensors. It is very difficult to find one piece of 
hardware that can supply large voltage ranges 
needed for simulating sensors with excitation as well 
as small voltage ranges needed for passive sensors 
like thermocouples. Even a 16-bit output ranging 
±10V can only achieve ~300 µV resolution, which is 
unacceptable for thermocouples that might change 
down to 10 µV per degree Celsius. In order to use 
the same hardware for both types of output voltages, 
it may be necessary to design an output attenuator 
circuit, particularly for simulating thermocouples. For 
ease of use, the attenuator could be as simple as a 
passive resistor divider network. By necessity, 
thermocouple inputs on a device under test (DUT) 
have very high impedances. Therefore, the network 
has little effect on the measurement quality. 
Nevertheless, because of the inherent errors 
associated with resistor networks in addition to the 
errors associated with any piece of output hardware, 
it is important to calibrate the output with a 
thermocouple measurement device, correlating 
output voltage to desired simulated temperatures.  

Figure 3 is a block diagram of the different sensor 
simulation system components. The host VI should 
store the temperature profiles and test cases, 
convert the desired temperatures into a raw binary 
format according to the calibration tables, and pass 
this to the FPGA hardware. 
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Figure 3: Thermocouple simulation system 

 
The example implementation shown in Figure 4 
receives a “Requested Temperature,” does the 
necessary compensation and calibration, and 
passes the final value to the FPGA through a 
variable called TC Voltage. In this case, the host VI 
allows for multiple thermocouple types and CJC 
compensation if needed. 
 

 

Figure 4: Host interface code for thermocouple 
simulation 

 

Figure 5 shows a loop in LabVIEW FPGA that 
continuously polls the TCVoltage register and adds 
the expected noise impairments before writing that 
value to the digital-to-analog converter. 

 

Figure 5: FPGA code for thermocouple simulation 

The major benefit to simulating a thermocouple 
signal is the ability to safely create harsh 
environments when testing fault conditions. If the 
unit under test was an engine control unit (ECU), for 
example, we can test safety circuitry and see how 
the controller responds without actually overheating 
an engine. 

3.2 Simulating Linear Variable Differential 
Transformers (LVDT) 

An LVDT is a sensor that incorporates a differential 
transformer with a sliding magnetic core. Driven by 
an AC (alternating current) excitation source, the 
LVDT generates a pair of AC output signals that are 
modulated according to the mechanical position 
(displacement) of the core as shown in Figure 6a. [4] 

 

Figure 6a: How LVDTs work [www.rdpe.com] 

 

 

Figure 6b: Graph of the demodulated amplitude 
signal as function of linear displacement changes. 

The output signals can be demodulated to recover 
the position information. The simulation of this 
sensor might simply be the demodulated linear 
signal shown in Figure 6b. However, this would only 
be the case if the sensor already had onboard signal 
conditioning. A more interesting simulation problem 
would be a raw LVDT where one’s simulator takes in 
an excitation AC signal, and outputs a scaled wave 
according to the simulated linear displacement. We 
have chosen to tackle this more complex situation in 
the following implementation. 
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Figure 7 is a block diagram of the different sensor 
simulation system components. 

 

Figure 7: LVDT simulation system component 

The ideal output of a LVDT without signal 
conditioning is a scaled version of the excitation 
signal. This scaling factor can be positive or negative 
and is proportional to distance from the mechanical 
middle of the device. The host computer passes the 
displacement in the form of a scaling factor to 
multiply with either the generated or real-world 
excitation signal. The host VI uses inputs of position 
and desired sensitivity, and initial scaling is done to 
get the results to binary form. This is passed to the 
FPGA through the “Scaling Factor” variable. Figure 8 
is the graphical host interface code for LVDT 
simulation. 

 

Figure 8: Host interface code for LVDT simulation 

On the FPGA the user can programmatically decide 
whether to use internal or external excitation and 
passes that to the multiplier. This applies the 
appropriate scaling to the signal based on the 
simulated displacement. The data is then passed to 
the next iteration of the loop to be re-factored to 16 
bits and asserted to an analog output channel. The 
technique of passing the data to the next iteration is 
LabVIEW’s method of pipelining for throughput. 
Notice that while current iteration is outputting a 
value, the FPGA is taking a new excitation voltage 

and implementing scaling in parallel. This new data 
is ready for the next iteration where it will be output. 
VHDL programming requires specialized coding to 
implement a pipeline, LabVIEW FPGA implements 
with an intuitive data tunnel on each side of the loop. 
Figure 9 is the graphical FPGA code for LVDT 
simulation. 

 

Figure 9: FPGA code for LVDT simulation 

3.3 Simulating Resolvers 

Being the analog counterpart to rotary encoders, 
resolvers measure the absolute rotary position of a 
rotating shaft. There are two fixed windings at right 
angles and a third spinning winding which is excited 
by some reference signal. [5] The reference signal 
(R) is induced onto the fixed windings with a 
magnitude representative of the third winding’s 
angular position as it spins. Because the two fixed 
output windings (S1, S2) are at right angles to each 
other they produce a sine and cosine magnitudes 
(as shown in Figure 10) which have a unique 
combination at every given point in the rotation. 

 

Figure 10: How resolvers work 
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The spinning winding is typically excited with a 
reference signal of 115 Vrms at 60 Hz or 400 Hz (for 
ground-referenced applications like manufacturing 
machines) or 26 Vrms at 400 Hz (for non-referenced 
applications like vehicles). Simulating these output 
signals on an FPGA requires two output modulated 
waves which correspond to the user-defined speed 
and position of a simulated shaft. Figure 11 is a 
block diagram of the different sensor simulation 
system components. 

 

Figure 11: Resolver simulation system components 

In a deployed system, the two winding signals are 
typically fed into a resolver-to-digital converter. This 
device may be purchased off-the-shelf or integrated 
into the DUT. Either way, there are specifications for 
input voltages from the raw resolver signals. 
Therefore, it is important to have a flexible platform 
which can be used to serve multiple voltage level 
considerations. 

The host PC stores a library of motion profiles. 
These profiles should contain an array of desired set 
points simulating static angular displacements, 
typical motion paths, corner cases, and out-of-spec 
behavior. The host passes these test points to the 
FPGA where the output signals on both windings are 
calculated from the modulation of the test point with 
the excitation signal. The host VI converts the 
desired position in degrees to a binary scaling factor 
for each winding (sine and cosine). These factors 
are passed to the FPGA through the variable “Output 
Scale Factor.” Figure 12 is the graphical host 
interface code for resolver simulation. 

 

Figure 12: Host interface code for resolver simulation 

The FPGA receives scaling factors from the host and 
multiplies them to the acquired external excitation. 

Like the LVDT implementation, the output is 
pipelined once for throughput. The FPGA could also 
be utilized to add noise or other impairments to the 
signal which might simulate the real deployed 
environment more closely. Figure 13 is the graphical 
FPGA code for resolver simulation. 

 

Figure 13: FPGA code for resolver simulation 

The three implemented systems are each analog 
sensor simulations which are made possible by an 
FPGA with the appropriate analog front-ends 
attached. Sensors which only deal in digital signals 
are even easier for FPGAs, because they require no 
analog support. Encoders, Hall Effect Sensors, Cam 
and Crank Sensors, or any sensors which transfers 
data with some type of digital protocol (serial or 
parallel) can be simulated on an FPGA. 

4. Validation of Simulated Sensors 

Simulation is only as beneficial as it matches the real 
world properties. For simulated sensors this means 
accuracy in timing and value. The use of simulated 
sensors as a replacement of real ones makes it 
therefore necessary to provide ways to validate 
those properties. 

There are basically three approaches to achieve this 
validation. 

(1) Asserting an input vector to the actual 
algorithm being used and comparing the 
output vector with the expected result vector. 

(2) Take approach (1) and include the real I/O 
interfaces with external stimulus and 
measurements. 

(3) The actual use of the simulated sensor with 
real I/O together with the real DUT. 

Approach (1) is the easiest one if the environment 
which is being used to define the FPGA 
implementation also provides a test framework to 
assert input vectors and read back the output 



 Page 7/7 

vectors. Another benefit is the fact that no additional 
hardware is required. 

Approach (2) accounts for the fact, that using real 
I/O might have a significant effect on the 
performance of the simulation. Algorithms being 
used typically rely on ideal I/O converter properties. 
It helps for example in finding limitations in timing 
accuracy as it shows latencies in the I/O process. 

Approach (3) finally shows, if the simulated sensor is 
accepted by the DUT instead of the real one. 
Today’s control units use a lot of very advanced 
diagnostic functions to determine the quality of the 
system status. If they detect a failure or inadequate 
performance of a sensor, they might stop working. 

5. Economical benefits 

With the increasing movement to commercial-off-the-
shelf (COTS) hardware, FPGAs have become even 
more popular for sensor simulation. It is important to 
consider connectivity to I/O pins for sending data to 
and from the chip itself, when using FPGAs for 
sensor simulation. Commercially available FPGA 
hardware with integrated I/O, PC-bus interfaces and 
signal conditioning has dramatically reduced 
development times and alleviated many of the 
hidden costs associated with custom hardware 
design. COTS hardware offers PC-buses like PCI 
and PXIe for a host application to interface with the 
FPGA application. Direct-Memory-Access (DMA) 
channels are also included for streaming data across 
these high-speed buses, with rates up to several 
100MB/sec. In order to interact with the outside 
world, COTS FPGA hardware typically integrates I/O 
components like analog-to-digital converters (ADCs), 
digital-to-analog converters (DACs), and digital line 
drivers. Combining off the shelf hardware with higher 
level programming software will also abstract out the 
communication logic needed to interface with 
external components, and replace it with graphical 
I/O nodes and DMA transfer FIFOs as shown in the 
earlier implementation examples. Shortening a 
product’s time-to-market is a major factor when 
simulating sensors, and using commercially 
available FPGA hardware ensures that prototyping 
and test system development time will not be the 
bottleneck. 

6. Conclusion 

Sensor simulation allows test engineers to 
incorporate real-world signals into automated test 
systems to simulate a broad range of operating 
environments. Once all functionality has been 
verified, using the simulated environment the critical 
hardware under test can then be connected to the 
actual system plant for final deployment. The flexible 

nature of FPGAs with true parallel operation, make 
them ideal for simultaneously simulating multiple 
types of sensors. Using a higher-level programming 
language allows experts across any industry to take 
advantage of FPGA technology, and COTS FPGA 
hardware enables high-performance prototypes and 
test systems to be developed quickly and easily, 
without prior experience in FPGA hardware design. 
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9. Glossary 

ADC: Analog to Digital Converter 

ATE: Automated Test Equipment 

COTS:  Commercial of the shelf 

DAC: Digital to Analog Converter 

DMA: Direct Memory Access 

DUT: Device Under Test 

ECU: Electronic Control Unit 

FIFO: First In First Out 

FPGA:  Field Programmable Gate Array 

HDL: Hardware Definition Language 

HiL: Hardware In the Loop 

LabVIEW: Laboratory Virtual Instrumentation 

Engineering Workbench 

LVDT: Linear Variable Differential Transformer 

VHDL:  VHSIC Hardware Description Language 

VHSIC:  Very High Speed Integrated Circuit  

VI:  Virtual Instrument 


