
HAL Id: hal-02263469
https://hal.science/hal-02263469v1

Submitted on 4 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

EVALUATION OF A MODELING AND AUTOMATIC
C CODE GENERATION TOOLSET AS AN OPEN

SOURCE ALTERNATIVE SOLUTION
William Fotso Kom, Xavier Querol

To cite this version:
William Fotso Kom, Xavier Querol. EVALUATION OF A MODELING AND AUTOMATIC C CODE
GENERATION TOOLSET AS AN OPEN SOURCE ALTERNATIVE SOLUTION. Embedded Real
Time Software and Systems (ERTS2012), Feb 2012, Toulouse, France. �hal-02263469�

https://hal.science/hal-02263469v1
https://hal.archives-ouvertes.fr


EXTERNAL  
ERTS 2012 
 

TEC-01ESG011-1112001 
V1.0 - 05/12/2011 External Page 1/10 
 

 
EVALUATION OF A MODELING AND AUTOMATIC C 
CODE GENERATION TOOLSET AS AN OPEN 
SOURCE ALTERNATIVE SOLUTION 

 

Authors: William FOTSO KOM, Xavier QUEROL  

1. INTRODUCTION 

 

This paper is focused on the model based design (MBD) approach, more particularly on the 
automatic C code generation. The goal of our project consists in evaluating how far the toolset 
called Scilab-Scicos and GeneAuto can be used as the open source alternatives to other solutions. 

 

1.1. Context and goal of the project 

Nowadays, in automotive and aerospace industry, control systems are intensively used in 
embedded control units, for running critical functions like spacecraft trajectory control, power 
steering, thermal and electrical engines. The complexity of these systems has lead to the 
emergency of a specific new approach for their design process, more appropriate than the 
classic V-model. It is called MBD (Model-Based Design). 

The MBD approach is a concept which aims to transform the process of building embedded 
systems and software using mathematical models. It is based on representing the 
system/software with a visual and executable model, which is built, simulated and validated 
throughout the design process, using high level description language and tools. The activity of 
implementing the related code is performed automatically by some code generator tools, 
instead of writing it manually. Thus, engineers can locate and correct errors early in system 
design, when the time and financial impact of system modification are minimized. 

 

1.2. Presentation of the tools 

Before entering in the details of our work, some tools used for the study are presented. On the 
one hand, we introduce the open source tools like Scilab, Scicos and GeneAuto. On the other 
hand, we deals with the commercial tools developed by MathWorks® like Matlab® and 
Simulink®. 

Scilab is an open source software, initiated in 1994 by the INRIA. It is now promoted by the 
Scilab Consortium which is composed of many actors from industrial and academic world 
(INRIA, DASSAULT-AVIATION, RENAULT, THALES, CNES, PSA PEUGEOT CITROEN, 
ENPC …). It is a cross-platform computational package and a high-level, numerically oriented 
programming language. It can be used for signal processing, statistical analysis, image 
enhancement, fluid dynamic simulations, numerical optimization and modeling and simulation of 
explicit and implicit dynamical systems. 



ERTS 2012 
 
Evaluation of a modeling and automatic C code generation toolset as an open source alternative 
solution 

TEC-01ESG011-1112001 
V1.0 - 05/12/2011 External Page 2/10 

Scicos is a graphical dynamical system modeller and simulator. It is used to create block 
diagrams, to model and simulate the dynamics of hybrid dynamical systems (continuous and 
discrete time), and to compile such models into executable code. It is used for signal 
processing, systems control and to study physical and biological systems. 

GeneAuto is an open-source toolset for converting Simulink®, Stateflow® and Scicos models 
into executable program code. Output to C is currently available. It was developed in the context 
of an ITEA European project that ended in December 2008, but it continues to be maintained by 
Continental Automotive (formerly Siemens VDO) and some partners from aerospace and 
automotive industry. 

Matlab® is a software provided by MathWorks®, for running technical and scientific computing. It 
offers a lot of modules called “toolboxes”, which can be used for designing and programming a 
wide variety of complex numeric calculations and algorithms. 

Simulink® is an extensible block-diagram environment, also provided by Mathworks®. It is used 
as an extension of Matlab®, for multidomain simulation and Model-Based Design of dynamic 
and embedded systems. It provides an interactive graphical environment and a customizable 
set of block libraries that let the user design, simulate, implement, and test a variety of time-
varying systems, including communications, controls, signal processing, video processing, and 
image processing. The Matlab®-Simulink® software package is currently the most known and 
the reference toolset for MBD purposes. 

2. TOOLS GENERAL STRUCTURE 

 

The two kinds of tools that we have to compare have the same structure, based on three parts:  

- a software which provides an interactive technical computing environment, and 
functions for algorithm development, data analysis, data visualisation, and 
numeric computation 

- an extensible block-diagram environment for simulation and model-based design, 
used to describe and implement the behaviour of control, signal processing, image 
processing, communications, and physical systems 

- a set of blocks and libraries, which can come from the tool programmers or from 
some third-party packages 

 



ERTS 2012 
 
Evaluation of a modeling and automatic C code generation toolset as an open source alternative 
solution 

TEC-01ESG011-1112001 
V1.0 - 05/12/2011 External Page 3/10 

 

3. TOOLS COMPARISON 

The comparison will be based both on our own experience of the tools, on their user manual, and 
on any reliable documentation from the web. We have considered some differencing criteria. 

3.1. Modeling and simulation 

 

3.1.1. Physical domain 

This section deals with the physical domains (electrical, mechanical, hydraulic, thermal …) 
which are applicable to the tools, in order to evaluate which kinds of physical phenomena 
and systems can be designed with each of the tools. 

For the MathWorks® tools, there are specific toolboxes for almost all types of physical 
systems: mechanical (SimMechanics®), electrical power (SimPowerSystems®), hydraulic 
(SimHydraulics®), and multidomain (Simscape®) physical systems. Each of these toolboxes 
is very rich, so that it is possible to model a complete hybrid system. For example, a system 
including both electrical parts and mechanical parts can be build easily. Some appropriate 
blocks are used for modeling energy transfers and conversions between the parts of a 
system. 

For the open source tools, there are some modules available for modeling electrical, 
mechanical or hydraulic systems (using the Coselica library in Scicos). But, there is no 
module provided for building a multidomain system. Thus, if a system is composed of an 
electrical generator supplying voltage input to a rotational motor, it won’t be possible to 
design the whole system on the same model. 

In conclusion, the MathWorks® tools are more complete than the open source ones 
considering the hybrid systems modeling. 

  

3.1.2. Control systems design and analysis 

This section deals with the possibility to have a simple interface that allows the user to 
quickly view the response of a given transfer function on different close loop gain, and to 
adjust the parameters of that transfer function. 

Specific toolboxes are available on Matlab®-Simulink® for designing control systems that are 
commonly used for aircrafts, spacecrafts, propulsion systems, and plants. Some other 
toolboxes are focused on system identification, which allows creating linear and non linear 
dynamic models from measured input-output data of a real system. Fuzzy logic systems can 
also be designed and simulated. These toolsets provide workflow-based GUIs to manage 
the entire control design process, and lets the user access to the graphical and automated 
tuning capabilities of the tools. Some command-line interface for developing automated 
linearization scripts and performing batch linearization are also available. 

There is a spacecraft library (CelestLab) for Scilab that has been developed by CNES, for 
mission analysis purposes. It is used for trajectory analysis and orbit design for various types 
of missions (around Earth, interplanetary...). CelestLab includes about 200 functions that 
allow mission designers to perform various tasks such as: orbit propagation, manoeuvre 
computation, change of reference frames and coordinates, etc … 



ERTS 2012 
 
Evaluation of a modeling and automatic C code generation toolset as an open source alternative 
solution 

TEC-01ESG011-1112001 
V1.0 - 05/12/2011 External Page 4/10 

Scilab provides an identification toolbox, which is used to construct mathematical models of 
systems from measured input-output data sequences. The tool allows pre-processing of 
signals, identification of systems and validating of constructed models. The tool is aimed 
particularly at black-box identification. 

In conclusion, the MathWorks® tools are more exhaustive than the open source ones 
considering the control systems design. 

 

3.1.3. State machines and control logic 

This section deals with the possibility to develop state machines and flow charts. 

Stateflow® is a toolbox which extends Simulink® with a design environment for developing 
state machines and flow charts. Stateflow® provides the language elements required to 
describe complex logic in a natural, readable, and understandable form. It is tightly 
integrated with Matlab® and Simulink®, providing an efficient environment for designing 
embedded systems that contain control, supervisory, and mode logic. 

There is no specific module in Scilab or ScicosLab for designing state machines. There are 
some existing discussions about this subject on online forums, but for the moment, Scilab is 
restricted only to the capability to implement an automatic switching between different 
implementations of the same algebraic function. 

In conclusion, the MathWorks® tools are again more complete than the open source ones 
considering the state machines development. 

 

3.2. Code generation 

This section deals with the possibility for the user to generate code from a model described 
inside the tool, so that it can be compiled and executed on PC targets or on embedded real-time 
targets. Programming language that has been focused on is the C language. For both tools, the 
user can describe model using blocks, or the high-level scientific language (Matlab® or Scilab), 
or some other standard languages like C and FORTRAN. On the other hand, they also provide 
the possibility to convert a model into C code for PC targets and for embedded targets. 

Gene-Auto is an open-source C code generator for real-time embedded systems. It works both 
with Matlab®-Simulink® and ScicosLab-Scicos. It takes as input a functional description of an 
application specified in a high-level modeling language and produces C code (in close future 
also Ada) as output. Gene-Auto converts different types of models into imperative C. The model 
types supported by Gene-Auto are data-flow models (from Simulink® and Scicos) and state 
models (Stateflow® diagrams from Simulink® only). 

In addition to Gene-Auto, there are two possible methods for generating C code from Scilab or 
Scicos. The first method is the native Scicos code Generator. In this case, the generated code 
can be only used on a computer where Scicos is already installed, because this code contains 
function calls to some Scicos modules when executed. The second method for generating C 
code from Scilab blocks is to use the “Scilab2C” toolbox, which is a standalone toolbox of 
Scilab, developed as part of the hArtes European project, for providing an interface between the 
Scilab scientific software package and some software design flow. In this case, the code is 
platform-independent, but Scilab2C need Scilab code as input data. It is then intended for 
people who have good skill for describing systems using Scilab code instead of Scicos visual 
models. 

Moreover, there are four C code generators available for Matlab®-Simulink®, which are: 



ERTS 2012 
 
Evaluation of a modeling and automatic C code generation toolset as an open source alternative 
solution 

TEC-01ESG011-1112001 
V1.0 - 05/12/2011 External Page 5/10 

- Simulink Coder® (formerly Real-Time Workshop®): it is a MathWorks® product, 
and it uses target template files to translate Simulink® models into ANSI/ISO C 
code. The target templates specify the environment on which the generated code 
will run. The user can develop his own custom targets or use the ready-to-run 
configurations and third-party targets supported by Simulink Coder®. Simulink 
Coder lets the user control the way model data appears in the generated code, 
and provides user-selectable code optimizations to improve code efficiency. 

- Embedded Coder® (formerly Real-Time Workshop Embedded Coder®): it is a tool 
which Generate C and C++ code optimized for embedded targets. 

- Stateflow® coder: it is a The MathWorks® product, and generates C code from 
Stateflow® charts. 

- TargetLink®: it is a dSPACE® product, and produces high-quality code directly 
from Simulink/Stateflow models. It is widely used in Automotive and Aerospace 
industry. It offers support for AUTOSAR, give a direct link to debugger of 
Microsoft® Visual Studio 

 

4. APPLYING OPEN SOURCE TOOLS TO THE DEMO APPLICATION 

 

4.1. System overview 

The system we built is the combination of: 

- a control board: it is an embedded Stellaris evaluation board, with a 32-bit ARM Cortex 
M3, running the motor controller we had to build. It receives commands and parameters 
(target speed, Start/Stop, PID parameters ...) from a computer through its Ethernet 
interface; it controls the motor, and returns the motor status (temperature, speed, 
current…) to the computer. 

- a computer running an interactive GUI, for sending commands and parameters to the 
control board; it also receives and displays status returned by the control board.  

- a three phases brushless DC motor, combined with a Hall effect sensor for high 
resolution speed measurement. 

 

Stellaris board running 
the generated PID code 

cables 

Computer with 
interactive GUI 

Ethernet 

DC Motor + Hall effect 
sensor 



ERTS 2012 
 
Evaluation of a modeling and automatic C code generation toolset as an open source alternative 
solution 

TEC-01ESG011-1112001 
V1.0 - 05/12/2011 External Page 6/10 

 

 

4.2. Building of the PID controller 

No atomic block was provided by Gene-Auto as PID controller. We then had to create it 
ourselves by aggregating basic blocks (additions, subtractions, products, unit delay, input and 
output blocks) in a proper way. Because we couldn’t get the motor characteristics from the 
supplier of the evaluation kit, we were not able to estimate the gains of the PID controller. So, 
we decided to just model a PI controller, expecting that it will be possible to reach some good 
values of the P and I gain when running the controller directly on the board. The Scicos model 
of our PI controller is given by the following figure: 

 

 

4.3. Generating and analysing the C code 

 

4.3.1. Code generation with Scicos 

After creating the diagram, and before launching the Gene-Auto code generator, we have to 
put the desired region to generate in a SuperBlock. The Scicos model is now ready for the 
code generation. When the generator is called, the SuperBlock is first translated into the 
Gene-Auto System Model (GASM) which will be saved as an xml file. After that, the Gene-
Auto tool chain is automatically called to generate the associated C code and a new Scicos 
block based on the generated C code is then created in the Scicos diagram. 

 

4.3.2. The generated files 

In the output directory, we find three folders and two scripts organized with the following 
structure: 

• three folders: 

o \macros: contains the Scilab interfacing function of the generated block 

o \src: contains the C source files generated by the Gene-Auto code 
generator as well as the Scicos block simulation function. This folder also 
contains the Scilab scripts builder.sce and loader.sce used for building the 
dynamic library of the C functions 



ERTS 2012 
 
Evaluation of a modeling and automatic C code generation toolset as an open source alternative 
solution 

TEC-01ESG011-1112001 
V1.0 - 05/12/2011 External Page 7/10 

o \Xml: contains the files Controller_PI.xml.mdl created by the Scicos to 
Gene-Auto translator and a sub directory named tmp which contains the 
Gene-Auto chain log file and the intermediate versions of the Gene-Auto 
System Model 

• two scripts: 

o builder.sce, used by Scilab to build all the generated stuff 

o loader.sce, used by Scilab to load it. 

 

4.4. Compiling and testing the generated code 

For compiling we needed to take one C-file (Superblock.c) and 3 header files (GATypes, 
Superblock.h, and Superblock_type.h) are needed from the “src” folder. These files were then 
integrated into the firmware files of the Stellaris, so that the speed controller calls the generated 
“SuperBlock_compute” function for regulating the motor speed with the designed PI algorithm. 

The whole project was compiled without any error with the RedSuite IDE, running a GNU C 
compiler for ARM Cortex M3 processors. 

During testing, we realized that there were some mismatches regarding variable types between 
the control board firmware and the generated files. It was not easy to find a solution, because 
there was no way to individually configure the type of each variable of the model. Finally, we 
decided to directly add a multiplier block into the model, and shift some values before calling the 
function (see figure below): 

 

We then used the interactive GUI for trying different values of P and I parameters without 
recompiling the project, and we could monitor the speed of the motor and see how efficient was 
the generated controller. The first tried values were giving a fast response time, but there were 
too many vibrations but finally we managed to set some P and I parameters which were 
efficient: 



ERTS 2012 
 
Evaluation of a modeling and automatic C code generation toolset as an open source alternative 
solution 

TEC-01ESG011-1112001 
V1.0 - 05/12/2011 External Page 8/10 

 

 

5. DIFFICULTIES FOUND 

 

5.1. With the Stellaris evaluation kit 

The main difficulty when working with this kit was to find the best way for downloading properly 
the code into the control board. In fact, the board was delivered with an Ethernet bootloader 
inside, but no tool for performing a classic JTAG download was present. After trying different 
methods, we finally decide to purchase a JTAG interface, and then we were able to flash the 
software to the board. 

The other difficulty was to get some relevant information about the BL motor delivered with the 
development kit. In fact, according to the MBD approach, the first step for building the demo 
application was to build a model of the real motor, so that we can use it for virtually adjust the 
controller parameters. Then we decided to adjust directly these parameters on the running 
board later during the testing phase. 

 

5.2. With Siclab-Xcos / ScicosLab-Scicos 

First, we met some installation problems when trying to add the Gene-Auto plugin to Scicos. 
The installation required a C compiler that was not installed on the computer at the beginning. 
However, even if we have met some difficulties, it was the easiest way to use the tool instead of 
using it with Eclipse. 

When working with third-party blocks, like COSELICA, it is quite impossible to get the 
description of some blocks, since almost all the related help files were empty. It may be due to 
the fact that people are working freely on this project and do not have enough time for achieving 
the documentation before publishing their work. 



ERTS 2012 
 
Evaluation of a modeling and automatic C code generation toolset as an open source alternative 
solution 

TEC-01ESG011-1112001 
V1.0 - 05/12/2011 External Page 9/10 

 

5.3. With GeneAuto 

During the installation, in spite of the fact we followed all the instructions to install the Gene-
Auto tool, we had some troubles because one step of the procedure was not described in the 
notice. We solved this problem going from a third-party forum where our problem and its 
solution were already described. 

The Gene-Auto palette is only composed of generic blocks so the modeling of the corrector was 
complicated. Moreover, we have tried to use some blocks that were supposed to be supported 
by the Gene-Auto code generation but in fact, it was not the case. 

 

6. CONCLUSION AND NEXT STEPS 

 

6.1. Conclusion 

The couple Scicos/Gene-Auto seems to be a good open source alternative to generate C code 
for embedded systems, when developing systems which do not require too many different 
blocks.  

The generated code works fine. However, it could be better to control more parameters of the 
generator: there is no way to separately specify the data type of each data of the model, the 
variable names of the generated code do not come from the signal names which are in the 
model; there is no way to add comments from the Scicos model. 

Going further with Scicos/Gene-Auto requires getting more skills about designing our own block 
in Scicos. 

 

6.2. Next steps 

 

6.2.1. Modeling systems 

Considering the previous chapters, we have point that the open source tools 
ScicosLab/Scicos is less complete than Matlab®-Simulink®. On the one hand, Scicos does 
not offer the possibility to model multidomain systems. On the other hand, the same problem 
appears for modeling state machine and flow charts as we can do with Stateflow®. These 
kinds of models are more and more spread in industrial applications so it will be interesting 
to find and study an open source tool or a plug-in for Scicos that provides these capabilities. 

 

6.2.2. Code generation 

The Gene-Auto code generator is not complete enough to answer to all the industrial 
problems. In fact, it is not compatible with all Scicos blocks. Then, working further with Gene-
Auto would require developing by our own some new blocks that can be supported by the 



ERTS 2012 
 
Evaluation of a modeling and automatic C code generation toolset as an open source alternative 
solution 

TEC-01ESG011-1112001 
V1.0 - 05/12/2011 External Page 10/10 

generator. This task demands time and our project duration does not enable us to develop 
anything. 

However, using an open source tool is a benefit considering the point that we can modify its 
features freely. Thus, the user completely masters the use of its tool and it could be a saving 
of time for the future development of industrial applications. 

 

7. REFERENCE DOCUMENTS 

 

 Title Reference Author(s) Version Date 
[1] Implementation of Hybrid 

Automata in Scicos 
TuC01.3 Masoud Najafi 

and Ramine 
Nikoukhah 

 October 2007 

[2] Gene-Auto: automatic software 
code generation for real-time 
embedded systems 

DASIA08 Ana-Elena 
Rugina, Dave 
Thomas, Xavier 
Olive and 
Guillaume Veran 

  

[3] hArtes - Publishable Final 
Activity Report 

D7T0.1M42 hArtes consortium 3 20 July 2010 

[4] RDK-BLDC Firmware 
Development Package 

SW-RDK-
BLDC-UG-
5450 

Texas 
Instruments 

 December 02, 
2009 

 


