
HAL Id: hal-02263468
https://hal.science/hal-02263468v1

Submitted on 4 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unification of Safety-Critical Java
Kelvin Nilsen

To cite this version:
Kelvin Nilsen. Unification of Safety-Critical Java. Embedded Real Time Software and Systems
(ERTS2012), Feb 2012, Toulouse, France. �hal-02263468�

https://hal.science/hal-02263468v1
https://hal.archives-ouvertes.fr

Unification of Safety-Critical Java

Kelvin Nilsen, Chief Technology Officer Java
Atego Systems, Inc.
Introduction
In response to increasing interest in the use of object-
oriented technology for development of safety-critical
systems, the new DO-178C guidelines will include sup-
plements to address object-oriented technology, model-
driven development, formal methods, and development
tool qualification [1]. These supplements correlate well
with the emerging safety-critical Java standard. As a
portable object-oriented programming language
enabling high levels of abstraction, safety-critical Java
is an ideal candidate for automatic code generation for
programming models. The use of formal methods to
prove the absence of certain memory management
errors at run time is a critical distinction between safety-
critical Java and the Real-Time Specification for Java
(RTSJ) [2]. And the specialized development tools that
facilitate the use of these formal methods will, in the
ideal, be qualified so that the results of their analysis can
be relied upon as trustworthy safety certification evi-
dence.

The use of Java [3] in real-time systems has taken vari-
ous forms over the years. The earliest commercial
approaches to real-time Java (circa 1997) used standard
edition Java APIs with real-time garbage collection [4].
This preserves the high-level abstractions of Java that
make it inherently safer than, for example, C and C++.
Later, in 2000, the RTSJ introduced new mechanisms to
support higher degrees of determinism in real-time Java
[2]. Unfortunately, the RTSJ represented a step back-
wards in terms of software safety, abstraction, and
maintainability. While the RTSJ mechanisms make it
possible to write Java programs that equal the real-time
latency guarantees of assembly language and C, RTSJ
programmers must exercise an abundance of caution in
order to avoid illegal memory access errors, memory
fragmentation errors, out-of-memory conditions, and
priority inversion problems. It has been argued that pro-
gramming with the RTSJ has few, if any, benefits over
real-time programming with more traditional legacy
languages like C and Ada [5]. As a result, even ten years
after publication of the official RTSJ “standard”, there
are no published reports of successfully deployed RTSJ
systems.

Work on a standard safety-critical Java specification for
Java has been ongoing since the Open Group hosted an
initial meeting on this topic in July 2003. Early discus-
sions within the Open Group resulted in an architectural
framework and a set of annotations to enable modular

composition and certification of independently devel-
oped safety-critical Java components [6]. These
approaches were first implemented in the commercial
PERC Pico product by Atego Systems in 2007 [7].

In 2006, the Open Group’s safety-critical Java effort
transformed itself into the JSR-302 expert group of the
Java Community Process. With this transition, new par-
ties joined the process, and these parties brought a shift
away from some of the Open Group’s earlier directions.
In particular, there was a desire to maintain greater com-
patibility with the RTSJ. The resulting JSR-302 specifi-
cation, which is now nearly complete, represents a
compromise between many alternative perspectives and
objectives [8].

This paper discusses four distinct semantic models for
safety-critical code written in the Java language. The
first three of these correspond to a very restrictive run-
time environment that manages temporary memory
using scope-based allocation instead of tracing garbage
collection.

Baseline JSR-302 represents the lowest level of abstrac-
tion. In this semantic model, scopes are much simpler
than in vanilla RTSJ in that scopes are maintained in a
LIFO structure that eliminates memory fragmentation
and restricts sharing between threads. Another simplifi-
cation of safety-critical Java is that the objects that are
reclaimed when a scope is exited do not undergo final-
ization. As with the RTSJ, safety-critical Java program-
mers are still responsible for explicitly managing scopes
and assignments that violate RTSJ scope restrictions
throw an IllegalAssignmentError exception.

Annotated JSR-302 provides improved abstraction in
that a static checker enforces that the application code
will not throw an IllegalAssignmentError. The checker
relies on the presence of optional annotations in the
source code. Even with Annotated JSR-302, program-
mers are required to explicitly manage the creation, siz-
ing, entry into, and exit from scopes.

As with Annotated JSR-302, the PERC Pico semantic
model relies on the presence of annotations to clarify
the programmer’s intentions with regards to scoped
memory relationships. Unlike JSR-302, the use of anno-
tations in this semantic model is not optional. Annota-
tion enforcement with PERC Pico is more than simply
checking that the programmer is doing the right thing.
With PERC Pico, annotation checking interacts with
native code generation to make the annotations valid.

For example, if the annotations on a body of code indi-
cate that a particular temporary object may be refer-
enced from external scopes, the compiler automatically
arranges that the memory allocated for that object is
taken from a scope that lives as long as those external
scopes.

The fourth and most abstract semantic model discussed
in this paper is Traditional Java. While this model may
not be suitable for the highest levels of safety critical
rigor, it is already being deployed in projects that have
criticality in the ranges of DO-178B levels C and D. The
programming model is much simpler due to reliance on
tracing garbage collection; thus it is actually easier to
prove certain safety properties of software written
according to this semantic model. On the other hand, the
use of real-time garbage collection adds considerable
complexity to the run-time environment. Proving that
the more complex run-time environment is implemented
correctly, that the application releases garbage at a rate
that is consistent with its appetite for new memory allo-
cations, and that the garbage collector is getting suffi-
cient CPU time to replenish the memory allocation pool
before it is depleted all add significantly to the costs of
safety certification.

Besides examining key differences between the various
semantic models, this paper proposes a unifying
approach to combine their respective strengths. Most of
the technical approaches discussed in this paper have
not yet been fully implemented. Consistent with com-
mon technical writing practice, the paper speaks of these
proposed future technologies using the present tense.

1. JSR-302 Overview
A JSR-302 application is structured as one or more mis-
sions, running either in sequence or concurrently. Each
mission has a mission memory to hold all of the tempo-
rary objects that are to be shared between the indepen-
dently executing threads that comprise the mission.
JSR-302 threads are embodied as periodic event han-
dlers, asynchronous event handlers, or ongoing threads.
Each thread has a stack of private memory areas to hold
the temporary objects required for its computations.

One of the design ideals of the JSR-302 specification
was to maintain compatibility with RTSJ. This is most
noteable in its approach to allocation of memory for
short-lived objects. Like the RTSJ, the JSR-302 specifi-
cation requires that programmers explicitly manage
memory scopes. Each memory scope has a size that
must be determined by the application programmer. A
JSR-302 program enters a scope by executing one of
several possible standard APIs. Once entered, subse-
quent new object allocations are, by default, satisfied by
taking the memory from the currently entered scope.
After all threads exit the scope, all of the objects allo-
cated within the scope are discarded and their memory
is reclaimed.

Unlike the RTSJ, JSR-302 supports only two very
restrictive scope types. Both scope types are instantiated
only by infrastructure, only in particular contexts at par-
ticular times. A MissionMemory scope is instantiated and
sized only during the initialization of a new mission. A
PrivateMemory scope is only instantiated when an event
handler begins to run, or when user code requests to
enter a new private memory area. These restrictions on
the generality of RTSJ scopes simplify the run-time exe-
cution model and make it possible for implementations
of the JSR-302 specification to guarantee that memory
fragmentation does not prevent the timely and reliable
creation of new memory areas, unlike the RTSJ.

As with the RTSJ, JSR-302 programmers are responsi-
ble for honoring the restriction that objects residing
within a particular memory scope are never allowed to
refer to objects residing within more inner-nested mem-
ory scopes. At each point in a program’s execution that
this rule would be violated, an IllegalAssignmentError
exception is thrown instead.

Clearly, it is undesirable that a safety-critical program
might terminate with a run-time error due to an inappro-
priate pointer assignment. In its current form, the JSR-
302 specification states that it is ultimately the develop-
ers’ responsibility to assure the absence of illegal
assignments in their safety-critical Java programs. Ven-
dors of safety-critical Java programming tools and run-
time environments are encouraged to provide tools to
help programmers prove the absence of these excep-
tions. And the draft specification describes an optional
annotation system and enforcement tool that can be
applied to safety-critical applications at the discretion of
developers or project leads to guarantee the absence of
these exceptions. This annotation system is simpler and
less expressive than the system that had been designed
during the earlier Open Group standardization efforts.

Figure 1 provides an example program written accord-
ing to the rules of JSR-302, using the optional annota-
tions to enforce scope assignment safety. This program
fragment represents code that might be executed within
a mission’s constructor to initialize a cryptography key.

The excerpted code omits certain details. For example,
it does not show the annotation that requires instances of
TheMission class to reside within the “TM” scope. The
constructor for TheMission is shown at the bottom of the
figure.

The sample code illustrates the complexity of managing
explicit scopes as is required to perform certain interme-
diate computations in temporary memory that can be
reclaimed upon termination of the constructor. This
sample code creates and enters a private memory area to
hold an AbsoluteTime object, a Random object, three Big-
Integer objects, and an AssignCryptoKey object. Note that
the calculation of the private memory’s scope size must
account for internal objects which are allocated within

the constructors of AbsoluteTime, Random, or BigInteger
instances. This information may not be known without

scrutiny of the respective constructor implementations.
Reliance on this information violates best practice
guidelines for information hiding and encapsulation.

In this sample code, the temporary CalculateCryptoKey
and SizeEstimator objects that are allocated by the The-
Mission constructor are placed in MissionMemory and live
there until the mission itself terminates. It would have
been preferable to place these objects also in temporary
memory, but it is very difficult to do so using the JSR-
302 programming conventions which were inherited
from the RTSJ.

For comparison, a C implementation of a comparable
memory model is represented by the code shown in
Figure 2. This sample code assumes that libraries exist
to perform similar actions in C that are performed by the
existing Java libraries. The point of presenting this C
version of the code is to clarify how a typical C pro-
grammer would arrange code so that the relevant objects
are allocated in the appropriate stack memory locations.
Note that the C version of BigInteger makes a reference
to a separately allocated array of 8-bit characters to rep-
resent its integer encoding. The initializeMission() func-
tion links each BigInteger structure to the corresponding
array.

2. PERC Pico Overview
The PERC Pico technology is based on the original sys-
tem of annotations that had been developed in the Open
Group’s original safety-critical Java meetings. This

 @Scope("TM") @SCJAllowed(members=true)
 static class CalculateCryptoKey implements Runnable {
 @DefineScope(name="TM.0", parent="TM")
 @Scope("TM.0") @SCJAllowed(members=true)
 static class AssignCryptoKey implements Runnable {
 TheMission tm; // resides in scope “TM”
 BigInteger bi; // resides in scope “TM.0”
 AssignCryptoKey(TrainMission tm, BigInteger bi) {
 this.tm = tm;
 this.bi = bi;
 }
 @RunsIn("TM")
 public void run() {
 // copy bi into the "TM" scope (from the "TM.0" scope)
 tm.crypto_key = bi.multiply(BigInteger.ONE);
 }
 }

 TrainMission tm;
 public CalculateCryptoKey(TheMission the_mission) {
 tm = the_mission;
 }

 @RunsIn("TM.0")
 public void run() {
 AbsoluteTime now =
 javax.realtime.Clock.getRealtimeClock().getTime();
 Random r = new Random(now.getMilliseconds());
 BigInteger t1, t2, t3;
 t1 = new BigInteger(128, 24, r);
 t2 = new BigInteger(128, 24, r);
 t3 = t1.multiply(t2);
 AssignCryptoKey assigner =
 new AssignCryptoKey(tm, t3);
 MemoryArea.getMemoryArea(tm).
 executeInArea(assigner);
 }
 }

 @SCJRestricted(INITIALIZATION)
 public TheMission() {
 CalculateCryptoKey calculator =
 new CalculateCryptoKey(this);
 SizeEstimator z = new SizeEstimator();
 z.reserve(AbsoluteTime.class, 1);
 z.reserve(Random.class, 1);
 z.reserve(BigInteger.class, 3);
 z.reserveArray(20, byte.class);
 z.reserveArray(20, byte.class);
 z.reserveArray(40, byte.class);
 z.reserve(CalculateCryptoKey.AssignCryptoKey.class, 1);
 ((ManagedMemory) MemoryArea.getMemoryArea(this)).
 enterPrivateMemory(z.getEstimate(), calculator);
 }
Figure 1. JSR-302 Constructor for TheMission

typedef struct { char *digits;
 unsigned char avail_digits;
 unsigned char used_digits;
 unsigned char sign; } BigInteger;

typedef struct { BigInteger crypto_key; } TheMission;

TheMission tm;
char digits[40];

void initializeMission() {
 BigInteger t1, t2;
 char digits1[20], digits2[20];
 struct timespec now;
 longlong seed;
 clock_gettime(CLOCK_REALTIME, &now);
 seed = now.tv_nsec +
 (longlong) now.tv_sec * 1000000000;
 tm.crypto_key.digits = digits; tm.avail_digits = 40;
 t1.digits = digits1; t1.avail_digits = 20;
 t2.digits = digits2; t2.avail_digits = 20;
 fillRandomBigInteger(&t1, 128, 24, &seed);
 fillRandomBigInteger(&t2, 128, 24, &seed);
 multiplyBigInteger(&t1, &t2, &(TheMission.crypto_key));
}

Figure 2. C initializer for TheMission

annotation system provides increased expressive power
and enables automatic determination of scope sizes. A
sample constructor implementation written in the style
of PERC Pico is shown in Figure 3.

Note that the code is much more concise and more read-
able than code written in the style of JSR-302. The
PERC Pico compiler uses a sophisticated byte-code ana-
lyzer to trace the flow of each allocated object. Based
on how the variable is used, it automatically determines
the memory scope from which each allocation should be
satisfied. For example, allocations assigned to a captive-
scoped variable are always taken from an implicit local
scope associated with execution of the current method.
Within a constructor, variables assigned to scoped vari-
ables that are not captive are always taken from a spe-
cial region of memory known as the constructed scope.
The constructed scope is simply an expansion of the
scope that holds the object being constructed. The rea-
son the non-captive scoped objects that are allocated
within a constructor are not simply placed in the same
scope as the constructed object this is because the client
code that invokes the constructor generally does not
know about the internal behavior of a constructor, so it
normally cannot calculate how large the corresponding
scope would need to be.

In this sample code, the BigInteger.multiply() method is
known to be declared with a @CallerAllocatedResult
annotation. This indicates that the method places its
result into a memory buffer that is supplied by the caller.
The caller decides where the result is to be placed,
which may not be in the caller’s private scope. In this
case, the result of the t1.multiply() invocation is placed in
the constructed scope, so that it can be directly refer-
enced by this object’s crypto_key field.

Note that the constructor for TheMission is declared
@StaticAnalyzable. This means that the compiler is
expected to automatically analyze the size of the respec-
tive scopes. There are two scopes that are relevant to
this particular example: the private temporary memory
scope of the constructor must hold one AbsoluteTime

object, one Random object, and two BigInteger objects;
the constructed scope of the constructor must hold the
BigInteger object returned from t1.multiply().

The BigInteger data type represents arbitrary precision so
its memory requirements depend on the value to be rep-
resented. The documentation for the BigInteger construc-
tor makes clear that the memory requirements can only
be computed (for any given context) if the programmer
supplies an assertion to bound the value to be stored
within the constructed BigInteger object. This example
shows that each of the invocations responsible for con-
structing or allocating a BigInteger object is preceded by
an assertion that limits the number of digits required to
represent the object in a decimal representation of the
integer.

3. Comparisons Between PERC Pico and JSR-302
annotations
There are fundamental differences between the
approaches of PERC Pico and JSR-302. PERC Pico
enables a more concise and more abstract programming
style. Early experimentation with PERC Pico in several
different domains has confirmed that the abstractions it
supports make it easier to develop and maintain com-
plex and evolving software systems [9]. In the para-
graphs that follow, we draw several comparisons
between the Annotated JSR-302 and PERC Pico seman-
tic models.

Guiding Design Principles. Annota ted JSR-302 i s
implemented as a specialization of the RTSJ. The sim-
plicity of the annotation system was motivated in part
by a desire to formally prove relevant attributes of the
RTSJ subset’s semantic model. PERC Pico is structured
instead as a specialization of standard edition Java. The
higher levels of abstraction provided by this semantic
model were motivated by a desire to ease the software
development and maintenance burden with less empha-
sis on developing a formal proof of the semantic proper-
ties.

In theory, it is easier to qualify the tool chain of a JSR-
302 implementation but easier to develop and maintain
a PERC Pico application.

Scope Relationships. One of the strengths of PERC
Pico is that the PERC Pico annotations assert relative
rather than absolute scope nesting relationships. When
describing the semantic constraints on a particular API,
the PERC Pico programmer uses annotations to state
that certain arguments must reside in scopes that
enclose, equal, or are enclosed by the scopes holding
certain other arguments. This means that the same API
can be used in many different contexts, as long as the
actual arguments satisfy the relative scope nesting con-
straints. In contrast, JSR-302 annotations specify that
particular classes always reside in particular named
scopes. If the same class is required to appear in multi-

@StaticAnalyzable
public TheMission() {
 @CaptiveScoped AbsoluteTime now;
 @CaptiveScoped r = new Random();
 @CaptiveScoped BigInteger t1, t2;
 now = javax.realtime.Clock.getRealtimeClock().getTime();
 Random r = new Random(now.getMilliseconds());
 assert StaticLimit.InvocationMode(“Digits=20”);
 t1 = new BigInteger(128, 24, r);
 assert StaticLimit.InvocationMode(“Digits=20”);
 t2 = new BigInteger(128, 24, r);
 assert StaticLimit.InvocationMode(“Digits=40”);
 this.crypto_key = t1.multiply(t2);
}
Figure 3. PERC Pico Constructor for TheMission

ple distinct scopes, programmers may be required to
replicate the class (possibly using inheritance), and
annotate each replication of the class with the distinct
scope name in which it is intended to appear.

Scope Management. With Annotated JSR-302, classes
that are not annotated are not allowed to escape the
scope in which they are allocated. Classes that are anno-
tated may be seen in other scopes, because the class
annotation specifies the name of the scope in which all
instances of that class reside. The JSR-302 annotation
checker enforces that annotated classes are only instan-
tiated when the current scope matches the named scope.
The run-time environment’s notion of current scope
changes under explicit program control, with invoca-
tions of the ManagedMemory.enterPrivateMemory() or
MemoryArea.executeInArea() methods. With Annotated
JSR-302, it is the responsibility of application code to
calculate the size of each scope.

With PERC Pico, instances of any class may reside in
any scope. PERC Pico annotations are associated with
reference variables rather than the class declarations.
Certain variables are known to refer to the current
method’s private scope. Other variables are known to
refer to scopes that enclose (are either identical to, or
externally nested around) certain other scopes. Scopes
are entered and exited implicitly, as control flows into
and out of methods. Scopes are sized automatically as
guided by static analysis of the memory allocation needs
associated with each scope.

Abstraction and Information Hiding. The static anal-
ysis techniques implemented by both Annotated JSR-
302 and Perc Pico are sound in that both systems assure
the absence of dangling pointers at compile time. This
represents a significant improvement over RTSJ, which
relies on run-time checks and exceptions to prevent the
introduction of dangling pointers.

With Annotated JSR-302, it is generally not possible to
accurately calculate the required sizes of each scope
without having a full awareness of the memory alloca-
tion behavior that occurs inside of abstract data types.
These implementation details are ideally hidden from
users of the abstract data type because any dependency
on this information makes code brittle. If subsequent
software maintenance activities make changes to the
internal memory allocation behaviors, it becomes neces-
sary to find and update all of the code throughout the
application that makes use of this information.

With PERC Pico, software developers have the option
of structuring code so that a static analysis tool automat-
ically computes the required sizes of each scope. If evo-
lution of an application’s source code results in changes
to its internal memory allocation behavior, the static
analysis tool automatically reflects these changes in all
relevant scope sizes when the code is recompiled. Fur-

ther, PERC Pico introduces the notion of a constructed
scope. A constructed scope represents a conceptual
expansion of the scope that holds a newly allocated this.
This scope serves to hold the objects that are allocated
within a constructor or within reentrant scope methods
(such as Vector.add()) which must reside at the same (or
enclosing) scope level as the constructed object because
they must be referenced from the constructed object.

Reuse of Software Components and Certification
Artifacts. It is difficult to reuse software and certifica-
tion evidence with Annotated JSR-302 because classes
must be annotated differently for each context (scope) in
which they appear. This results in code replication (pos-
sibly using inheritance) rather than code sharing. Each
replica of the code must be independently certified in its
given context. Programming errors in the sizing of
scopes for particular contexts may cause the software to
fail in those contexts.

In contrast, the PERC Pico annotations allow the same
code to be used in many different contexts with its
memory usage automatically tailored for the context in
which it appears.

Modular Composition of Software and Certification
Evidence. Both PERC Pico and annotated JSR-302 rep-
resent significant improvements over vanilla RTSJ in
that annotations on component interfaces clarify the
scope requirements associated with incoming arguments
and instance fields. This allows the static checker to
assure that composition of software components does
not introduce scope assignment errors.

Among the certification artifacts that would be reused in
an ideal scenario are audited logs of peer review activi-
ties, traceability of requirements to source to test plan,
requirements-based test plan, and analysis of test results
and code coverage.

In the case that certification artifacts have been gathered
for independent software components, it is easier to
leverage these preexisting certification artifacts with
PERC Pico than with Annotated JSR-302. This is
because a PERC Pico software component can be inte-
grated in many different contexts without any changes
to the PERC Pico source or executable code. Further,
the PERC Pico annotations assure more preconditions
than the JSR-302 annotations, including availability of
memory within relevant scopes and availability of stack
memory to create additional scopes as might be required
to reliably execute the code of a particular software
component. In contrast, Annotated JSR-302 software
components can rarely be used as is in new contexts.
Usually, the code must be copied and then annotated dif-
ferently so that allocated objects are allowed to reside in
particular scopes. The safety certification analysis must
then consider the behavior of the code within the new
environment.

Another important consideration is certification of the
standard libraries, which are intended to be reused in
many distinct contexts. With Annotated JSR-302, stan-
dard libaries are not annotated, and the formal methods
that are enforced by the JSR-302 static analysis tools are
not in force. It is the vendor’s responsibility to correctly
implement the standard libraries, and to prove correct-
ness using ad hoc techniques. With Perc Pico, the
library implementations are subjected to the same static
analysis techniques as application code. This is made
possible because the Perc Pico annotation system is suf-
ficiently expressive to describe the scoping constraints
on the library APIs and their implementations.

Design Patterns. The JSR-302 annotation system is
designed primarily to support the scoped memory
design pattern in which all objects of a linked data struc-
ture reside in the same scope. It handles this particular
design pattern fairly well, without requiring annotations
on class declarations. Whenever a given execution con-
text refers to multiple distinct scopes (such as when
computations use temporary objects to produce a result
object result and the result object must be stored into a
more permanent outer-nested structure), the JSR-302
annotation system becomes cumbersome. This is when
it becomes necessary to name scopes and bind particular
class instances to specific named scopes. Sometimes, it
is possible to create multiple versions of a library class
using inheritance, with each version bound to a distinct
named scope. However, early experimentation with the
JSR-302 annotation system suggests it is not always
possible to achieve the desired flexibility by subclassing
predefined standard libraries, and even when it is possi-
ble, the resulting code can be difficult to understand
because of the requirement to divide logical control
flows between multiple Runnable objects.

In contrast, the PERC Pico annotation system was
designed with specific design patterns in mind, includ-
ing differentation between scoped and captive-scoped
variables, constructed scopes, caller-allocated-result
methods, reentrant-scope classes, and same-scope
linked data structures. The annotations have evolved to
improve the ease of expression for common design pat-
terns during nearly five years of experimentation with a
variety of applications, including implementation of
scoped-memory collection libraries, a scoped-memory
dynamic class loader, and multiple real-time applica-
tions.

4. Mixed-Mission Deployment
As the JSR-302 draft nears final approval, Atego is
undertaking to make PERC Pico compliant with the
JSR-302 specification. This compatibility upgrade con-
sists of the following critical accommodations:
1. The set of standard libraries supported by PERC

Pico will be unified with the set of libraries offered

by JSR-302. In general, JSR-302 defines a larger set
of libraries than was anticipated in the earlier drafts
of the safety-critical Java standard so this activity
consists primarily of adding libraries.

2. Modify PERC Pico so that all threads are organized
into missions.

3. Implement the JSR-302 standard so that PERC Pico
offers developers the option of running applications
comprised of either JSR-302 code or traditional
PERC Pico code.

4. Enhance the PERC Pico verifier and run-time envi-
ronment to enable the mixing of JSR-302 missions
and PERC Pico missions. A mission sequencer
would have the option of running a JSR-302 mission
followed by a PERC Pico mission followed by
another JSR-302 mission. A PERC Pico mission
would be allowed to nest within a JSR-302 mission.
And a JSR-302 mission would be allowed to nest
within a PERC Pico mission.

For objects residing in immortal memory, both PERC
Pico and JSR-302 enforce the same rules: Immortal
objects can only refer to other objects residing in
immortal memory. For both systems, no annotations are
associated with the objects residing in immortal mem-
ory. Since the initial Safelet and its mission sequencer
are both allocated in immortal memory, it is straightfor-
ward to interleave PERC Pico and JSR-302 missions
under the direction of a Safelet’s outermost mission
sequencer.

The rules enforced by the respective annotation systems
differ, however, for objects that might reside in an outer-
nested scope. This is relevant whenever a mission of one
type is executed within the context of a mission of the
other. To understand the significance of these differ-
ences, an overview of the salient features of the two
annotation systems is provided below.

Rules for Annotated JSR-302 scopes. Based on anno-
tations placed in source code, the JSR-302 checker
enforces the following invariant properties:
1. For classes that are annotated to reside only in par-

ticular scopes, assure that the class is instantiated
only within the specific named scope.

2. In the case that a superclass has different annotations
than its subclass, certain upcasts from the subclass to
the superclass are forbidden.

3. Instance field annotations may indicate that the field
always refers to the same scope as the object itself.

4. Instance field annotations may indicate that the field
always refers to immortal memory, or to a specific
named scope.

5. Certain instance field annotations may indicate that
the field refers to an object in an unknown scope.

6. Certain method invocations require that certain ref-
erence arguments refer to the same scope as the
object that is the target of the invocation.

7. Certain method invocations require that particular
reference arguments refer to specific named scopes,
or to immortal memory.

8. Certain method invocations allow particular refer-
ence arguments to refer to objects residing in
unknown scopes.

Rules for PERC Pico scopes. In contrast, the invari-
ants enforced by the PERC Pico verifier are the follow-
ing:
1. Certain instance fields are known to refer to immor-

tal memory.
2. Certain instance fields are known to refer to objects

residing the same scope as this.
3. The remaining instance fields are known to refer to

objects residing in an enclosing scope. Immortal
memory encloses all other scopes. Every scope is
considered to enclose itself.

4. Certain method invocations require that certain ref-
erence arguments refer to immortal memory.

5. Certain method invocations require that certain ref-
erence arguments refer to objects residing in the
same scope as the object that is the target of the
invocation.

6. Certain method invocations require that particular
reference arguments refer to scopes that enclose the
scope of the object that is the target of the invoca-
tion.

7. Certain method invocations allow particular refer-
ence arguments to refer to objects residing in
unknown scopes.

While the JSR-302 checker has the ability to statically
enforce the invariant properties that are relevant to the
JSR-302 scope safety model, it does not gather the
information required to enforce, for example, that par-
ticular unknown scopes are known to enclose (be more
outer-nested than) or be the same as certain other
unknown scopes. Likewise, the PERC Pico verifier does
not keep track of the information required to enforce the
JSR-302 model. For example, there is no notion of
named scopes within PERC Pico, and there is no way
for a PERC Pico programmer to describe a requirement
that instances of a particular class may only be instanti-
ated within particular scopes. Thus, there is no way to
translate PERC Pico annotations into equivalent JSR-
302 annotations, or to translate JSR-302 annotations
into equivalent PERC Pico annotations.

Differences in allowed behaviors. The execution mod-
els of the PERC Pico and JSR-302 environments also

differ significantly. The most noteworthy distinction is
the respective treatments of scopes.

In PERC Pico, a scope is a hidden implementation arti-
fact, similar to an activation frame in C or Ada. There is
no PERC Pico API to allow application software to refer
to a particular scope, or to ask how large it is, or to ask
how much memory remains available within it. There is
also no API to ask which scope holds a particular object,
or to request that a particular new object allocation be
taken from a particular scope. This is intentional. If
application software were allowed to directly manipu-
late scopes, then static analysis of scope safety would be
much more difficult.

In contrast, JSR-302, because it is structured as a literal
subset of RTSJ, treats scopes as first-class objects.
While this generality provides a certain expressive
power to software developers, it also introduces difficult
challenges for static analysis. For example, with JSR-
302, any software component that has access to an
object residing in a particular scope is allowed to create
new objects in that same scope. The protocol is straight-
forward:
1. Invoke area = MemoryArea.getMemoryArea(object), and
2. Invoke area.executeInArea(logic) with a Runnable logic

argument that performs memory allocations.

Note that in the presence of such allocations, it is
extremely difficult for a static analysis tool to automati-
cally calculate the required size of each scope.

Another distinction between PERC Pico and JSR-302
execution models is that PERC Pico allows classes to be
dynamically loaded into mission memory, whereas JSR-
302 requires all classes to be loaded into immortal mem-
ory prior to initialization of the application. The static
variables of a PERC Pico dynamically loaded class may
refer to objects residing in outer-nested mission scopes,
whereas JSR-302 assumes that static variables refer
only to immortal memory. In a mixed-model applica-
tion, all of the JSR-302 code is statically loaded and
reflection libraries are not supported, so the JSR-302
code cannot make any references to the static variables
of dynamically loaded PERC Pico classes.

Sharing mission memory with inner-nested mis-
sions. Potential problems arise when JSR-302 missions
nest inside of PERC Pico mission or when PERC Pico
missions nest within JSR-302 missions. In both cases,
the inner-nested mission may be able to see objects
residing in an outer-nested mission’s memory. When
accessing those outer-nested objects (and/or manipulat-
ing the outer-nested mission scopes), the inner-nested
mission needs to honor the constraints of the model that
governs legal behavior within the outer-nested mission.

When a mission implemented according to one semantic
model spawns an inner-nested mission implemented

according to the rules of a different semantic model, a
proxy object isolates concerns between the two.

The complete application is divided into three distinct
partitions. The PERC Pico missions are linked against
standard libraries implemented with PERC Pico. Like-
wise, the annotated and unannotated JSR-302 missions
are each compiled and linked with compatible libraries.
Objects are never shared directly between the distinct
execution models. Cross-model invocations are imple-
mented as remote procedure calls.

Mission proxies implement the boundaries between
missions compiled according to the conventions of the
distinct semantic models. To make a mission eligible for
execution as a sub-mission of a mission that is compiled
according to a different semantic model, the application
developer submits the mission to a proxy generation
tool, which produces a wrapper to interface between the
inner mission and its surrounding context.

The proxy generation tool requires that all arguments to
the mission’s constructors are either primitive types or
are references to a declared interface. Furthermore, all
method declarations associated with the interfaces that
characterize the constructor’s argument types must
themselves be described as either primitive types or
interface (of interfaces and primitives) types.

The output from the proxy generator is an implementa-
tion of a wrapper class that represents the original mis-
sion within the surrounding context. This wrapper class
extends the Mission type so that an instance of this class
can be returned from the enclosing mission sequencer’s
getNextMission() method. The wrapper class implements
the conventions of the enclosing mission’s semantic
model. The mission that it wraps normally implements
different conventions. In terms of JSR-302 annotation
checking, the automatically generated wrapper mission
is treated as infrastructure so that it is allowed to invoke
the cleanUp() and initialize() methods of the wrapped mis-
sion. The mission proxy is assumed to reside within the
inner-nested mission’s mission memory. The construc-
tor for the mission proxy instantiates the enclosed mis-
sion within this same mission memory.

The automatically generated mission wrapper isolates
scope assignment issues between the enclosing and
enclosed missions by implementing the following
semantics:
1. For each interface type referenced either directly or

indirectly in the declarations of the mission’s con-
structors, including all super-interfaces, the proxy
generator creates a concrete class to implement the
interface. The inheritance relationship of automati-
cally generated concrete classes mimics the inherit-
ance hiearchy of the interfaces they implement.
a. All automatically generated proxy classes have

hidden constructors. This prevents user code
from instantiating proxy objects.

b. The root of the inheritance hierarchy is one of six
specific base classes representing each of the
possible combinations between enclosing and
enclosed mission semantic models: PP2SCJsta-
tic_Proxy, PP2SCJdynamic_Proxy, SCJstatic-
2PP_Proxy, SCJstatic2SCJdynamic_Proxy,
SCJdynamic2PP_Proxy, or SCJdy-
namic2SCJstatic_Proxy.

c. The interface declarations that characterize inter-
actions between an inner-nested mission and an
outer-nested mission may carry both JSR-302
and PERC Pico annotations. The proxy genera-
tion tool confirms that both sets of annotations
are compatible. Compatibility means the annota-
tions as interpreted within the inner-nested mis-
sion do not contradict the annotations as inter-
preted by the outer-nested mission.

The proxy generator cannot enforce equiva-
lence of annotations because each annota-
tion system can describe scope relationships
that cannot be described in the other. When
necessary, a run-time check is performed
within the proxy’s method wrappers. If the
required scope relationships are not satisfied
by the arguments of an attempted cross-mis-
sion method invocation, an IllegalArgumentEx-
ception is thrown. The same exception is
thrown if a returned result of a cross-mission
method invocation does not satisfy the
caller’s expected scope-relevant post-condi-
tions.

2. For each reference argument passed to any construc-
tor of the mission wrapper class, the mission wrap-
per’s constructor creates (or finds a preexisting
association with) a proxy object to represent the
argument within the enclosed mission. The proxy
object has the following characteristics:
a. It implements the interface and provides no other

public methods or fields.
b. It implements additional services for use by

infrastructure. These services are hidden from
the application code. As an example, each proxy
object maintains a reference to the original outer-
mission object that it represents within the inner-
nested mission.

3. In the case that a method invoked on an object resid-
ing in an outer-nested mission returns a reference to
an object (which would necessarily reside in an
outer-nested mission), the proxy’s method wrapper
replaces the returned value with a proxy object
(either newly created or previously associated) to
represent the returned result within the inner-nested
mission. Proxy objects reside in mission memory.
System integrators are responsible for sizing the

mission memory large enough to hold all of the
proxy objects that it may need to represent.

4. Whenever the inner-nested mission invokes a
method associated with a proxy representing an
object residing in an outer-nested mission, the
proxy’s implementation of that method forwards the
request on to the appropriate object residing within
the outer-nested mission’s scope after confirming
that the scope relationships required by the original
API’s annotations are satisfied by the passed argu-
ments and replacing all argument proxy references
with references to the corresponding actual objects
residing in the outer-nested mission’s memory.

These protocols assure that an inner-nested mission
never holds a direct reference to any object residing in
the outer-nested missions. Instead, the inner-nested mis-
sion holds references to proxy objects with which it can
invoke the services provided by the objects shared by
the outer-nested mission.

Note that since the types of mission constructor argu-
ments are restricted to be either primitive scalars or ref-
erences to interfaces (of interfaces), the inner mission
cannot make direct reference to any of the instance
fields of the object.
1. Java interfaces do not have instance fields. A Java

interface may have static final fields, but these can
only refer to objects residing in immortal memory so
accessing these objects does not introduce scope
assignment problems that are any different than the
scope assignment problems associated with access to
any static field, which are already addressed in all
three semantic models.

2. Since a proxy represents the outer-nested object
within the inner-nested mission, coercions per-
formed on the proxy object are unable to access the
original object’s type. This prevents access to meth-
ods or fields that are not part of the declared inter-
face.

Note also that these protocols do not allow the inner-
nested mission to pass as arguments references to
objects residing within the inner-nested mission. The
inner-nested mission could invoke a service of the outer-
nested mission, passing as an argument a locally allo-
cated object that implements the declared interface.
However, the proxy that forwards the invocation to the
outer-nested mission performs checks to confirm that
every reference argument is actually a proxy and it
replaces every proxy argument with a reference to the
corresponding proxied object. Since proxy constructors
are hidden from application code, there is no way for
application code to spoof the run-time checking per-
formed by the proxy’s method forwarding mechanism.
Any attempt to pass a local object as an argument to an
invocation of a service performed in an outer-nested
mission results in an IllegalArgumentException.

5. Traditional Java Integration
While most safety practitioners are quick to reject the
use of tracing garbage collection in safety-critical sys-
tems, many software engineers are quick to respond that
many of the alternatives to tracing garbage collection
have comparable risks and very high software develop-
ment and maintenance costs. The key relevant consider-
ations are that (1) it is much easier to correctly
implement complex software systems with languages
that support tracing garbage collection; (2) integration
of independently developed software components which
share access to certain objects is much easier with lan-
guages that support tracing garbage collection; and (3)
tracing garbage collection adds complexity to the binary
implementation of application code, the schedulability
analysis of a complete system, and the certification of
system safety. Common practice today is that tracing
garbage collection is never used in DO-178B level A or
level B software. However, a small number of projects
with level C and D certification requirements have been
deployed with traditional Java.

Atego has previously demonstrated that PERC Pico
components can be very efficiently and reliably inte-
grated within traditional Java applications. Because
PERC Pico is object oriented and undergoes full Java
byte-code verification, it is possible to integrate PERC
Pico services much more efficiently than is possible
with C and JNI. A recent demonstration showed that an
all-Java application ran twice as fast as the equivalent
program comprised of Java and C based on JNI. See ref-
erence 10 for a more complete description of this tech-
nology.

The same basic approach that was previously used to
integrate PERC Pico with traditional Java applications
allows applications written in the style of traditional
Java to invoke services provided by either Baseline
JSR-302 or Annotated JSR-302. The basic approach is
outlined below:
1. During mission initialization, particular mission-res-

ident objects may be placed into a registry that is
shared with a traditional Java run-time environment.

2. When a safety-critical object is published in the reg-
istry, the safety-critical Java programmer supplies an
interface that is implemented by the published
object. This interface represents the collection of
services that traditional Java is allowed to invoke on
the shared object.

3. Traditional Java application code may consult this
registry to obtain access to shared objects. A shared
object is represented by a proxy within the tradi-
tional Java domain. The proxy provides implementa-
tions of the interface methods only, hiding all fields
and methods of the original object that are not men-
tioned in the interface definition. The proxy imple-
mentation is automatically generated by

infrastructure tools. The automatically generated
code maps the implementation of invoked proxy ser-
vices to the relevant safety-critical Java code.

4. When a mission’s initializer publishes objects to be
shared with traditional Java, it also allocates one or
more (under programmer control) ManagedThread
objects to act on behalf of the invocations received
from the traditional Java application.
a. For complete generality, it is necessary for a

safety-critical Java thread to execute the methods
associated with safety-critical objects. This is
necessary to assure that the thread implements
priorities, synchronization, and priority ceilings
in accordance with the protocols of the safety-
critical Java environment.

b. In cases where the body of a safety-critical Java
method is known to not require any synchroniza-
tion with other safety-critical Java threads (as
determined through static analysis), the imple-
mentation may optimize out coordination with a
safety-critical Java ManagedThread object. The
original traditional Java thread may invoke the
method directly and may even in-line the
method’s implementation if the traditional Java
compiler is aware of the safety-critical Java envi-
ronment’s object and method representations.

5. At mission termination time, it is necessary to wait
for deactivation of all the traditional Java proxies
that may refer to object’s residing in this mission’s
memory. Under programmer control, proxy deacti-
vation can be initiated by the safety-critical Java
environment (though a deactivated proxy may con-
tinue to exist in the traditional Java domain, any
attempts to invoke its services would result in an Ille-
galStateException), or by the traditional Java environ-
ment (when the garbage collector reclaims the
memory of a proxy, the proxy’s finalize() implementa-
tion communicates with the safety-critical Java
infrastructure to advise that this proxy has been
deactivated.

6. Acknowledgements
The author owes special thanks to Ales Plsek, Daniel
Tang, and Jan Vitek of Purdue University for their
efforts in designing and implementing the JSR-302
annotation system, for countless discussions clarifying

my understanding thereof, for providing me with early
access to their implementation of the annotation checker
for experimentation, and for helping me to implement
representative code fragments. It is important to empha-
size that the shortcomings of the JSR-302 annotation
system discussed in this paper are primarily the result of
constraints imposed by the JSR-302 expert group rather
than the result of their design choices.

7. Bibliography
[1] C. Adams, “DO-178C nears finish line, with credit for

modern tools and technologies”, in Military and Aero-
space Electronics, Nov. 1, 2010.

[2] G. Bollella, B. Brosgol, J. Gosling, P. Dibble, S. Furr, M.
Turnbull, The Real-Time Specification for Java, Addison
Wesley Longman, 195 pages, Jan. 15, 2000.

[3] K. Arnold, J. Gosling, D. Holmes. The Java™ Program-
ming Language, 4th edition. 928 pages. Prentice Hall
PTR. Aug., 2005.

[4] K. Nilsen, “Differentiating Features of the PERC Virtual
Machine”, http://www.aonix.com/pdf/
PERCWhitePaper_e.pdf

[5] K. Nilsen, Making Effective Use of the Real-Time Specifi-
cation for Java, Atego White Paper, September 2004,
available at http://research.atego.com/jsc/rtsj.issues.9-
04.pdf.

[6] Meeting minutes, notes, and preliminary materials
related to an early draft specification for safety-critical
Java, available at http://research.atego.com/jsc/
index.html.

[7] PERC Pico User Manual, Apr. 19, 2008, available at
http://research.atego.com/jsc/pico-manual.4-19-08.pdf.

[8] D. Locke, B. S. Andersen, B. Brosgol, M. Fulton, T. Hen-
ties, J. Hunt, J. Nielsen, K. Nilsen, M. Schoeberl, J.
Tokar, J. Vitek, A. Wellings. Safety-Critical Java Tech-
nology Specification, Public Draft, 2011, available at
http://www.jcp.org/en/jsr/detail?id=302.

[9] M. Richard-Foy, T. Schoofs, E. Jenn, L. Gauthier, K.
Nilsen. “Use of PERC Pico for Safety Critical Java”,
Conference Proceedings: Embedded Real-Time Soft-
ware and Systems, Toulouse, France, May 2010.

[10] K. Nilsen. “Improving Abstraction, Encapsulation, and
Performance within Mixed-Mode Real-Time Java Appli-
cations.” Conference Proceedings: Java Technology for
Embedded Real-Time Systems, Vienna, Austria, Septem-
ber, 2007.

	Unification of Safety-Critical Java
	1. JSR-302 Overview
	Figure 1. JSR-302 Constructor for TheMission
	Figure 2. C initializer for TheMission

	2. PERC Pico Overview
	Figure 3. PERC Pico Constructor for TheMission

	3. Comparisons Between PERC Pico and JSR-302 annotations
	4. Mixed-Mission Deployment
	5. Traditional Java Integration
	6. Acknowledgements
	7. Bibliography

