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Abstract—Traditionally, software in avionics has been to-
tally separated from open-world software in order to avoid
any interaction that could corrupt critical on-board systems.
However, new aircraft generations need more interaction with
off-board systems to offer extended services, which makes these
information flows potentially dangerous.

In a previous work, we have proposed the use of virtualiza-
tion to ensure dependability of critical applications despite bidi-
rectional communication between critical on-board systems and
untrusted off-board systems. A comparison mechanism based
on execution traces analysis is used to detect discrepancies
between replicas supported by diverse virtual machines. We
propose to strengthen the comparison mechanism at runtime
by the use of an execution model, derived from a static analysis
of the java bytecode.

Keywords-avionic information system; dependability; secu-
rity; execution model; virtualization;

I. INTRODUCTION

In avionics, each software component has its own level of
criticality. This level of criticality is determined according
to the severity of the consequences of a fault. For example,
a failure on a altimeter, which is used to calculate flight
parameters, is more critical than a failure on an entertain-
ment component, such as Audio/Video On Demand. If a
component performs a critical task, it must be designed and
developed in accordance with avionic requirements. The re-
liability level of a component depends on several parameters
mentioned by Y. Laarouchi et al. in [1]. These include vali-
dation, namely development and checking phases, pursuant
to security criteria. Therefore, the most critical tasks must
have the highest validation level. To obtain this validation
level, strict constraints must be respected during design
and development phases. Compliance with these constraints
makes components costly. On the contrary, it is possible
to use commercial off-the-shelf (COTS) components for
non-critical tasks and thereby benefit from their lower cost
and extended functionalities, compared to avionics grade
components.

In this context, the ArSec project explored the possibili-
ties offered by diversification and virtualization to improve
dependability of architectures based on COTS components.
It focuses on a case study of an operator terminal dedicated
to maintenance operations. This functionality is currently
implemented as a secure on-board computer in the Airbus

A380. Y. Laarouchi et al. in [2] suggest a more flexible use
of this secure on-board computer by letting it be mobile and
able to interact with the open world. However, this greater
flexibility should not degrade the security of the computer.
To achieve this purpose, virtualization techniques were used
to diversify the execution of maintenance applications by
using two separate operating systems (e.g., Microsoft Win-
dows and GNU/Linux). Accordingly, a comparison process
based on trace analysis ensures the validity of executions.
This approach guarantees that all executions are strictically
equal. It could be improved considering a static analysis of
the application. This analysis is useful to obtain the list of all
traces an application generates. Our proposal is to strengthen
the process of comparison by the use of an execution model.
This paper is organised as follows. Section II presents the
context and the motivation of the study. We describe in
particular, the different components of the architecture used
in the case study. In Section III, we present our approach to
create the execution model. Section IV is dedicated to the
employed comparison method. Section V shows the means
to integrate our solution within the architecture used in the
case study. Section VI concludes the paper and presents
some future works.

II. CONTEXT AND MOTIVATION OF THE STUDY

The field of maintenance has a large competitive market,
worth over 106 billion US$ in 2008 according to a report
[3], summarizing the work carried out by Cybel for the
PIPAME [4] interdepartmental technology monitoring and
forecasting group. Maintenance operations represent an im-
portant economic challenge for airline companies since they
define the stopover time of the aircraft. Indeed, the aircraft is
not allowed to take off without the authorization of ground
maintenance operators. If maintenance operations take too
much time, the airline company has to pay additional fees
to the airport, and incurs additional costs due to the delays
of subsequent flights. Large delays can also cause consider-
able customer dissatisfaction, which negatively impacts the
brand image of the company. Consequently, the shorter this
stopover time, the more profitable is the aircraft for the
company.



A. Maintenance laptop and virtualization

Nowadays, in flight, the pilot, on-board crew and sys-
tems themselves record all faults or unexpected behavior
in the On-board Log. In this log, faults are classified
according to their criticality. The log is downloaded by
the maintenance operators, when the aircraft is parked at
the terminal, who analyze the reported errors and failures.
Then, the maintenance crew follows the procedures indicated
in the manuals to solve them. Traditionally, they interact
through a dedicated on-board maintenance computer. To
make maintenance more flexible, another procedure has been
described by Y. Laarouchi et al. in [2]. The maintenance
software installed on the laptop analyzes information flows
from error and failure reports, then it specifies the actions to
undertake which will resolve errors or failures. As pointed
out before, the laptop has not been designed in accordance
with the avionic requirements for critical software. So, to
allow it to communicate safely and securely with the aircraft
information system, a specific intrusion-tolerant software
architecture has been proposed [2]. The architecture is based
on diversified COTS operating systems supporting replicas
of the application software. The basic premise is that an
attack targeting a specific operating system (e.g., MS Win-
dows) has seldom if ever, an effect on a different operating
system (e.g., GNU/Linux). If we compare the behavior of the
replicas executed on different operating systems, we should
be able to identify a malicious behavior.

As an example of the menace that the approach aims to
counter, consider the Stuxnet malware, which Ralph Langner
describes as a “cyberwarfare weapon” which can infect
any MS Windows PC [5] . Thomas M. Chen and Saeed
Abu-Nimeh describe in [6] the method used by Stuxnet to
attack a MS Windows PC that programs specific Siemens
programmable logic controllers. They present Stuxnet as the
largest (in lines of code) and most complex known malware.
However, although such a malware has proved to be capable
of infecting a specific target (MS Windows OS), it is not
designed to attack multiple targets.

The virtualization approach offers a pragmatic way to
implement such a diverse operating system architecture on
a single machine. Virtualization techniques were introduced
for the first time by IBM in the seventies [7] to emulate
for a software component the operation of the underlying
hardware. Over the last decade, these techniques have been
studied with renewed interest and have been developed to
offer standardized layers of virtualization. We provide a brief
overview of these techniques in the remainder of this section.

The virtualization technique consists in offering to a
component an abstraction of the underlying layers. For
instance, in a multitask operating system, every task has
a virtualized view of the hardware layer, since every task
considers that it is running alone on the hardware. In our
case, we are interested in the notion of a system virtual

Figure 1. Virtual Machine Monitors (Type 1 and Type 2)

machine [8], which allows many operating systems to be
used in parallel on the same physical machine (Figure 1).

Figure 1 represents two types of Virtual Machine Moni-
tors (VMMs). Type 1 VMMs (also known as hypervisors)
were developed to support different operating systems while
running directly over the bare hardware. One example of this
type of hypervisor is Xen [9]. Conversely, a Type 2 VMM
is installed as an application on a host system, which can
then launch and manage different operating systems. Type 2
VMMs are widespread. A typical example would be the use
of VMWare on Linux to run a Windows operating system.

The virtualization technique offers complete isolation
between the different virtual machines, and also provides
a means to control the virtual machines through a specific
channel. These characteristics can be readily exploited to im-
plement the control of the execution of diversified operating
systems on a single hardware machine.

B. Architecture of the maintenance laptop

The different components are shown in Figure 2. The
software architecture is composed of a hypervisor, two
virtual machines and the Java bytecode of the maintenance
application. In the case study defined in [10], the Xen
hypervisor is used. In [11], we used a benchmark based
on a hardware time reference to evaluate the performance
of two hypervisors: Qubes [12] and Xen [9]. The results
show that the performance degradation induced by the use of
either hypervisor is negligible. Of the two, Qubes is shown
to be slightly more efficient than Xen. However, in our case
study, we chose to keep Xen as the hypervisor because of
its maturity and its large user community.

Two virtual machines, each one with a different operating
system (MS Windows and GNU/Linux) are managed by
Xen. Each operating system executes the same maintenance
application. A comparator is implemented on the hypervisor
to cross-check the information flows from the two virtual
machines. The hypervisor, represented in red, is assumed to
have a confidence level higher than the virtual machines,
shown in green. We assume that the Java bytecode of the



maintenance application has the same confidence level as
the hypervisor.

Figure 2. Architecture of the maintenance laptop

C. Application context

Figure 3 shows the different steps involved in the design,
development and deployment of the maintenance application
on the diverse architecture. The first step (¬) is carried out
by the engineering department and includes the development
of the maintenance application within the constraints related
to avionics. This application is written in Java [13] to
ensure portability towards different target platforms. Once
the maintenance application is approved, the Java bytecode
[14] of the maintenance application is securely uploaded
on the plane (). Next (®), the Java bytecode is securely
downloaded to the maintenance laptop. The fourth operation
(¯) is the deployment of the Java bytecode on the two
different operating systems. It should be remembered that
these two operating systems are executed on two virtual
machines hosted by the hypervisor. At runtime (°), the
graphic calls of the maintenance application are compared.
All the events in relation with the graphical library (Java
Swing) [15] constitute the execution traces of the mainte-
nance application. Events in the two execution traces are
pairwise cross-checked after having been received by the
comparator. A short delay is allowed between the arrival
times of each event in a pair to tolerate differences in
execution and data transfer times. An error is detected if the
maximum inter-event delay is exceeded or if the events are
different. We assume that any such detected error is due to
a malicious attack on a virtual machine (although it might
also be due to an accidental malfunction). If an error is
detected, the execution is stopped, an alert is raised, and all
communications to the aircraft are dropped. If the traces are
identical, the event is sent to the aircraft, (±).

The foundation of the approach presented by Y. Laarouchi
et al. in [10] is the diversification of the environement. In the
context of the Java application, a large number of java virtual

machine (JVM) rely on a similar source code provided by
Sun Microsystems. In order to detect suspect behavior of
the Java application due to a common fault of a JVM, we
propose to statically analyse the application. So, in addition
to the use of the watchdog, reference to an execution model
of the application allows each processing step of the diverse
virtual machines to be checked. In the following section, we
detail the derivation of an execution model.

III. EXECUTION MODEL

Currently, attacks are detected by comparing the execu-
tion traces of the diversely-executed application to identify
possible differences. Any difference is considered to be the
result of an attack. To prevent the attack from progressing
to the information system of the aircraft, the architecture is
designed to stop the current execution of the application.
However, the lack of any differences between execution
traces does not necessarily entail the absence of an attack,
i.e., attack detection based on trace comparison alone may
have imperfect coverage. In this section, we first propose
a refined attack detection process, based on a model of
the execution of the application and aimed at providing
increased coverage. The idea is to model the execution of the
application and to compare observed execution traces with
the set of traces admitted by the model. Thus, whenever
an attack results in a trace that is invalid with respect to
the model, it will be detected. In particular, this additional
detection technique can detect some attacks that affect both
application replicas, such as when the attack exploits a
common vulnerability. We present our methodology for
deriving this execution model and show how the architecture
is modified to account for the refined detection process.

A. Construction of the model

The execution model must represent the set of traces
that the correct execution of the application can generate.
Before detailing this model, we present the different ways
of obtaining it. The required model can be:

1) provided by the engineering department;
2) derived from a formal specification of the application;
3) deduced from the Java bytecode of the application.
The first option presents the advantage of providing a

specification of the expected behavior by the software de-
veloper, regardless of the implementation of the application.
On the other hand, it has the drawback of adding to the
workload of engineering department. However, we wish to
maintain the transparency of the architecture at this level.
In other words, the engineering department in charge of
the development of the maintenance application should not
have to worry about the presence of the secure architecture.
The second option has the same advantages as the first. Its
drawback lies in the availability of a formal specification,
or the source code. Our architecture should work for any
application whether it is delivered with the source code and



Figure 3. Design, development and deployment steps

specifications or not. Consequently, we have opted for the
third option : deducing the model from the Java bytecode of
the application. Thus, the architecture works regardless of
the application. The model represents what the application
is and not what the developer wanted it to do. We examine
the Java bytecode of the application once it is downloaded
on the maintenance laptop, to derive the execution model.

The model is obtained through static analysis of the Java
bytecode. The model is represented as a control graph. A
control graph is a model used in compilation theory [16] and
in decompilation theory [17]. In our case, a node represents
a call to the graphics library. An edge between two nodes
represents the possibility, for the application, to continue the
execution. A node can have many output edges, in particular
to represent conditional structures such as if/then/else, while,
etc. Conversely, a node can have many input edges, when
different branches of conditional structures converge on this
node. Although the model is based on static analysis of the
Java bytecode, to simplify our illustration of the approach,
we consider the source code of the application.

void i n i t ( i n t n , i n t m)
{

a = new Bu t ton ( ) ;
b = new Bu t ton ( ) ;
i f ( n == 0) {

a . s e t V a l u e (m) ;
a . s e t V i s i b l e ( t rue ) ;

} e l s e {
b . s e t S i z e ( 2 , 5 ) ;
b . s e t V i s i b l e ( t rue ) ;
b . setName ( " i " ) ;

}
}

Figure 4. Source code

Figures 4 and 5 represent an example of a Java method
and the associated graph. This code begins with the declara-
tion of the Java function, represented by the state q0 in green

q0 q1 q2

q3a

q3b q4b

q6
Button() Button()

setValue(m) setVisible(true)

setSize(2,5)
setVisible(true)

setName(i)

Figure 5. Graph of control

on the control graph. The function continues by the creation
of two buttons, represented by states q1 and q2. After the
creation of the second button, the execution can be continued
either by invocation of the operation a.setValue(m) or
by invocation of the operation b.setSize(2,5), accord-
ing to the result of the boolean test used by the conditional
structure if. Consequently, two output edges are created on
q2 to point to q3a and q3b. Finally, the two branches of the
conditional structure if converge to the final state q6, in red
on the control graph, which represents the end of the control
graph associated to this method. There are as many traces
that follow the if branch of the control structure as there
are different values for the variable m. On the other hand,
there is only one trace corresponding to the execution of the
else branch.

IV. METHOD COMPARISON

In this section, we briefly describe the two methods used
before comparing them.

A. Model comparison

As described in Section III, we use the Java bytecode to
create our execution model. This model is used to compare
each execution of the maintenance application on the virtual



machines. We consider the example of the control graph
from Figure 5. Figure 6 represents an execution on one
virtual machine. By comparing the current state, the method
name and the previous state with those admitted by the
control graph we are able to know if the execution is valid
or not. For example, in Figure 6, the execution begins
with state q0. The Button() method subsequently enables
to go to state q1 then q2. The method setValue(m) is
necessary to reach state q3a. The last method invoked is
setVisible(true) to go from state q3a to state q6.
This sequence of states (q0, q1, q2, q3a and q6) and the
associated methods enable us to validate the execution as
being in accordance with the control graph in Figure 5.

q0 q1 q2 q3a q6
Butto

n()

Butto
n()

set
Valu

e(m
)

set
Visi

ble(
tru

e)

Figure 6. Example of a valid execution

Figure 7 represents an invalid execution. We can see that
state q3a is preceded by state q1. This sequence of states (q1,
q3a) is not possible on the control graph in Figure 5, so we
can conclude that this is an invalid execution. Furthermore,
to reach state q3a, the method setValue(m) must be
invoked. If another method is invoked to go to state q3a
we can again conclude, according to the control graph in
Figure 5, that the execution is invalid.

q0 q1 q3a q6
Butto

n()

Butto
n()

set
Visi

ble(
tru

e)

Figure 7. Example of an invalid execution

B. Trace comparison

We recall that the considered execution traces of the main-
tenance application consist of calls to the graphic methods.

To intercept the graphic methods, we use the ASM library
[18], which allows us to add information to the graphic calls
and thus facilitate the comparison process. An example of
the utilisation of the ASM library is available in [19]. After
interception, we obtain a message (or trace event) to send
to the comparator. This message contains:

• The Id of the thread in progress;
• The unique message number;
• The name of the graphic method;

• The list of parameters used.
The messages of the different instances of the application are
then compared. In the current prototype, only the message
number, the method name and the list of parameters are
used. Table I presents an example of a trace consisting of
four messages.

Trace1 Message number Method name Parameter
new Button() 1 Button null
new Button() 2 Button null
setValue(12) 3 setValue 12

setVisible(True) 4 setVisible True

Table I
TRACE EXAMPLE

Tables II and III show an example of traces from the two
virtual machines (VM1 and VM2). Traces1 are identical,
so the comparison mechanism validate the trace. Traces2

are inconsistent because of the parameter of the method
setValue(), the comparator detects the difference and
stops the execution of the application. Traces3 are not the
same due to the method name compared, the comparison
process invalidates this trace.

In the following, we compare the two comparison methods
presented earlier in Section IV.

Trace1 Trace2 Trace3

new Bouton() new Bouton() new Bouton()
new Bouton() new Bouton() new Bouton()
setValue(12) setVisible(True) setVisible(True)

setVisible(True) setValue(12) setValue(12)

Table II
TRACES FROM VM1

Trace1 Trace2 Trace3

new Bouton() new Bouton() new Bouton()
new Bouton() new Bouton() new Bouton()
setValue(12) setVisible(True) setValue(12)

setVisible(True) setValue(666) setVisible(True)

Table III
TRACES FROM VM2

C. Complementarity of the methods

Table IV presents different execution traces which can
be observed. Trace1 and Trace3 are different executions
that activate the if branch. They differ by the value of the
parameter m. Trace4 corresponds to the activation of the
else branch. As for Trace2, it does not match any correct
execution of the method.

These traces correspond to the observation of the execu-
tion of the application on one virtual machine. At execution
time on the diverse architecture, we obtain two traces to



Trace1 Trace2

new Bouton() new Bouton()
new Bouton() new Bouton()
setValue(12) setVisible(True)

setVisible(True) setValue(12)
Trace3 Trace4

new Bouton() new Bouton()
new Bouton() new Bouton()
setValue(13) setSize(2,5)

setVisible(True) setVisible(True)
setName(i)

Table IV
EXECUTION TRACES

compare, each of which can be Trace1, Trace2, Trace3

or Trace4. Table V shows different scenarios related to the
observation of these traces on the diverse architecture.

V M1 V M2 V M1 × V M2 V M1,2 × EM

1 Trace1 Trace1 4 4

2 Trace1 Trace2 7 7

3 Trace1 Trace3 7 4

4 Trace1 Trace4 7 7

5 Trace2 Trace2 4 7

6 Trace2 Trace3 7 7

7 Trace2 Trace4 7 7

8 Trace3 Trace3 4 4

9 Trace3 Trace4 7 7

10 Trace4 Trace4 4 4

4 Successful comparison 7 Failed comparison

Table V
EXECUTION TRACES COMPARISON

The first two columns correspond to the traces observed
on the virtual machines. The third column shows the diag-
nosis using trace comparison. The last column corresponds
to the diagnosis when comparing the traces with those
admitted by the execution model (the abbreviation EM
means Execution Model).

The traces generated by the virtual machines, in lines 1,
8 and 10, are identical and correspond to traces that are
consistent with the model. Therefore, the diagnosis is ‘no
attack’. The other cases correspond to an attack: either the
two traces are different or they are not consistent with the
model.

Trace comparison is based on the order of arrival and
the values observed. It detects all attacks except the case
in line 5 (Trace2; Trace2). As for the comparison of the
trace with the execution model, it identifies the case in
line 5 (Trace2; Trace2) as an attack, but it misses the
detection of the case in line 3 (Trace3; Trace4) because a
value comparison is needed. These two comparison methods

are thus complementary and enable the detection of all the
considered attacks.

V. EXECUTION MODEL INTEGRATION

In this section, we depict how the execution model can
be integrated into the architecture presented earlier. Figure
8 illustrates this updated architecture.

Figure 8. Maintenance laptop Architecture

Our focus is still on the maintenance laptop. The first
operation (¬) is to create the execution model from the Java
bytecode of the maintenance application. Then, this Java
bytecode is securely uploaded on the two operating systems
(). The third operation (®) consists in the comparison of
the traces of the different operating systems. The fourth
operation (¯) allows the behavior of each application related
to the execution model to be to checked. The decision is
based on the results of these two check operations (°).
In order to conclude that an execution is valid, it must
successfully pass the both checks. Otherwise, a malfunction
or a malevolence in the virtual machines is declared. We
assume that an attack is taking place. The execution of the
maintenance application is stopped, an alert is raised and all
communications to the aircraft are dropped.

VI. CONCLUSION

In this paper, we have briefly described some of the results
of our research aimed at the improvement of the comparison
process in a dual-diverse system by means of an execution
model derived from static analysis of the Java bytecode.



It strengthens the existing comparison mechanism using an
execution model of the Java application.

Currently, we have identified several directions for further
research. First, we plan to take into account the existence
of several thread-levels in the execution model. Then, we
will examine synchronization routines, which will allow
the model to be enriched with a temporal aspect to detect
“as early as possible” a case of attack. In particular, a
WCET (Worst Case Execution Time) analysis may be useful
to improve the accuracy of the model. The third axis is
the establishment of a chain of trust that ensures that the
architecture is correctly loaded, thus, raising the level of
confidence of the architecture.
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