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1. Abstract 
The traditional approach to multitasking synchronization has been to use Mutexes, Semaphores, and 

Critical sections. However, those primitives can lead to inefficiency or, even worse, to error 

conditions such as, for example, dead or live locks or priority inversion. The problems with those 

primitive are particularly vivid with real-time systems. Also, with the rapid deployment of multi-core 

systems, those traditional mechanisms are showing new classes of issues. This talk will discuss how 

the use of non-blocking algorithms through atomic and barrier operations can lead to more robust, 

deterministic and higher performance systems. 

2. Definitions 
Even through many definitions exist, an algorithm is generally considered non-blocking if designed to 

avoid requiring a critical section. Therefore, this type of algorithms generally allow multiple tasks to 

make progress without ever blocking each other. For some operations, these algorithms provide 

valuable alternatives to locking mechanisms. 

3. The problems with locks 
The traditional approach to multi-tasked programming is to use locks to synchronize access to shared 

resources. Synchronization primitives such as mutexes, semaphores, and critical sections are all 

mechanisms by which a programmer can ensure that certain sections of code do not execute 

concurrently if doing so would corrupt shared memory structures. If one task attempts to acquire a 

lock that is already held by another task, the task will block until the lock is free. 

Blocking a task is undesirable for many reasons. An obvious reason is that while the task is blocked, it 

cannot accomplish anything. Also with the growing popularity of multi-core systems, blocking is 

becoming more and more costly as locks effectively serialize operations distributed among several 

tasks, practically reducing the opportunities for parallelism and the effective use of hardware 

computing resources. 

Other problems are less obvious. Certain interactions between locks can lead to error conditions 

such as deadlock, livelock, and priority inversion. For example, priority inversion occurs if a high-

priority task is blocked by a lower-priority one, violating priority-based scheduling rules making RMA 

difficult if not impossible. This problem can partially be circumvented using, for example, priority-

Inheritance Mutexes. However, situations such as chain-blocking can still occur. 

Using locks also involves a trade-off between coarse-grained locking and fine-grained locking. Coarse-

grain can significantly reduce opportunities for parallelism, again more and more important with 

multi-core system, while fine-grained requires more careful design, increases overhead and is more 

prone to bugs. 

Global data structures protected by mutual exclusion cannot safely be accessed by interrupt 

handlers, as the lock may be already held by a task when an interrupt is serviced. In many embedded 

OS, this is typically circumvented by allowing tasks to disable interrupts. However, this can have 

devastating effects on the general system behavior since all real-time events can be arbitrarily 

postponed by user-code. On the opposite, non-blocking algorithms are also safe for use in interrupt 

handlers. 

Non-blocking algorithms have the potential to remove the risk of priority inversion, as no task is 

forced to wait for another task to complete.  



4. Non-blocking algorithms Implementation 
The synchronization primitives provided by most modern architectures, such test-and-set (TAS) 

compare-and-swap (CAS) or load-locked/store-conditional (LL/SC) are powerful enough to achieve 

Non-blocking algorithms. It is interesting to note that Mutexes, Semaphores and Critical Sections are 

almost always implemented using these primitives. 

Until recently, all non-blocking algorithms had to be written "natively" with the underlying primitives 

to achieve acceptable performance. However, each CPU architecture implements differently TAS, 

CAS and/or LL/SC operations. Unfortunately, some of the simplest processors don’t even have such 

important primitives. 

TestAndSet:: 
    lwarx     r12 <test>, r0, r3 <addr> 
    cmplw     r12 <test>, r4 <old> 
    bne       failure 
    stwcx.    r5 <new>, r0, r3 <addr> 
    bne       TestAndSet 
    li        r3, 0 
    blr 
failure:     
    li        r3, 1 
    blr 
 

fig 1. Sample TestAndSet on Power 

TestAndSet:: 
    movl 4(%esp), %ecx <addr> 
    movl 8(%esp), %eax <old> 
    movl 12(%esp), %edx  <new> 
    lock 
    cmpxchgl %edx <new>, 0(%ecx) <addr> 
        /* eax <old> in implicitely used */ 
    setne %al 
    movzbl %al, %eax 
    ret 
 
 

fig 2. Sample TestAndSet on x86 
 
 

Luckily, Modern RTOS do provide the above synchronization primitives in a CPU-independent fashion 

event supporting processors without dedicated instructions. 

Error TestAndSet(volatile uint32_t *addr, uint32_t old, uint32_t new); 
 

fig 3. Sample TestAndSet C prototype 
 

Much research has also been done in providing non-blocking algorithms for basic data structures 

such as stacks, queues, sets, and hash tables. These allow programs to easily exchange data between 

tasks asynchronously. 

Last but not least, some data structures are weak enough to be implemented without special atomic 

primitives, at least if only accessed by a single CPU. A classic example of such a simple and yet very 

useful data structure is the single-reader single-writer ring buffer FIFO.

// FIFO data storage 
volatile int FifoData[FIFO_SIZE]; 
 
Error FifoGet(int *val) 
{ 
    if(FifoWrite == FifoRead) 
 // FIFO is empty 
 return Failure; 
 
    /* Read value from current FIFO slot */ 
    *val = FifoData[FifoRead % FIFO_SIZE]; 
 
    /* Increment read index */ 
    FifoRead++; 
 
    return Success; 
}

 
 
 
Error FifoPut(int val) 
{ 
    if(FifoWrite + 1 == FifoRead) 
 /* FIFO is full */ 
 return Failure; 
 
    /* Store value in next FIFO slot */ 
    FifoData[FifoWrite % FIFO_SIZE] = val; 
 
    /* Increment write index */ 
    FifoWrite++; 
 
    return Success; 
} 
 

fig 4. Single-Reader Single-Writer Ring Buffer FIFO sample implementation 

 

This example algorithm works because all synchronization is done by comparing (i.e. reading) 

FifoRead and FifoWrite. only the writer task is calling FifoPut() and therefore modifying FifoWrite. 

Symmetrically, only the reader task is calling FifoGet() and therefore modifying FifoRead. The 

problem is reduced to one Task reading a value than can only be modified by another task. Therefore 



there is no possible race condition on the variables used for gating. However, are we always sure that 

the data is actually put/read into/from the FIFO before FifoWrite/FifoRead is updated? 

5. Memory Access Ordering 
Most processors reorder memory accesses to improve performance, but they do so in such a way 

that most programs execute correctly even when the programs were not developed with a full 

understanding of how processors can reorder memory accesses. However, programs that interact 

with devices, or with other processors must be explicitly aware of issues of memory ordering. 

6. Memory Access Reordering Problems 
While some processors provide more memory access ordering guarantees than others, many 

processors provide only very weak ordering guarantees, and few processors include hardware to 

prevent memory accesses from appearing to be reordered. Further, the guarantees provided by most 

processors are very intricate and in some cases difficult to apply correctly. 

We define the “program order” of a sequence of memory accesses as the order in which the memory 

access instructions are actually executed by a processor. When dealing with hand-written assembly 

code, program order is the same as the order in which the memory accesses occur in source code. 

However, when dealing with C code, program order may be very different from source order because 

compilers can reorder accesses to memory objects not accessed with the volatile qualifier. 

In order to improve performance some processors may also dynamically reorder instructions and 

memory accesses. However, all processors guarantee that, for each memory location X accessed by a 

program, all accesses to X by the program are performed in program order. This rule is what enables 

programs that do not interact with devices or with other processors to execute correctly without 

being aware that memory reordering can take place. 

In general, you should assume that a processor is free to arbitrarily reorder memory accesses to 

distinct memory locations. This has significant implications on the above algorithms and even further 

implications for device drivers and multiprocessor environments (whether AMP or SMP). 

In the above example we have a guarantee that access to FifoRead will be in program order. Similarly 

with FifoWrite or the FifoData array elements. However, we have no guarantee that all accesses to all 

variables will be ordered. 

Let’s take another similar example. if a device driver writes to a buffer in memory, then sets a valid 

bit in a buffer descriptor in memory, and finally writes a device register informing the device that 

another buffer descriptor is valid, the processor may write to the device register first, then write to 

the buffer descriptor, and then write to the buffer. 

There are various hardware implementation details that can lead to memory accesses being 

reordered, for example: 

- Prefetch buffers and speculative execution can both cause data to be loaded by the 

processor before it is definitively requested by a program. 

- Lockup-free (hit-under-miss) caches allow data to be loaded from memory before earlier 

memory accesses are complete. 

- Banked caches can delay the processing of some invalidations, causing loads to be reordered. 

Unlike the previous two mechanisms, banked caches can even cause dependent loads to be 

reordered (where the result of an earlier load is used to determine the address of a 

subsequent load). 

- Store buffers can cause stores to be delayed, reordered, or combined into larger accesses. 

- Non-broadcast memory interconnects can defy causality if cache invalidation messages are 

delayed. 

Processor memory ordering is restricted to program order by using memory barrier instructions. A 

memory barrier instruction informs the processor that some or all of the accesses associated with 



instructions executed before the barrier instruction should not be reordered with accesses 

associated with subsequent instructions. 

Memory barrier instructions, also known as membar or fence instructions, cause a processor or 

compiler to enforce an ordering constraint on memory operations issued before and after the barrier 

instruction. 

Many processors implement a variety of barrier instructions, each of which orders distinct sets of 

accesses and has a distinct performance impact. The behavior of barrier instructions is often very 

complex, so it is required that the OS provides efficient, architecture-independent barrier functions 

that abstract away most of the complexity.  

7. Using FullBarrier() to Order Accesses 
Typically the RTOS should provide a function that we will call FullBarrier() that shall be the strongest 

memory barrier function. It can be used to order any memory accesses or device register accesses, 

regardless of whether the device registers are memory-mapped.  

Using the example of the device driver in the previous section, the following could correctly order the 

writes to the memory buffer, to the buffer descriptor, and to the device register: 

memcpy(buffer, user_data, len); 
FullBarrier(); 
bd->valid = true; 
FullBarrier(); 
*device_command_register = DEVICE_GO; 
 

If we go back to our original FIFO example, the code can be made safe as follow: 

Error FifoGet(int *val) 
{ 
    if(FifoWrite == FifoRead) 
 // FIFO is empty 
 return Failure; 
 
    /* Read value from current FIFO slot */ 
    *val = FifoData[FifoRead % FIFO_SIZE]; 
 
    /* We need to make sure that the */ 
    /* FifoData slot is read before */ 
    /* we mark the FIFO slot as empty */ 
    FullBarrier(); 
 
    /* Increment read index */ 
    FifoRead++; 
 
    return Success; 
} 

Error FifoPut(int val) 
{ 
    if(FifoWrite + 1 == FifoRead) 
 /* FIFO is full */ 
 return Failure; 
     
    /* Store value in next FIFO slot */ 
    FifoData[FifoWrite % FIFO_SIZE] = val; 
 
    /* We need to make sure that the */ 
    /* FifoData slot is written before */ 
    /* we mark the FIFO slot as full */ 
    FullBarrier(); 
 
    /* Increment write index */ 
    FifoWrite++; 
 
    return Success; 
} 

 

fig 4. Single-Reader Single-Writer Ring Buffer FIFO with strong access ordering 

8. Using MemoryBarrier() to Order All Memory Accesses 
While FullBarrier() is the strongest barrier function, it is also the most expensive. Usually only loads 

and stores need to be ordered. 

When only loads and stores need to be ordered, it can be significantly less expensive to invoke 

weaker barriers. For this we introduce MemoryBarrier(). Unlike FullBarrier(), MemoryBarrier() 

requires the caller to indicate what kinds of accesses are to be ordered by providing 2 parameters, 

the first parameters describing the type of accesses that we want to be committed before the barrier 

with respect to the type of accesses described by the second parameters. The MemoryBarrier() 

implementation will then use the appropriate required target barrier instruction, if any, the ensure 

that the requested ordering in enforced. 

The simplest form would be invoking MemoryBarrier(MEMORY_BARRIER_ALL, 

MEMORY_BARRIER_ALL), which emits a barrier that ensures all memory accesses before the call to 

MemoryBarrier() are performed before all memory accesses after the call to MemoryBarrier(). 



9. Ordering Accesses on Processors with dedicated IO buses 
Not all device registers are memory-mapped. For example, x86 processors have separate memory 

and IO buses. Similarly, PowerPC 4xx cores have a separate Device Control Register (DCR) bus on 

which on-chip peripherals can have registers. Accesses to these IO registers usually cannot be 

reordered with other accesses to such registers, but they can be reordered with memory accesses. 

FullBarrier() must be used to order IO accesses with memory accesses. For example, if you want to 

write memory-mapped device registers A and B, then IO registers Q and R, and then memory-

mapped device register C, you could do the following: 

*device_register_A = VALUE_A; 
MemoryBarrier(MEMORY_BARRIER_ALL, MEMORY_BARRIER_ALL); 
*device_register_B = VALUE_B; 
FullBarrier(); 
write_IO_Q(VALUE_Q); 
write_IO_R(VALUE_R); 
FullBarrier(); 
*device_register_C = VALUE_C; 

10. Optimizing Accesses to Regular memory 
In many cases, processors can provide inexpensive barriers for ordering loads and stores to regular 

memory. Consequently, the performance of code that makes frequent use of MemoryBarrier() may 

be improved by specifying that only accesses to regular memory need to be ordered. 

By regular memory we mean RAM that is typically cacheable and does not have any specific 

attribute. This is typically where C variables go. It is also the type of memory returned my malloc(). 

Most application programs only access regular memory therefore this case is very relevant to all 

programs and programmers. 

While some processors can order accesses to regular memory regardless of whether the accesses are 

loads or stores, some processors can only order accesses efficiently in some of the four possible 

combinations of prior loads/stores from regular memory before subsequent loads/stores from 

regular memory. Consequently, in order to improve the performance of barriers that order accesses 

only to regular memory, it is sometimes necessary (and generally advisable) to inform 

MemoryBarrier() of exactly what is being ordered. 

Keeping the same device driver example, suppose that the buffer and buffer descriptor reside in 

regular memory (assuming that there is hardware cache coherency between the processor and the 

device). The following code could be used to ensure that the accesses are performed in the right 

order: 

memcpy(buffer, user_data, len); 
MemoryBarrier(MEMORY_BARRIER_STORE, MEMORY_BARRIER_STORE); 
bd->valid = true; 
 

Note that the MemoryBarrier() call here only orders stores to regular memory before stores to 

regular memory. Many processors have an efficient barrier for ordering this. 

As a second example, suppose that a valid flag and a buffer reside in regular memory that is shared 

with a device or another processor, and that the buffer is only valid if the valid flag is non-zero. The 

following code could be used to check the valid flag and access the buffer, ordering the accesses 

properly: 

if (shared->valid_flag) { 
    MemoryBarrier(MEMORY_BARRIER_LOAD, MEMORY_BARRI ER_LOAD); 
    memcpy(my_copy, shared->buffer, len); 
    ... 
} 
 

This example could be extended slightly by having the program clear the valid flag as an indication 

that it is done reading the buffer. This would require an additional barrier: 

if (shared->valid_flag) { 
    MemoryBarrier(MEMORY_BARRIER_LOAD, MEMORY_BARRI ER_LOAD); 
    memcpy(my_copy, shared->buffer, len); 



    MemoryBarrier(MEMORY_BARRIER_LOAD, MEMORY_BARRI ER_STORE); 
    shared->valid_flag = 0; 
} 

It is also meaningful to order multiple kinds of accesses with one barrier. For example, suppose the 

above example is extended even further by having the program also copy new data into the buffer 

before clearing the valid flag (where some device or some other processor waits for the valid flag to 

be cleared, reads the data from the buffer, processes the data, writes resulting data to the buffer, 

and then sets the valid flag again): 

if (shared->valid_flag) { 
    MemoryBarrier(MEMORY_BARRIER_LOAD, MEMORY_BARRI ER_LOADSTORE); 
    memcpy(my_output, shared->buffer, len); 
    memcpy(shared->buffer, my_next_input, len);  
    MemoryBarrier(MEMORY_BARRIER_LOADSTORE, MEMORY_ BARRIER_STORE); 
    shared->valid_flag = 0; 
} 
 

Note: MEMORY_BARRIER_LOADSTORE only causes loads and stores to regular memory to be 

ordered, while MEMORY_BARRIER_ALL causes all loads and stores to be ordered. Thus, 

MEMORY_BARRIER_LOADSTORE is weaker than MEMORY_BARRIER_ALL. 

11. Optimizing Accesses to Memory of Other Types 
Some processors (such as PowerPCs) have special barrier instructions that can be used to efficiently 

order accesses to non-regular memory. 

Here are the three main other memory types: 

- Volatile memory: Non-cacheable, and speculative loads (including prefetching) are 

prohibited 

- Uncacheable memory: Non-cacheable, but speculative loads (including prefetching), load 

combining, and store combining are permitted 

- Write-through memory: Cacheable but write-through required 

Let’s reuse the example of the device driver that is writing to a buffer, a buffer descriptor, and a 

device register, and assume that the device does not have hardware coherency with the processor's 

caches. The buffer is expected to reside in normal (writeback-cacheable) memory, so you will need to 

instruct the caches to write back any dirty blocks corresponding to the contents of the buffer (using 

some kind of FlushCaches() API). The buffer descriptor will be placed in some write-through memory 

so that stores to the buffer descriptor are coherent with the device. The device register must be 

mapped volatile. 

The following code could be used to order the stores: 

memcpy(buffer, user_data, len); 
FlushCaches(buffer, len); 
bd->valid = true; 
MemoryBarrier(MEMORY_BARRIER_WT_STORE, MEMORY_BARRIER_VOLATILE_STORE); 
*device_command_register = DEVICE_GO; 
 

It is assumed here that FlushCaches() implicitly orders the flush before any subsequent memory 

access performed by the caller, so no barrier is required after the call to FlushCaches() before the 

store to the buffer descriptor. 

If we go back to our FIFO example it should now look like this: 



Error FifoGet(int *val) 
{ 
    if(FifoWrite == FifoRead) 
 /* FIFO is empty */ 
 return Failure; 
 
    /* Read value from current FIFO slot */ 
    *val = FifoData[FifoRead % FIFO_SIZE]; 
 
    /* We need to make sure that the */ 
    /* FifoData slot is read before */ 
    /* we mark the FIFO slot as empty */ 
    MemoryBarrier(MEMORY_BARRIER_LOAD, 
                  MEMORY_BARRIER_STORE); 
 
    /* Increment read index */ 
    FifoRead++; 
 
    return Success; 
}

Error FifoPut(int val) 
{ 
    if(FifoWrite + 1 == FifoRead) 
 /* FIFO is full */ 
 return Failure; 
     
    /* Store value in next FIFO slot */ 
    FifoData[FifoWrite % FIFO_SIZE] = val; 
 
    /* We need to make sure that the */ 
    /* FifoData slot is written before */ 
    /* we mark the FIFO slot as full */ 
    MemoryBarrier(MEMORY_BARRIER_STORE, 
                  MEMORY_BARRIER_STORE); 
 
    /* Increment write index */ 
    FifoWrite++; 
 
    return Success; 
}

 

fig 5. Single-Reader Single-Writer Ring Buffer FIFO with fine-grain access ordering 

 

In the above, we guarantee that the write to FifoRead/FifiWrite will happen after accessing the 

FifoData array. However, the compiler or the CPU may actualy optimize and decide to read 

FifoRead/FifiWrite before accessing FifoData if that is considered more efficient for the CPU. 

12. Optimizing Atomic Operations 
A successful atomic operation (such as TestAndSet() and AtomicSwap()) involves an atomic load and 

store to a value in regular memory (other memory types are not supported). In ordering the load 

and/or store with respect to other memory accesses, better performance can sometimes be 

achieved by informing MemoryBarrier() when a load and/or store is actually part of an atomic 

operation. This is because, very often the RTOS atomic primitives will themselves use some form of 

barrier. First, consider the case of ordering atomic operations in general (whether or not they are 

used for locks) with respect to other memory accesses. Consider the following example: 

if (TestAndSet(&shared->state, 0, 1) == Success) { 
    MemoryBarrier(MEMORY_BARRIER_ATOMIC_STORE, MEMO RY_BARRIER_LOADSTORE); 
    memcpy(state0_output_copy, shared->buffer, len) ; 
    memcpy(shared->buffer, my_state2_input, len); 
    MemoryBarrier(MEMORY_BARRIER_LOADSTORE, MEMORY_ BARRIER_STORE); 
    shared->state = 2; 
} 
 

Here, the program attempts to atomically transition the shared state variable from 0 to 1. Then, if it 

actually transitioned the shared state from 0 to 1, it accesses the buffer as in an earlier example, and 

finally sets the shared set to 2 (indicating to a device or another processor that the buffer has data 

valid for state 2). 

The first MemoryBarrier() orders the prior store portion of the prior atomic operation before 

subsequent loads and stores to regular memory. This ensures that the accesses to the shared buffer 

are only performed while the shared state is actually 1. 

In certain cases, it may also be correct to order only the load portion of the prior atomic operation 

before subsequent loads and stores to regular memory, which on some processors results in a more 

efficient barrier: 

if (TestAndSet(&shared->state, 0, 1) == Success) { 
    MemoryBarrier(MEMORY_BARRIER_ATOMIC_LOAD, MEMOR Y_BARRIER_LOADSTORE); 
    memcpy(state0_output_copy, shared->buffer, len) ; 
    memcpy(shared->buffer, my_state2_input, len); 
    MemoryBarrier(MEMORY_BARRIER_LOADSTORE, MEMORY_ BARRIER_STORE); 
    shared->state = 2; 
} 
 



This barrier allows the processor to perform the accesses to the shared buffer before actually waiting 

for the transition of the shared state to be committed to the memory system. Because the accesses 

to the shared buffer are conditioned on the success of the TestAndSet() call, they are still not actually 

performed unless the shared state is about to be transitioned to 1. 

However, this optimization is not correct if another processor might be reading the buffer while the 

shared state is 0. Specifically, the other processor might read the buffer and read the shared state as 

0 and assume that the buffer contents are valid for state 0 (or for some earlier state), when in fact 

the above program may already have started modifying the buffer's contents. 

13. Optimizing Lock Acquisition and Release 
If an atomic operation is actually part of a lock acquire or lock release, even better performance can 

sometimes be achieved by informing MemoryBarrier() of this fact. Using the previous example, 

suppose that instead of a shared state you have a shared lock. A processor acquires the lock by 

transitioning (atomically) the lock value from 0 to 1, and releases the lock by transitioning it from 1 to 

0. You could potentially improve performance by doing the following: 

if (TestAndSet(&shared->lock, 0, 1) == Success) { 
    MemoryBarrier(MEMORY_BARRIER_IMPORT_ATOMIC_LOAD , MEMORY_BARRIER_LOADSTORE); 
    memcpy(state0_output_copy, shared->buffer, len) ; 
    memcpy(shared->buffer, my_state2_input, len); M emoryBarrier(MEMORY_BARRIER_LOADSTORE, 
        MEMORY_BARRIER_EXPORT_STORE); 
    shared->lock = 0; 
} 
 

In this example, the first MemoryBarrier() creates an `import` barrier, while the second 

MemoryBarrier() creates an `export` barrier. An import barrier ensures that all shared data 

associated with a lock are imported at the point of the barrier, and it does this by ordering the load 

that sees the lock as being free before the accesses within the critical section. An export barrier 

ensures that all shared data accesses performed in the critical section are exported at the point of 

the barrier, and it does this by ordering the accesses within the critical section before the store that 

frees the lock. 

14. Memory Barrier on SMP systems 
On an SMP system, we have multiple cores. From any specific core point-of-view, other cores are  

just like peripherals. However, unlike most peripherals, cores in an SMP system have an identical 

cache architecture. It also means that the system is design for efficient core synchronization. Because 

most often cores have local cache(s) they will usually implement the MESI protocol (Modified 

Exclusive, Shared, Invalid, also known also as Illinois protocol due to its development at the 

University of Illinois at Urbana-Champaign) , a widely used cache coherency and memory coherence 

protocol. For a core to “see” memory changes from other cores, we only need to ensure that writes 

are committed to memory. After this the MESI protocol will ensure coherency between the caches 

and cores. 

15. Non-blocking algorithms on SMP systems 
For Non-blocking algorithms to work on SMP systems, we need to add the correct barriers at the 

various key points in the algorithm, much like we did for interacting with peripherals in the previous 

examples. However, those SMP-specific barriers are not required on non-SMP system and using 

barriers will have some impact on performance as the compiler and/or the processor will not be able 

to do there complete reordering optimizations. Also the barrier instructions will introduce “bubbles” 

in the CPU pipeline waiting for the barrier conditions to be met. Therefore, SMP barriers should only 

be used on SMP systems and removed on non-SMP systems for performance and code size reasons. 

Practically, SMP barriers are identically to the previously described barriers when dealing with 

peripherals. We just need to have a way to enable those barriers only when required without having 

to rewrite our code. 



This can be accomplished quite simply by creating a macro that would look somewhat like this: 

#ifdef NO_SMP 
 /* We are sure we are running on a single core sys tem */ 
 /* So we don’t need SMP support */ 
#define SMPMemoryBarrier(x, y) 
#else 
 /* We may be running on an SMP system */ 
 /* So let’s add SMP support */ 
 #define SMPMemoryBarrier(x, y) MemoryBarrier(x,y) 
#endif 
 

We can now make our code SMP-safe and SMP-efficient: 

Error FifoGet(int *val) 
{ 
    if(FifoWrite == FifoRead) 
 /* FIFO is empty */ 
 return Failure; 
 
    /* Read value from current FIFO slot */ 
    *val = FifoData[FifoRead % FIFO_SIZE]; 
 
    /* We need to make sure that the */ 
    /* FifoData slot is read before */ 
    /* we mark the FIFO slot as empty */ 
    MemoryBarrier(MEMORY_BARRIER_LOAD, 
                  MEMORY_BARRIER_STORE); 
 
    /* Increment read index */ 
    FifoRead++; 
 
    /* We should inform the other */ 
    /* cores that a slot was freed */ 
    /* This will force the above write */ 
    /* to be commited */ 
    SMPMemoryBarrier(MEMORY_BARRIER_STORE, 
MEMORY_BARRIER_ALL); 
 
    return Success; 
}

Error FifoPut(int val) 
{ 
    if(FifoWrite + 1 == FifoRead) 
 /* FIFO is full */ 
 return Failure; 
     
    /* Store value in next FIFO slot */ 
    FifoData[FifoWrite % FIFO_SIZE] = val; 
 
    /* We need to make sure that the */ 
    /* FifoData slot is written before */ 
    /* we mark the FIFO slot as full */ 
    MemoryBarrier(MEMORY_BARRIER_STORE, 
                  MEMORY_BARRIER_STORE); 
 
    /* Increment write index */ 
    FifoWrite++; 
 
    /* We should inform the other */ 
    /* cores that new data is available */ 
    /* This will force the above write */ 
    /* to be commited */ 
    SMPMemoryBarrier(MEMORY_BARRIER_STORE, 
MEMORY_BARRIER_ALL); 
 
    return Success; 
}

 

fig 6. SMP Single-Reader Single-Writer Ring Buffer FIFO 

 

An alternative and probably better implementation may take advantage of the RTOS atomic 

operations, which should be SMP-aware if required: 

Error FifoGet(int *val) 
{ 
    if(FifoWrite == FifoRead) 
 /* FIFO is empty */ 
 return Failure; 
 
    /* Read value from current FIFO slot */ 
    *val = FifoData[FifoRead % FIFO_SIZE]; 
 
    /* We need to make sure that the */ 
    /* FifoData slot is read before */ 
    /* we mark the FIFO slot as empty */ 
    MemoryBarrier(MEMORY_BARRIER_LOAD,      
              MEMORY_BARRIER_ATOMIC_STORE); 
 
    /* Increment write index */ 
    AtomicIncrement(&FifoRead); 
 
    /* The correct SMP-barrier should be */ 
    /*  part of the Atomic operation */ 
    /* implementation in order to */ 
    /* guarantee system-wide atomicity */ 
 
    return Success; 
} 
 

Error FifoPut(int val) 
{ 
    if(FifoWrite + 1 == FifoRead) 
 /* FIFO is full */ 
 return Failure; 
     
    /* Store value in next FIFO slot */ 
    FifoData[FifoWrite % FIFO_SIZE] = val; 
 
    /* We need to make sure that the */ 
    /* FifoData slot is written before */ 
    /* we mark the FIFO slot as full */ 
    MemoryBarrier(MEMORY_BARRIER_STORE, 
              MEMORY_BARRIER_ATOMIC_STORE); 
 
    /* Increment write index */ 
    AtomicIncrement(&FifoWrite); 
 
    /* The correct SMP-barrier should be */ 
    /*  part of the Atomic operation */ 
    /* implementation in order to */ 
    /* guarantee system-wide atomicity */ 
 
    return Success; 
}

fig 7. SMP Single-Reader Single-Writer Ring Buffer FIFO using Atomic primitives 



16. Conclusion 
We have seen that it is possible using the correct atomic and barrier primitives to write efficient lock-

free algorithms even on SMP-systems. It is also possible to write CPU independent and nearly 

optimal code if the underlying RTOS provides a rich set of API implementing various atomic 

operations and fine-grained barriers. In practice real processor barrier implementations are rarely if 

ever as fine-grained as the above examples may imply. However, providing a rich barrier semantic 

usually allows the RTOS, with the help of the right optimizing compiler, to map precisely this abstract 

semantic to the actual underlying instruction set architecture, nearly avoiding any expensive runtime 

decisions on the type of barrier to use. 

It is also interesting to note that algorithms that use Mutexes, Semaphores, and/or Critical Sections 

correctly do usually work well on SMP systems even though usually no special care is taken to use the 

correct barrier operations. The reason is that the RTOS will implement the barriers in the 

implementation of those synchronization primitives. But because the RTOS implementer has no prior 

knowledge about the semantic of the code using those primitives, the implementer will often have to 

default to the strongest barriers even though they can be quite expensive, especially on higher-end 

processor with sophisticated pipeline and cache architectures. This emphasize the need to use 

portable SMP-ready non-blocking algorithms in order to achieve the highest throughput and 

determinism. 


