
HAL Id: hal-02263444
https://hal.science/hal-02263444v1

Submitted on 4 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deterministic Execution Sequence in Component Based
Multi-Contributor Powertrain Control Systems

Denis Claraz, Stefan Kuntz, Ulrich Margull, Michael Niemetz, Gerhard Wirrer

To cite this version:
Denis Claraz, Stefan Kuntz, Ulrich Margull, Michael Niemetz, Gerhard Wirrer. Deterministic Execu-
tion Sequence in Component Based Multi-Contributor Powertrain Control Systems. Embedded Real
Time Software and Systems (ERTS2012), Feb 2012, Toulouse, France. �hal-02263444�

https://hal.science/hal-02263444v1
https://hal.archives-ouvertes.fr


Deterministic Execution Sequence in Component
Based Multi-Contributor Powertrain Control Systems

Denis Claraz1, Stefan Kuntz2, Ulrich Margull3, Michael Niemetz4, Gerhard Wirrer2

1Continental Automotive France S.A.S., 1 Av. Paul Ourliac, BP 83649, 31036 Toulouse Cedex 1, France,
denis.claraz@continental-corporation.com

2Continental Automotive GmbH, P.O. Box 100943, D-93009 Regensburg
{stefan.kuntz,gerhard.wirrer}@continental-corporation.com

31 mal 1 Software GmbH, Maxstraße 31, D-90762 Fürth, ulrich.margull@1mal1.com
4University of Applied Sciences Regensburg, LaS3 - Laboratory for Safe and Secure Systems, Faculty of

Electrical Engineering and Information Technology, P.O. Box 12 03 27, D-93025 Regensburg,
michael.niemetz@hs-regensburg.de

Abstract: Modern complex control applications, e.g. engine
management systems, typically are built using a component
based architecture, enabling the reuse of components and
allowing to manage the complexity of the application in terms
of functional content, size and interfaces. This approach of in-
dependently developed components is supported by the con-
cepts available in AUTOSAR and therefore can be expected
to gain increasing importance. However, due to the nature of
the task of control applications there still is a strong coupling
between individual parts of the components resulting in signal
chains and consequently in sequencing requirements. The
challenge to get such execution sequences implemented
correctly is increased, as often the components are delivered
by different and external parties.
Our approach extends the idea of functional partitioning of
the application into the time domain by defining a system
of phases with a fixed sequence and a defined content.
This allows to design components right from the beginning
into this sequencing frame like they are designed today into
the component partitioning frame and to define a system
sequencing across different suppliers.

Keywords: Real-time systems, integration, reuse, automo-
tive, sequencing, modular software

I. Introduction

Modern control applications, like the ones used in state
of the art automotive powertrain systems for controlling
combustion engines, require to manage a large number
of input signals delivered by all kinds of sensors which
are connected directly to the control unit or via serial
buses of low to high bandwidth capabilities (e.g. LIN,
CAN FlexRay). In addition, a considerable amount of
output actuators have to be driven, most of them with
hard real time requirements (∼ µs) and data has to be
provided to other control units via the serial buses.
The relations between all these input and output signals
are managed by a variety of strongly interacting control
algorithms consisting of different functions (or features).
This strong interaction seems to be a particularity of
engine management systems, e.g. compared to body
control units where there are fewer interactions be-
tween different features.

Figure 1. Simplified view of the dynamic dependencies between
entry points of different components caused e.g. by signal flow.

During the last two decades, the increasing size of the
control application software lead to the development of
component based software architectures in this applica-
tion domain. However, the tight coupling between differ-
ent components (a large number of components which
are interacting closely by exchanging many signals to
implement the desired control behavior) as it is shown
in Figure 4 as well as between different time domains
(see Figure 1) remains, making the task of integration of
different components into one correctly working device
a challenge. For more information on this subject, see
also [1].
The mentioned dependencies in the time domain result
typically in data flow sequence dependencies, thus
focusing the attention of component developers as well
as system integrators on the aspect of data flow details
and leading to more and more complex data flow
dependencies. In contrary, the approach we present
in this work breaks this vicious circle by moving back
the sequence of execution into the center of attention,
again, thus simplifying independent component devel-
opment as well as their later integration into a product.



2

In the first section of this paper, we will depict the
main architectural characteristics of Engine Manage-
ment System (EMS) software, as background informa-
tion to understand our motivation and approach. This
section will also describe the consequences of these
characteristics on the integration process. In a further
section, we will describe the practices used in our
domain, and the state of the art known by us. Then,
the support provided by the AUTOSAR standard will
be mentioned, and then the phase concept will be
described, including all its related impacts. An addi-
tional chapter will describe the complementary means
developed in order to completely cover the topic of
calculation sequence management.

II. Background
The context of Engine Management Systems (EMS)
software is dominated by the classical business drivers
of cost reduction (higher integration), shortening of
time-to-market (higher reuse), and increase of quality.
In parallel to these influence factors, the most important
technical constraint for EMS design is of course the
reduction of emissions and fuel consumption, which
means an increasingly fine adjustment of engine pa-
rameters, leading to growing computation needs and
tighter real-time constraints.

A. Technical Complexity: some figures

Consequently, an EMS software is characterized by
its technical complexity which is induced by the in-
troduction of new standards, legal requirements and
new technologies like multi-core controllers, AUTOSAR,
model driven development, etc. A typical modern high-
end EMS (6 cylinder, gasoline, direct injection) con-
trols today more than 200 inputs (e.g. sensors) and
outputs (e.g. actuators). The corresponding software
is built from nearly 2.000 modules (”atomic SW com-
ponents”), more than 5.000 source files and half a
million lines of C-code. Nearly 10.000 executable en-
tities (”Runnables”, ”Services”, ”Macros”) manipulate
more than 30.000 data objects. In terms of resource
consumption this results in 1.8 MB of program flash,
and 100 kB of RAM.
A good impression of this technical complexity is given
by Figure 2 which shows the number of runnables to
be integrated on a project for some standard execution
rates.

B. Coupling and partitioning

Coupling between components is a major characteristic
of Engine Management Systems. Even if a functional
partitioning following the physical system architecture
(all functions related to one system component grouped
into one SW abstraction) is applied on the SW, there
remains a strong coupling between the parts, mak-
ing the job of integration and development harder.

Figure 2. Number of runnables to be integrated in some typical
tasks. Not all tasks/runnables are represented.

Figure 3. Representation of some functional aggregates, and
their relationships. The software link, visible as data or control flow
between the components is a consequence of the physical interaction
between the controlled system actuators via the physical processes
of the controlled system.

The main reason for this the fact that the managed
sensors and actuators interact on the same physical
process/system: the combustion engine.
This becomes clear in a small (and simplified) example:
When the driver presses the gas pedal, the throttle gets
opened, resulting in an higher mass air flow into the
intake.
To correctly control the stochiometry, the fuel mass to
be injected is adjusted according to the increase in
available oxygen. Then, the spark advance is adjusted
in order to initiate combustion at the right time.
Depending on engine load, temperature and engine
speed, the risk of engine knocking arises, requiring
additional adjustments in the ignition timing.
At the end, we see that all these system functions,
which are controlling (apparently independent) sensors



3

Figure 4. Representation of the coupling between modules, based
on the involvement of signals in different connectors.

and actuators, and are implemented as software func-
tions, permanently interact with each other, as seen in
Figure 3.
The big challenge is to define a functional (or static)
partitioning, which provides the lowest coupling be-
tween the parts. Continental introduced such functional
partitioning some years ago, together with a reuse
concept based on so-called aggregates (see [2]), a
strategy widely used in the meantime which can be
found also in AUTOSAR concepts.
A clear consequence of the coupling is seen in Figure 4
which shows the relationship between signals and their
involvement in connectors: Whereas around 5.000 sig-
nals (data objects) are involved in only one connector
(1:1 relation), many signals are involved in more than
10 connectors, and some are involved in more than 100
connectors (1:100 relation), i.e. coupling together 100
modules.
Moreover, it has to be noted, that the coupling between
modules does not depend only on quantity of signal
connectors, but also on their nature, as well as the type
of usage of the signal.
A direct consequence of this coupling (signal flow) be-
tween the modules is a coupling (signal flow) between
the corresponding runnables. And, as there are typi-
cally several runnables per module (for diverse reasons
like e.g. functionality or efficiency), a corresponding
picture of Figure 3 can be drawn for the timing domain:
Operating system tasks play the role of integration
artifacts in the timing domain like aggregates (com-
positions) play it in the static/functional domain of the
architecture. Figure 5 provides an overview over the
dependencies between the tasks available in a typical
system.

C. Component based development

In order to reduce price and time to market, a strategy
of component based development has been developed,
leading to a high level of reuse. The organization and
responsibilities have been adapted to this process, as
well as the SW architecture: For instance, the static par-
titioning has been defined to master the above describe

Figure 5. Representation of some tasks (”Timing Aggregates”), and
their relationships. Information which is produced at a certain rate is
often needed in functions running at different rates.

coupling, and to ease reuse. Generic functions, like
for instance the engine rotation and speed acquisition
or diagnostic management, are developed only once
centrally by a generic team, and then ”just” integrated in
different projects. Thanks to a standardized partitioning
and thanks to advanced configuration capabilities (par-
ticularly important for a multi-customer with diverging
needs approach), several millions of our ECUs in the
field share the same sub-set of modules.
This component based approach is becoming more
common, and allows to serve a wide range of business
models: From the turn-key project, where the complete
system (mechatronical components, electronic hard-
ware, software) is designed by Continental, to ”box-
business” projects, where we just deliver an ECU plus
low-level software layer. Finally a typical project is an
integration of components developed by Continental,
our customers, other standard component suppliers
(e.g. OS, communication layers), and competitors. It is
clear that in this context, integration — and the com-
munication about the integration related requirements
— becomes a central topic.

D. Dynamic integration – a multi-dimensional problem

While static integration takes care of choosing com-
ponents, configuring them, establishing signal con-
nections, stubbing or adapting missing parts, the dy-
namic (timing domain) integration consists, among
other things, in calling the runnables in the right place.
While a mistake in the static integration is in general
immediately detected, a mistake in the dynamic inte-
gration may be very hard to identify and reproduce, as
its effects may be very sporadic.
Basically, the activity of dynamic integration requires for
each of the runnables:



4

Figure 6. Real life example of a task, with dependencies between
the runnables. Each box represents a runnable, green lines represent
a ”natural flow”, red lines represent a ”reverse flow” generating retard.
Each line gathers one or more signals.

1) Selection of the calculations rate and a matching
OS task. Here, the required recurrence is not the
only criteria.

2) Selection of position in the task, taking into account
different constraints: sequence constraints relative
to other runnables, data protection needs, timing
constraints, parallel execution on multi-core sys-
tems, etc.

The topic we address in this paper is the topic of dy-
namic integration, and in particular the correct handling
of sequence of treatments.

III. State of the Art Approach

The sequence is today empirically defined and mostly
driven by a data flow approach: data are supposed
to be produced before being consumed. Nevertheless,
due to the amount of data flow, this strategy is diffi-
cult to apply, particularly including the communication
between different software component suppliers. This
can be easily understood by just having a look at a
real-life example, as shown in Figure 6.
Reverse flows and algebraic loops cannot be avoided
in every case, and do not have always a functional
impact. The resolution of these ”flow weaknesses” re-
quires an identification of the need, establishment of

priorities/trade-offs (in particular in the case of loops),
and finally leads to a high integration effort, when
feasible.
One concept introduced by Continental already with the
EMS2 platform in the late 90’s, which helps to perform
integrations correctly and with a reasonable effort, is
the simple approach of Schedulers: These ”front-end”
functions reduce significantly the integration effort on
project side by predefining once re-usable sequences
on reused component side.
The main shortcoming of this approach is that only a
chosen sequence can be documented (on component
level as well as on project level) while it remains unclear
what exactly are the sequence requirements behind the
sequence.
In the more and more frequent use case of OEM or
3rd party software integration, it becomes common to
get a required sequence of treatments as input. But it
covers the 3rd party vs. integration SW, and so does
not cover the whole picture.
Anyway, even if there is a documentation as input to the
integration, there remains the problem of the relevance
and exactness of this documentation, on which criteria
it has been established.

IV. Inadequateness of AUTOSAR

During the last years, AUTOSAR gained increasing at-
tention in the automotive community, mainly because
of its focus on supporting the assembly of the software
for a control unit out of a pool of components while
even permitting a seamless moving of components be-
tween different control units. However, even if AUTOSAR
has grown extremely feature rich (and consequently
extremely complex) it still lacks support for important
aspects of the integration of the software system due
to the complexity of the requirements to be taken into
account at integration time.
When looking for example on the support for sequenc-
ing definition in AUTOSAR, we find that the sequence
of the execution of runnables is purely seen as an
integration artifact within the project context and the
sequencing information is not reusable but stored in
a project-wide information container. For instance, the
previously mentioned basic principle of scheduler is
simply not supported by AUTOSAR. Consequently, there
is no formal way to set up requirements or even to
establish a common idea of sequencing between con-
tributors of different components within a system.
The AUTOSAR Timing Extensions [3] address this point
for describing temporal dependencies in a formal way
thus bringing a huge improvement into AUTOSAR, as
they provide the possibility to document sequence re-
quirements between different runnables within a system
by using the timing constraint feature. They provide
the means to define temporal relations between known
items (runnables, events) in the system. However, the
timing extensions do not actually aim at defining or de-
scribing the dynamic aspects of an architecture frame



5

for a product line or a product platform: In such a setup,
the sequencing requirements have to be expressed
without knowing the system in detail — especially
not knowing all the components and their exported
runnables.
Therefore, we are lacking the description of a common
set of sequences in the system, on which the develop-
ers can rely when designing their components and e.g.
are defining the breakdown into individual runnables.
In the following section we propose a concept of a
dynamic backbone that complements the existing ap-
proaches by adding such an architectural frame.

V. The Phase Concept

The idea described in this section is inspired by the
idea used in the boot concepts of UNIX-like operating
systems [4]. To overcome the current practice of engi-
neering the execution sequence that leads to a correctly
operating control device when integrating ready-to-use
components into a project, we are proposing to define
in the beginning (i.e. before the component develop-
ment is started) a dynamic partitioning, constructed out
of several phases. It is important to note, that the needs
of this dynamic partitioning are not fitting to the borders
defined by the state-of-the-art feature driven static par-
titioning of the automotive powertrain software systems.
Typically, there is the need to interleave the execution
of different components within the calculation sequence
of e.g. one task and consequently, one element of the
static partitioning will typically export calculations to be
executed within several different phases (in addition to
exporting for different OS tasks).
When defining such a dynamic partitioning for the
phases there needs to be defined an unambiguous
sequence of execution as well as a clear description
of what kinds of activities shall be performed within
each phase. Of course, this definition will depend on
the needs of the application domain of the control unit.
Here we present an example designed for being used
in an engine control unit (see Figure 7).

Figure 7. Simplified example of a partitioning of the dynamics.
The potential content of each task is structured into a (maybe task
specific) set of phases. Each phase has assigned an unique position
within the task sequence and an exact description of which kinds of
jobs in terms of the application domain have to be performed within
it.

With these phases having been defined, the devel-
opment of the components can be started. Typically,
the component developer will face the situation that
one component needs to perform activities which have
been assigned to different phases due to the phase
descriptions. Consequently, the component developer
will now provide different entry points (typically function
calls or runnables) in his component in order to allow
the different parts of the component to run (i.e. being
invoked) within the different phases.
This kind of proceeding is not entirely new in the
area of automotive powertrain control units. Already
today there is some agreement about e.g. the available
recurrences and associated OS tasks and the compo-
nent developers take this constraint into consideration
when designing the components. Our approach just
proposes to step to a more fine grained structuring of
this dynamic framework for allowing the consideration
of sequencing needs.
As already mentioned before, the definition of the
phases will strongly depend on the application domain
of the control unit. Also, it may be necessary to adapt
the set of phases for each available control flow source
(e.g. interrupt, OS task, software event) within the
system which is calling a varying set of functions that
are composed at integration time based on the set of
components available in the system. There are multiple
benefits with this approach:
• Integration is made easier: As soon as the task is

chosen based on the timing constraint (recurrence,
jitter, . . . ), the position in the sequence is predefined
by the phase. A fine tuning inside the phase can
be done, if needed. Due to the number of involved
functions within each phase this task is much easier
than before.

• Integration is reproducible: As the phase is attached
by definition to the reused runnable, the integration
of the same runnable is identical on all projects.

• Integration is prepared at development time: The
developer of the component selects the phase for
the calculation feature. He even can base his design
on the selected phase and on the phase where the
information he uses as input for his calculation is
produced in.

• The integration constraints of one runnable are ex-
pressed independently of the context: The most in-
teresting aspect of the phase is that it allows to
express a sequence need, by essence an extrinsic
information involving different ”partners”, without any
reference to any other artifact.

Different extensions of this concept are under investi-
gation: Mapping of these dynamic design patterns to
the static patterns, which are used to define the modu-
larity of functions. This would reduce the gap between
static and dynamic architectures. Another extension is
to derive, from the phase of a runnable, the phase
of the data which are produced by this phase. This
would provide a better classification of the thousands



6

Concept AUTOSAR Support

Phase concept #
Component schedulers #
Runnable sequence constraints �
Project sequence �

Table I
OVERVIEW OF SEQUENCE MANAGEMENT CONCEPT SUPPORT

PROVIDED BY AUTOSAR.

of data handled an EMS-SW. These extensions are
currently under evaluation, and would require additional
description of modules, or data. Here again, AUTOSAR
support would be required.

VI. Complementary Approaches

In addition to the phase concept some complementary
measures are deployed. In effect, with more than 200
runnables to be integrated in a task the phase can
only be a first level of integration as the number of
phases will be limited. So, additional kinds of sequence
constraints are used in combination with the phase
concept: Sequence constraints between runnables and
sequence constraints relative to data flow (producer
vs. consumer of data). These constraints are like the
phase assignment defined at development level and
reused at integration time. They are used to fine-tune
the position of the runnables inside the phase and they
may be expressed using the AUTOSAR Timing Exten-
sion concepts ExecutionOrderConstraint, and partially
AgeConstraint (for details, please see [3]).
As already mentioned above a complementary mech-
anism used to handle the sequence of runnables is
the so-called ”scheduler” concept. When building a
composition of different modules, an encapsulation of
the internal sequence is reached by using schedulers.
The big benefit of this approach is that by the integrator
the multiple modules are seen as one single runnable
to be integrated. The integrator is only responsible for
correctly setting the position of this front-end call within
the task, but does not need to take care about the
component internal sequence, which is defined in a re-
usable way at design time.
At the end, the correct integration of runnables into
tasks is not only a question of sequence (based on
the previously described mechanisms): in parallel, the
execution time of functions, data consistency issues,
schedulability aspects need also to be considered. But
this could be the subject of another paper.

VII. Case study

In order to validate the approach, a real application was
reworked by applying the concept. Existing runnables
were analyzed and classified into the different phases,
depending on the contained control algorithm. The
analysis of the runnable content was performed based

on functional aspects and the data flow between the
runnables was not considered. However, due to the
fact that a re-design of existing components according
to the defined framework of phases was not possible
during the case study, in some special cases data flow
based placement could not be avoided. Figure 8 shows
as an example the differences in calculation sequence
due to the piloting for one task. After the redesign of
the sequence of runnables inside the two main tasks,
containing 80% of the control functions the project was
successfully tested on a software test bench as well as
in the car.

Figure 8. Changes that were applied during the case study to
the sequence of calculations. The diagram shows the starting point
(left), the first intermediate status, consisting of the identification of
the runnable phases, but without re-sequencing, and (right) the final
status. It shows also, for the particular function of injection (that we
can expect to be critical), how its original placement has changed
and is now distributed over the task phases.

VIII. Summary and Outlook
The high complexity and close coupling of Engine
Management software makes integration of runnables
into tasks a real challenge. This topic gains increasing
importance due to the following recent trends:
• Increased portion of third party software.
• Increased complexity and size of the software.
• Introduction of multi-core controllers.
• Shortened development cycles.
Different mechanisms have been developed by Conti-
nental Automotive Powertrain in order keep the inte-
gration under control. The phase concept is the cor-
ner stone of our strategy, and enables us to express



7

integration constraints without referring to a specific
environment and thus allows a definition of sequences
across competing suppliers of components.
The migration of our portfolio is starting now, and any
new functionality will be developed according to this
framework.
Concerning AUTOSAR use, the approach followed by
Continental has been to first start from our original
needs and situation; then, to build-up the most ad-
equate solution independently of any standard; and
finally check at the end how (and if) the standard can
be applied to support the concept.
For the unsupported aspects, model transformation will
be used to connect our Architectural model to the
AUTOSAR standard, like to any other customer specific
standard.
Our next step will be to get this concept integrated
into AUTOSAR, in order to guarantee standardization,
to ease discussion between parties, and to improve the
availability of development tool solutions.

References
[1] D. Claraz and M. Niemetz, “Engine management software dy-

namic architecture versus integration,” in ERTS 2008, 2008.
[2] D. Claraz, K. Eppinger, and L. Berentroth, “Reuse strategy at

Siemens VDO Automotive: The EMS2 Powertrain platform archi-
tecture,” in ERTS 2004, 2004.

[3] (2010, 11) Specification of timing extentions. AUTOSAR Consor-
tium. [Online]. Available: http://www.autosar.org/download/R4.0/
AUTOSAR TPS TimingExtensions.pdf

[4] A. Frisch, Essential System Administration, 3rd ed. O’Reilly, 8
2002.

[5] M. Deubzer, U. Margull, J. Mottok, M. Niemetz, and G. Wirrer,
“Partitionierungs-Scheduling von Automotive Restricted Tasksys-
temen auf Multiprozessorplattformen,” Proceedings of the Sec-
ond Embedded Software Engineering Congress, December
2009.

http://www.autosar.org/download/R4.0/AUTOSAR_TPS_TimingExtensions.pdf
http://www.autosar.org/download/R4.0/AUTOSAR_TPS_TimingExtensions.pdf

	Introduction
	Background
	Technical Complexity: some figures
	Coupling and partitioning
	Component based development
	Dynamic integration – a multi-dimensional problem

	State of the Art Approach
	Inadequateness of Autosar
	The Phase Concept
	Complementary Approaches
	Case study
	Summary and Outlook
	References

