N

N

USE OF MODELLING METHODS AND TOOLS IN
AN INDUSTRIAL EMBEDDED SYSTEM PROJECT:
WORKS AND FEEDBACK

Anthony Fernandes Pires, Stéphane Duprat, Tristan Faure, Cédrik Besseyre,

Jack Beringuier, Jean-Francois Rolland

» To cite this version:

Anthony Fernandes Pires, Stéphane Duprat, Tristan Faure, Cédrik Besseyre, Jack Beringuier, et al..
USE OF MODELLING METHODS AND TOOLS IN AN INDUSTRIAL EMBEDDED SYSTEM
PROJECT: WORKS AND FEEDBACK. Embedded Real Time Software and Systems (ERTS2012),
Feb 2012, Toulouse, France. hal-02263442

HAL Id: hal-02263442
https://hal.science/hal-02263442
Submitted on 4 Aug 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02263442
https://hal.archives-ouvertes.fr

USE OF MODELLING METHODSAND TOOLSIN AN INDUSTRIAL
EMBEDDED SYSTEM PROJECT: WORKSAND FEEDBACK

Anthony Fernandes PiresStéphane DuprtTristan Faurk Cédrik Besseyfe Jack Beringuiet

Jean-Francois Rollahd

1: Atos, 6 Impasse Alice Guy, B.P. 43045, 31024ldase Cedex 03
2: Airbus Operations S.A.S., 316 route de BayoBa@€60 Toulouse Cedex 9

Abstract: In a context where critical embedded systems
are more and more difficult to design while ensgiiigh
safety requirements and a non-ambiguous specditati
Model Driven Engineering offers opportunities tadesks
such challenges and to share information efficjemtla
project.

This paper presents the use of such an approaetm in
industrial software project concerning an embedded
system for aeronautics. We describe the language s
model the software, a subset of UML/SysML allowthg
representation of synchronous concepts and we foous
the functionalities used for the project in the TWASED
framework, to derive substantial benefits from the
modelling. We also present feedback from the ptojec
teams about the use of this approach in this kihd o
project.

Keywords: UML/SysML, TOPCASED, Model Driven
Engineering, embedded system, industrial context.

1. Introduction

In aeronautic, space and automotive fields, ctitica
embedded systems are more and more subjected io hig
safety requirements and complexity increases. dobmes
more difficult for industrial actors to specify guc
systems, while ensuring the quality and the noniguity

of the specification. So an important verificatieffiort is
needed during the development phase to avoid eartds

fix ambiguous requirements.

Model Driven Engineering (MDE), which has had real
success during the last few years, allows desigoedgal
with these constraints and also provides, in an
environment of extended enterprise, an efficieny wa
exchange and share information between partners.

In our case, we took advantage of a MDE approacthéo
software specification of a part of one of our edded
system project. To answer our needs, we chose, as
modelling language, a subset of the UML standard
(Unified Modelling Language) [1], close to the SyisM
language (System Modelling Language) [2], both roi

by OMG (Object Management Group) and we relied on
the TOPCASED framework (Toolkit in OPen source for
Critical Application & SystEms Development) [3],
support for the development of critical embeddesteays
and the use of MDE.

First we propose in this paper to present the somtiethe
project. Then, we present all the works that hagenb
made and functionalities that have been used ierca
provide to project actors a way to derive substhnti
benefit from Model Driven Engineering. Furthermone
propose to review the feedback on the use of such a
approach in an industrial context and present tiential
benefits that aren’t already exploited. We finalbnclude

on the approach and its potential future in othejgets.

2. Context

2.1. Global description

The concerned project is an aeronautic project on a
embedded avionic system which has the particul&ritye
more complex than the common project that our teams
have the habits to deal with. Here, we understand
complexity in the way that the software has sudiuge
size that a non-ambiguous specification is verfialift to
obtain. It is all the more difficult that the projeis
realized by multiple actors divided into differdatations

and so the need to share information efficientlywesy
strong.

It is the reason why the teams decided to use Model
Driven Engineering supporting by UML/SysML language
to help them in their task. They deployed this radtbn a
subset of the project, which is particularly compl®
specify.

Moreover, our work concerns only one step of the
development phase of the project: the specificafidiose
limitations can be explained by the fact that UMygBIL

was never used on this kind of project in our cringand

so we need to gain confidence in the method, before
deploying it on a full development cycle.

2.2. The synchronous aspects

The subset of the concerned project is a softwairehie
management of avionic components. The work of the
project teams is to specify, to design, to devedog to
test this software.

The software is composed of a manager which sugesvi
components, and more precisely the applicatiorthexe
components. They are expected to work in a syncusn

Page 1/8

way, i.e. we know when a task begins and endsdoh e
component.

Each component application is represented by an
automaton or more precisely a state machine. Timeimg

of the software is governed by a clock. At eacltkltck,
that we called a cycle, all automata are calleseiquence
and each of them realizes one given task. It igdhe of
the manager to ensure that each automaton is called
sequence: it calls the first automaton and whes thi
automaton finishes its task, it waits for the nextle and
the manager can call the next automaton. We onigeno
the case where all automata finished their taskene
cycle. In reality, if the automata do not finisteithtasks
between two clock ticks, all the software is stappe

The details of the expected behaviour are visildene 1.

=T T T
| RS R

Figure 1: global behaviour of the software

2.3. External constraints

The project is subject to external constraints frtm
domain and from actors of the project.

The aeronautic domain is ruled by norms which allow
certifying the quality, the safety and the effiaggrof its
systems and software. This need of certificatioarie of
the major constraints of the project. In aeronauytibe
DO-178B norm [4] defines guidelines for the softevar
production in avionics systems in order to obtdiis t
certification. It describes, for different Developnt
Assurance Level (DAL), the goals to achieve and the
documents to produce at each development step. Our
project is subjected to this constraint, so thggmtoactors
have to deal with these expectations during all lifee
cycle of the project.

Furthermore, we are in a context of client and sub-

contractor. The project was created by Airbus,
international aircraft manufacturer, which imposes
specific constraints for the development. For

confidentiality reasons, we will not detail themthue
keep in mind that they exist. The project is readidy
Atos, an international information technology compa
Atos has the role of subcontractor. Note that we

distinguish two kinds of teams in Atos for this jea: the
project teams that will realize the project, ance th
Methods & Tools team that will support the projesms
by providing them methods and tools.

3. The modélling language

3.1. UML/SysML, basis of our work

The UML language is a standard for the represemtaif
software, defined by OMG and it is largely use. The
SysML language is another standard for the reptaten

of systems of systems. It is an extended subsetMif.

In our case, the subset that we defined is a safdditiL

that is also contained in the subset used for SysML
language, that's why we speak of UML/SysML language
in this paper.

The use of UML/SysML was inducted by the contexd an
a previous project team work. Indeed, they hadeal rfer
representation for their textual requirements. Talegady
did textual specification but they were too compiexe
exploited; so it was decided to use representatiotihe
specification. They used a UML modeller in this pose
but the problem was that they did not really have
formalism: they used modelling as simply graphical
representation. That is why they appealed to théhivis

& Tools team to accompany them in their approachtan
formalize the use of the UML/SyML language.

The work did in that part consists in the definitiof a
subset of the UML/SysML that was restricted to nieeds
of the concerned subset of the project and thatvalll the
representation synchronous aspects of the targgtteim.

3.2. The definition of the subset

We tried to limit the concepts of UML/SysML langeag
to the specific needs of the project and to synobus
constraints. In fact, UML/SysML language is more
adapted to asynchronous behaviour and it was a real
challenge to represent a synchronous one. Our wask
regrouped in guidelines in order to communicaterthe
people in charge of the modelling. The guidelines
describe the useful concepts, how to use them &w a
patterns for the description of synchronous behavibor
this paper, we focus the presentation of our warkive
major issues encountered during the definition af o
subset for the software specification.

First issue: the component representation

It is the first problem to think about for our mdidey:
how to represent our software and its behaviour?

For our needs, we identify three diagrams to use:

e Block diagram: it is a diagram from the SysML
language, it permits here to only represent the
structure of the software and the structural
relations between each of its components. A

Page 2/8

block can also be used to represent service
(factorization ~ of operations used by
components), external services or data type.

e StateMachine diagram: it represents behaviour
thanks to states and transitions. It is the hefart o
the specification. In our case, when it is attached
to a block, it corresponds to the behaviour of the
component represented by the block. This is
what we called an automaton.

e Activity diagram: it represents the details
behaviour of a state in a state machine diagram.
It is composed of actions and transitions. Each
action can be the call of an operation, the call of
a more refined behaviour (call of an activity by
an activity) or an opaque action, which
corresponds to an action that we can't refine
more.

A simple example of each diagram is given Figure 2.

state machine Shil

bdd [packags] erts [System] activity act_example: diagram al:t)

init
State] &

operaiions NextStep

<<hlock»> &
Shil

consiraints.

Statemachine

Block diagram
g diagram

Activity diagram

Figure 2 : example of the 3 used diagrams

These are the only three diagrams that we actuedbd
for the software specification. Moreover, in thdbeee

diagrams, we limit the use of some concepts to be

compliant with synchronous constraints of the saftv
That is what we will see in the next issue.

Second issue: the cycle management of automata

According to the expected behaviour of the software

presented Figure 1, we have a global manager libatsa
at each cycle, to run a sequence of automata,seiag
the behaviour of each component of the softwaregingu
one cycle, each automaton has to realize one aaoa
limited number of actions, before hand over to et
automaton. To obtain that behaviour, we define tteepa
for the representation of state machines.

Like we presented previously, the state machine, or
automaton, is composed of states and transitions. O

purpose here is to limit, at each cycle, the evatubf
automaton to one or to a limited number of state[s)
realize that, we base our subset on the notionvefts
and run-to-completion, defined in the UML specifioa

[1].

In a state machine, the transitions between eath stin
have three major properties:

A trigger: the crossing of a transition is always
run by a trigger. That trigger is an event, explici
or not. When the crossing of the transition is
triggered, the occurrence of the event is
consumed. In our case, to ensure the step-by-step
functioning of the state machine, we define for
each transition a trigger representing by a unique
event, a CallEvent that we called NextStep in our
subset, specific to the automaton.

A guard: it is a condition for the crossing of a

transition. Although a transition is triggered, it

can only be crossed if it satisfies the guard that
may be defined. In our case, a guard is only a
textual condition, useful for the understanding of
the specification.

An effect: the crossing of a transition can have an
effect. In our case, we limit the definition of

effect to temporal negligible actions to be sure
that this effect will not block the state machine

evolution.

It is this definition of a unique specific eventthe trigger
of all transitions that will ensure the step-bypste
functioning. Indeed, the UML specification defindse
notion of run-to-completion for the processing wéet by
state machine. It ensures that the processing afvant
occurrence can only be triggered if the processinthe
previous occurrence is finished. The processingaof
event occurrence represents the crossing of tinsitien
that it triggered and the end of the processinglbthe
synchronous actions (not necessarily the asynchiono
one) defined in the targeted state.

For example, let's describe the common functiorahgn
automaton during one cycle: we consider that duong
cycle, when the automaton is called, the NextStemieis
generated; when it is generated, it is capturethbystate
machine that will allow the crossing of one traiosit the
crossing of the transition will place the state hiae in a
new state and starts the processing of the actiefised
by this state; when the state finishes all the ggeing of
its synchronous actions, it is ready to cross Xisting
transition, but in our case it is blocked thanksthe
trigger, waiting for the generation of a new oceuge of
the NextStep event that will occur in the next eycl

Even if our pattern is based on the definition bist
unique specific event, there is a particular césg tan
appear in our representation: the completion evérd.
said that the crossing of a transition is always by a
trigger, an event explicit or not. In our case, have an
explicit event, NextStep, but we can also havenibed to
define no trigger between two states. In this case,
implicitly define a completion event as the triggdrthe
existing transition. A completion event is an evirdt is
automatically generated at the end of all the Bsicg of
the state’s actions and will automatically trigggre

Page 3/8

crossing of the existing transition if this one Imastrigger
defined. We will see the use of this particularrévie a
next issue.

So, the solution to ensure the step-by-step funictg of
the automaton is:

A unique specific CallEvent defined for all
transition triggers between states that may
occurred during different cycle

» Only define time negligible action for the effect
of a transition

» The activities of the states must be synchronous

We have seen how to manage the run of an autonf@ton
one cycle. But this functioning is based on a higpsis: a
state only does synchronous actions. This is whidt w
guarantee that no asynchronous actions are runviirg
the next automaton is called and so preserve theoted
behaviour of the software. So, the next problemsalee is
to ensure that the behaviour of each state ofutenzaton

is synchronous.

Third issue: the synchronism in an automaton state

An automaton state can have three types of defined
actions, all represented by activities:

e Entry behaviour: behaviour executed when the
state is entered. Its processing is completed prior
to all over actions in the state.

» Do Activity: behaviour executed while being in
the state. It finishes by itself or when the siate
exited.

 Exit behaviour: behaviour executed when the
state is exited. It is executed to completion only
after the others actions of the state are finished.

In our case, we restricted the definition of atiéda in the
state in the entry behaviour only. In this condlitiave
ensure that the actions of the state are alwaypleted at
the end of the run-to-completion processing andvso
ensure the synchronous behaviour of each state.

Furthermore, we limited the definition of activiip a
state to activity that can be done in one cycle ind
synchronous way too. That is why, like explained
previously, we banned the use of all possible
asynchronous actions (like SendSignalAction for
example) from the use of activity diagram.

In this way, we can guarantee a step-by-step fonictg
of each automaton and so the expected cycle maragem
of automaton.

We can resume the pattern for this issue as follow:

e Only define activity in the entry behaviour of a
state

* Only use CallOperation action, CallBehavior
action and Opaque action in activity diagram

Fourth issue: the sequencing of automata

This is one of the major issues of the software
representation. The goal is to call, at each cyebgh
automaton in order to process their task one #ftepther

in a predefined sequence. To ensure that behawaair,
define a pattern based on the notions of Operadiuh
CallOperation Action.

First, we described previously that each componéthe
software is structurally represented by a block ésd
behaviour is represented by an automaton (stat&imgc
which is attached to this same block. Now, we defor
each block an operation. This operation, once d¢aueéll
generate a Call Event, named NextStep in our edsieh
will make the attached automaton evolve to one. Stafs
is the expected behaviour that we presented prslyiou

Secondly, in order to realize the call the operatige rely
on a CallOperation Action defined in an activityhi§
activity is defined in the state machine represgnthe
global manager behaviour of the software. It is tfibbal
manager which is in charge to guarantee the cqllesece
of the different automata, like described FigureThe
activity is composed of numerous CallOperation éwsi
that will call the operation of all the differenibloks of the
modelling software, in a defined order.

Finally, the expected processing is the followiAg.each
clock tick, the behaviour of the global manager is
processed. It runs the activity defined below. Tinst
CallOperation Action is called. It will generate eth
NextStep event that will make the given automaton
evolve. The particularity of a CallOperation Acti@s) if
defined as “synchronous”, to be blocking while the
processing started by the call of the operation raoe
completed. So, the activity cannot call the next
CallOperation Action while the previous automataas h
not completed all of its processing, processinggired
by the CallOperation Action and more precisely the
generation of the event thanks to the call of theclo
operation. So it permits to obtain the sequencéddota
each component.

To summarize, we can describe the pattern as follow
» An operation for each block

e A CallOperation Action defined “synchronous”
in the activity of the global manager that will
permit the call of the block operation

* The link between the CallEvent NextStep of the
block automaton and the operation of the block

Fifth issue: the behaviours encapsulation

Another issue is the management of the compleXithe®
software specification. In fact, the use of the rilidg
was decided because of the difficulty of the tektua
specification to cope with the complexity of thdtaare.
With the modelling, it is easier to realize the @peation,
and more precisely to structured the modellindfitse

Page 4/8

In the subset that we defined, we authorize whatare
call the encapsulation of behaviours. The user frana
reason of visibility or factorization, define antamnaton
that will describe a specific behaviour. This autbom
can be reused by other automata and be calledpecal
state, named the submachine state.

The submachine state is a state which referenctata
machine. It is possible to enter a submachine dtgte
what is called entry points, (specific entry in the
referenced state machine) and can be exited byeixits
(specific exit in the referenced state machinepuncase,
we limit as much as possible the number of entigtpat
only one, in order to limit the complexity.

Another specific state for the definition of mormfined
behaviour is the composite state. It allows refjnihe
behaviour of a state in the same state machine.

The use of submachine state implies the use oftecplar
event that we talked previously: the completion néve
Indeed, the existing transitions of a submachintegtave
no explicit trigger defined. This particularity cale
explained easily: the transition targeting an @dtnt in
the state machine referenced by the submachine stat
already has an explicit trigger defined. The crogsbdf
such transitions triggers the exit of the submaelstate
and so triggers the crossing of the exited tramsdtiof this
state. So it is not necessary to test the occuerefiche
same event twice for exiting the same state.

It is also possible to encapsulate activity thatkshe
CallBehavior Action.

So the solution for the behaviours encapsulation is

* Use of submachine to reference state machine in
order to factorize behaviour or the visibility of
the modelling

» Use of composite state in order to refine the
behaviour of a state

» The transitions exiting a submachine state is
triggered by a completion event

 The states and transitions in a state machine
referenced by a submachine of a composite state
follow the same rules defined previously

Other issues

Other rules and patterns are available in our suhsgewve
will not detail more of them in this paper, the oraj
concepts that allow the specification have alrebdgn
described. All these definitions have been regrdupe
guidelines for the use of the project teams.

4. TOPCASED, support for our use of M odel Driven
Engineering

The definition of the formalism used for the mouhgl
represents the prior and one of the most impontamks
for the use of MDE. But the needs of the projeatrie are

not limited to the definition of this formalism. & also
need tools to accompany them in their use of the
modelling. For our project, the choice naturalllf &n the
TOPCASED framework.

The TOPCASED framework is an open-source platform
for the development of critical embedded systemsals
initiated in 2004 in Toulouse by a consortium ofnya
industrialists and academics. It is based on thip&ec
environment, promoting the creation and the additd
functionalities by the community. It allows actie$ of
modelling, requirements analysis, model simulattests,
validation, code and document generation, etc...

In our project, it was mainly used for the modejlin
activities thanks to its UML/SysML modeller.
Furthermore, during the life-cycle of the projeother
needs appeared and the teams started to think bowed
benefits of the modelling thanks to the TOPCASED
Framework.

So, another use of the TOPCASED Framework was for
the requirement management. Indeed, like we said
previously, textual specification had already besrated

but they were too complex to be exploited, thatvisy
project teams decided to move to MDE. Once the
modelling phase achieved, the teams needed to link
textual requirements to the model and to ensure the
traceability. For this task, the teams used TOPUASE
Requirement[5]. This tool is a solution integraiadthe
TOPCASED framework which allows users to import
textual requirements into models and to createlyeasi
traceability links between requirements and model
elements.

Once requirements linked to model, one another fiiene
that appeared was the document generation from
modelling. Indeed, TOPCASED integrated a tool fus t
task, named GenDoc2. GenDoc2 is an EPL projectiwhi
uses EMF and Acceleo M2T technologies, in order to
produce documentation from a model and a template
document. It's a generic tool so it can be confguto
generate specific document compliant with any
documents template coming from standard. It islalba

to download on the Eclipse marketplace
(http://marketplace.eclipse.org/content/gendocth our
case, it was used to generate the SRD (Software
Requirements Data) document, document asked for the
certification of the software according to the D@8
norm. A specific template has been developed aerd th
generation has been performed on the model and its
linked requirements.

But the use of specific functionalities is not tbaly
benefits derive of the modelling and the TOPCASED
framework. For example, the users have derived fliene
from the modeller for another use than modelliniyvalys

in accordance with the DO-178B norm, they have to
create a document named the Software Verificatiase€
and Procedures (SVCP). They easily succeed inicgeat
this document by reusing the modelling for its tmra

Page 5/8

and the definition of verification cases. No todlave
been developed for this activity, but we can thiokthe
future about the automation of the method and the
generation of this document from the model.

Furthermore, some of these tools have been addpted
particular needs of the project team and othens toaore
confidential, have also been developed to answecifip
needs of the project. It is important to noticet ttieese
adaptations and development have been realized in
parallel with the project, so the project teams tadeal

with this constraint too.

5. Project teams feedback

5.1. The capitalizing on feedback

In our context, it is not a common way to use
UML/SysML for the specification of this kind of gexct.
So there is a real need to capitalize on feedbhitk ase.

We did that work by interviewing members of thejpob
teams who are able to work with these specification
during the project.

Every interviewed actor already had some knowleaige
UML and some of the actors had already worked on
aeronautic embedded system project. We were able to
distinguish three different kinds of feedback: winatre

the benefits of the use of MDE, what were the knaihd
what can be improve.

5.2. The advantages of the modelling

One of the most recurrent advantages expressecdrg u
is the visual benefit of the modelling. It was thain goal

of this specification modelling to be more expressand
intuitive than the textual specifications and ieses to
have fulfilled that commitment. For example, onetlod
project teams did an informal test: they gave e tiypes

of specification (textual and modelling) to two fdifent
people coming on the project; the result is that th
modelling has been more appreciated than the textua
specification. It seems very important for the ggergain
on the expression and the possibility to navigatsglg in
the modelling, thanks to the TOPCASED Frameworls, ha
been also really appreciated. That gain in expoesand
intuition allowed new actors of the project to begiore
quickly and more easily on the project.

But there are also some warnings: some users thaik
this visual benefit will not be so great if the jga would
be more common and less complex.

Another benefit is the gain in communication and
coordination. In fact, users found that it was eado
communicate between project actors, like betweeplpe
in charge of specification and designers. It i® &asier to
organize tasks between project actors: the modellin
allows working on a part of it without knowing pisely

the others parts. So, it is easier to allocatedifferent
tasks of the project with low investment.

The possibility to derive benefits from the modadlifor

the other step of the development cycle of thegmtojvas
also reported. For example, during the implemeonati
phase, the users manually used patterns from the
modelling for the code. This possibility alloweckth to
make the task more easily. Another example, apdeare
during the testing phase, it is that the users haen able

to propose new testing strategy that permit to fyeri
automata more independently, deriving benefit frihm
expression of the modelling. It is almost too stmKraw
conclusions of the benefit of this new strategy Wwatcan
already see that the use of modelling in an upstrelaase

of the development process can offers new podsisili
for project teams.

Furthermore, the possibilities to use tools in the
TOPCASED framework to answer the specific needs of
the users were also well received. The modellingsphis
made with the TOPCASED modeller, so being able to
derive help for other phases of the project diyeutith
associated tools in the TOPCASED framework was seen
by the user like a gain in adaptability. For examphey
really appreciate the coherence inducted by
documentation generation, coherence between
modelling and the different textual documents gatest.

the
the

5.3. The limits of the modelling

The major disadvantage is the size of the modelling
language. Indeed, in our project we limited the o$e
UML/SysML to a subset adapted to our needs. The
number of concepts of the UML/SysML is huge and is
sometimes subject to interpretation and that is twha
happened in our subset. Some interviewed userk that
the interpretation problems come from the fact tedrs
thought that their knowledge of UML will be sufféit to
use our subset but in reality, we restricted sooreepts

of the language to particular use, like the synchus
aspect. Another hypothesis emitted by some usetsats
setting this methodology was too hard to succeedni
time. In fact, whatever is the real reason, thegoentered
some ambiguity in the use of the methodology. Tesailt

of these ambiguities is a large number of duplicdteode
during the implementation phase. But, after sedhe
problem and insisting on the concepts of methodplog
guide, they observed, not only the correction o th
preceding problem but a gain on the number of dings
that they generated as well. From our point of view
think that these problems of ambiguity can be duat
wrong strategy of communication of this documenth®
users or the wrong adaptation of the document ter t
targeted audience.

Another limit emitted by the team is that the mettand
some tools have been developed in parallel with the
project. So there was an experimental side th#tpadh
it was beneficial to the teams, it cost some sétb@ther

Page 6/8

limits have been expressed on the tools. One is tha
sometimes, there is too many information on theetr
for the task that they are doing. The other is ba t
UML/SysML editor used for the modelling. The editor
available takes all the concepts of UML/SysML Laage

but in our case, we only use a subset of the lagguso it
was at the charge of the user to decide what céndep
use or not for the modelling. Thanks to that feettba

will be possible to think about some improvememdite
tools for the future.

A last limit is reported by the users. It conceths fact
that the UML/SysML modelling is not used on all the
process. For example, the design phase is realized
another modelling language. The interviewed users
reported that it was a kind disconcerting and faistg to
have to go from a formalism to another.

5.4. The way to improve the method

The interviewed users did not only report the athges
and the disadvantages of the use of MDE. They also
emitted recommendations for a future use in such a
context.

The first recommendation is to use the modellinghme
on all the project cycle. In our case, we only itgen the
specification phase and we derive benefits for dtreer
phases. The passing between different modelling

languages or methods in a same process is tedious.

Moreover, if we use the same modelling approactalbn
the process, we may be able to derive other benéfiir
example, we may think to the possibility to generatde
or pseudo-code from upstream modelling, idea thaiot
currently possible but which was been emitted by th
interviewed users.

The second recommendation is to be able to vehiéy t
model in an upstream step. How to have the cedithdt
what we model is correct in comparison with the
expecting reality? Today, this certitude is hardobiain
by a human because of the complexity and the poecis
of the modelling. So, we can think for the futue t
solutions of formal verification or simulation inder to
get more confident in the model and to reduce costs
tests or problems reported in downstream phases.

The last recommendation is to define at the very
beginning of the process, the modelling formalisrd the
tools that will be used. Like we see previouslypject
teams reported that, although the tools and foemaivas
beneficial to them, they also had some problemsulmse

the works on methods and on some tools was done in
parallel. So maybe we can think to a formation be t
formalism in an upstream phase of the process ae mo
adapted methodological guidelines.

6. Conclusion

The subset of the global project which was treated
very complex and subject to strong constraintsni-our

point of view, it was seen as a pilot project fario the
use of such an approach in this kind of context.

The first feedback are encouraging and show thiat th
kind of approach can be interesting for similarjgcts.
They showed that the gains providing by the moaiglbn
reading, understanding and communication have ezhch
the expectations.

The use of UML/SysML language to specify synchranou
constraints was also an interesting work. Indeeis, mot
common to use the UML/SysML language to model this
kind of behaviour, in an aeronautic context.

The support of the TOPCASED framework proves once
again the great interest of this tool for the depetent of
critical embedded systems and software and the many
opportunities it can give to project teams.

Although this project has permitted us to have rat fi
experiment of the use of MDE in software embedded
projects with so strong constraints, and more pedgithe
use of UML/SysML language, it is necessary to atlle
more feedback and to continue to work on the
improvement of the method before disposing of auneat
approach that may be used on future projects. e |
cycle of the project is not completed and we hasens
that there are many ways to improve the methodiHisit
first work has already shown the potential of the
approach.

7. Acknowledgement

The authors want to thank all the project teamstlieir
work and particularly all the actors who accepttake
time to share their experience on this project wih

8. References

[1] OMG : “Unified Modeling Language : Superstructljre

2005.
[2] OMG : “System Modeling Langudge010.
[3] P. Farail, P. Gaufillet, A. Canals, C. Camus, D.

Sciamma, P. Michel, X. Crégut, M. Pantel Thé
TOPCASED project : a toolkit in open source foricet
aeronautic systems desigiERTS, Toulouse, 2006.

[4] RTCA : "DO-178B - Software Considerations in
Airborne Systems and Equipment Certificatid®92.

[5] R. Faudou, T. Faure, S. Gabel, C. MertZOPCASED
Requirement: a model-driven, open-source and generi
solution to manage requirement traceabflitERTS,
Toulouse, 2010.

9. Glossary

EMF: Eclipse Modelling Framework
EPL: Eclipse Public Licence

MDE: Model Driven Engineering
M2T: Model to Text

OMG: Object Management Group
SRD: Software Requirements Data

Page 7/8

SVCP: Software Verification Plan and Procedures
SysML: System Modelling Language

TOPCASED: Toolkit in OPen source for Critical Applicen &
SystEms Development

UML.: Unified Modelling Language

Page 8/8

