
HAL Id: hal-02263442
https://hal.science/hal-02263442

Submitted on 4 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

USE OF MODELLING METHODS AND TOOLS IN
AN INDUSTRIAL EMBEDDED SYSTEM PROJECT:

WORKS AND FEEDBACK
Anthony Fernandes Pires, Stéphane Duprat, Tristan Faure, Cédrik Besseyre,

Jack Beringuier, Jean-François Rolland

To cite this version:
Anthony Fernandes Pires, Stéphane Duprat, Tristan Faure, Cédrik Besseyre, Jack Beringuier, et al..
USE OF MODELLING METHODS AND TOOLS IN AN INDUSTRIAL EMBEDDED SYSTEM
PROJECT: WORKS AND FEEDBACK. Embedded Real Time Software and Systems (ERTS2012),
Feb 2012, Toulouse, France. �hal-02263442�

https://hal.science/hal-02263442
https://hal.archives-ouvertes.fr

 Page 1/8

USE OF MODELLING METHODS AND TOOLS IN AN INDUSTRIAL
EMBEDDED SYSTEM PROJECT: WORKS AND FEEDBACK

 Anthony Fernandes Pires1, Stéphane Duprat1, Tristan Faure1, Cédrik Besseyre2, Jack Beringuier1,
Jean-François Rolland1

1: Atos, 6 Impasse Alice Guy, B.P. 43045, 31024 Toulouse Cedex 03
2: Airbus Operations S.A.S., 316 route de Bayonne, 31060 Toulouse Cedex 9

Abstract: In a context where critical embedded systems
are more and more difficult to design while ensuring high
safety requirements and a non-ambiguous specification,
Model Driven Engineering offers opportunities to address
such challenges and to share information efficiently in a
project.

This paper presents the use of such an approach in an
industrial software project concerning an embedded
system for aeronautics. We describe the language used to
model the software, a subset of UML/SysML allowing the
representation of synchronous concepts and we focus on
the functionalities used for the project in the TOPCASED
framework, to derive substantial benefits from the
modelling. We also present feedback from the project
teams about the use of this approach in this kind of
project.

Keywords: UML/SysML, TOPCASED, Model Driven
Engineering, embedded system, industrial context.

1. Introduction

In aeronautic, space and automotive fields, critical
embedded systems are more and more subjected to high
safety requirements and complexity increases. It becomes
more difficult for industrial actors to specify such
systems, while ensuring the quality and the non-ambiguity
of the specification. So an important verification effort is
needed during the development phase to avoid errors and
fix ambiguous requirements.

Model Driven Engineering (MDE), which has had real
success during the last few years, allows designers to deal
with these constraints and also provides, in an
environment of extended enterprise, an efficient way to
exchange and share information between partners.

In our case, we took advantage of a MDE approach for the
software specification of a part of one of our embedded
system project. To answer our needs, we chose, as
modelling language, a subset of the UML standard
(Unified Modelling Language) [1], close to the SysML
language (System Modelling Language) [2], both defined
by OMG (Object Management Group) and we relied on
the TOPCASED framework (Toolkit in OPen source for
Critical Application & SystEms Development) [3],
support for the development of critical embedded systems
and the use of MDE.

First we propose in this paper to present the context of the
project. Then, we present all the works that have been
made and functionalities that have been used in order to
provide to project actors a way to derive substantial
benefit from Model Driven Engineering. Furthermore, we
propose to review the feedback on the use of such an
approach in an industrial context and present the potential
benefits that aren’t already exploited. We finally conclude
on the approach and its potential future in other projects.

2. Context

2.1. Global description

The concerned project is an aeronautic project on an
embedded avionic system which has the particularity to be
more complex than the common project that our teams
have the habits to deal with. Here, we understand
complexity in the way that the software has such a huge
size that a non-ambiguous specification is very difficult to
obtain. It is all the more difficult that the project is
realized by multiple actors divided into different locations
and so the need to share information efficiently is very
strong.

It is the reason why the teams decided to use Model
Driven Engineering supporting by UML/SysML language
to help them in their task. They deployed this method on a
subset of the project, which is particularly complex to
specify.

Moreover, our work concerns only one step of the
development phase of the project: the specification. Those
limitations can be explained by the fact that UML/SysML
was never used on this kind of project in our context and
so we need to gain confidence in the method, before
deploying it on a full development cycle.

2.2. The synchronous aspects

The subset of the concerned project is a software for the
management of avionic components. The work of the
project teams is to specify, to design, to develop and to
test this software.

The software is composed of a manager which supervises
components, and more precisely the applications of these
components. They are expected to work in a synchronous

 Page 2/8

way, i.e. we know when a task begins and ends for each
component.

Each component application is represented by an
automaton or more precisely a state machine. The running
of the software is governed by a clock. At each clock tick,
that we called a cycle, all automata are called in sequence
and each of them realizes one given task. It is the role of
the manager to ensure that each automaton is called in
sequence: it calls the first automaton and when this
automaton finishes its task, it waits for the next cycle and
the manager can call the next automaton. We only model
the case where all automata finished their tasks in one
cycle. In reality, if the automata do not finish their tasks
between two clock ticks, all the software is stopped.

The details of the expected behaviour are visible Figure 1.

Figure 1: global behaviour of the software

2.3. External constraints

The project is subject to external constraints from the
domain and from actors of the project.

The aeronautic domain is ruled by norms which allow
certifying the quality, the safety and the efficiency of its
systems and software. This need of certification is one of
the major constraints of the project. In aeronautics, the
DO-178B norm [4] defines guidelines for the software
production in avionics systems in order to obtain this
certification. It describes, for different Development
Assurance Level (DAL), the goals to achieve and the
documents to produce at each development step. Our
project is subjected to this constraint, so the project actors
have to deal with these expectations during all the life
cycle of the project.

Furthermore, we are in a context of client and sub-
contractor. The project was created by Airbus,
international aircraft manufacturer, which imposes
specific constraints for the development. For
confidentiality reasons, we will not detail them but we
keep in mind that they exist. The project is realized by
Atos, an international information technology company.
Atos has the role of subcontractor. Note that we

distinguish two kinds of teams in Atos for this project: the
project teams that will realize the project, and the
Methods & Tools team that will support the project teams
by providing them methods and tools.

3. The modelling language

3.1. UML/SysML, basis of our work

The UML language is a standard for the representation of
software, defined by OMG and it is largely use. The
SysML language is another standard for the representation
of systems of systems. It is an extended subset of UML.
In our case, the subset that we defined is a subset of UML
that is also contained in the subset used for SysML
language, that’s why we speak of UML/SysML language
in this paper.

The use of UML/SysML was inducted by the context and
a previous project team work. Indeed, they had a need for
representation for their textual requirements. They already
did textual specification but they were too complex to be
exploited; so it was decided to use representation in the
specification. They used a UML modeller in this purpose
but the problem was that they did not really have
formalism: they used modelling as simply graphical
representation. That is why they appealed to the Methods
& Tools team to accompany them in their approach and to
formalize the use of the UML/SyML language.

The work did in that part consists in the definition of a
subset of the UML/SysML that was restricted to the needs
of the concerned subset of the project and that allowed the
representation synchronous aspects of the targeted system.

3.2. The definition of the subset

We tried to limit the concepts of UML/SysML language
to the specific needs of the project and to synchronous
constraints. In fact, UML/SysML language is more
adapted to asynchronous behaviour and it was a real
challenge to represent a synchronous one. Our work was
regrouped in guidelines in order to communicate them to
people in charge of the modelling. The guidelines
describe the useful concepts, how to use them and also
patterns for the description of synchronous behaviour. For
this paper, we focus the presentation of our work on five
major issues encountered during the definition of our
subset for the software specification.

First issue: the component representation

It is the first problem to think about for our modelling:
how to represent our software and its behaviour?

For our needs, we identify three diagrams to use:

• Block diagram: it is a diagram from the SysML
language, it permits here to only represent the
structure of the software and the structural
relations between each of its components. A

 Page 3/8

block can also be used to represent service
(factorization of operations used by
components), external services or data type.

• StateMachine diagram: it represents behaviour
thanks to states and transitions. It is the heart of
the specification. In our case, when it is attached
to a block, it corresponds to the behaviour of the
component represented by the block. This is
what we called an automaton.

• Activity diagram: it represents the details
behaviour of a state in a state machine diagram.
It is composed of actions and transitions. Each
action can be the call of an operation, the call of
a more refined behaviour (call of an activity by
an activity) or an opaque action, which
corresponds to an action that we can’t refine
more.

A simple example of each diagram is given Figure 2.

Figure 2 : example of the 3 used diagrams

These are the only three diagrams that we actually need
for the software specification. Moreover, in these three
diagrams, we limit the use of some concepts to be
compliant with synchronous constraints of the software.
That is what we will see in the next issue.

Second issue: the cycle management of automata

According to the expected behaviour of the software
presented Figure 1, we have a global manager that allows,
at each cycle, to run a sequence of automata, representing
the behaviour of each component of the software. During
one cycle, each automaton has to realize one action, or a
limited number of actions, before hand over to the next
automaton. To obtain that behaviour, we define a pattern
for the representation of state machines.

Like we presented previously, the state machine, or
automaton, is composed of states and transitions. Our
purpose here is to limit, at each cycle, the evolution of
automaton to one or to a limited number of state(s). To
realize that, we base our subset on the notion of events
and run-to-completion, defined in the UML specification
[1].

In a state machine, the transitions between each state can
have three major properties:

• A trigger: the crossing of a transition is always
run by a trigger. That trigger is an event, explicit
or not. When the crossing of the transition is
triggered, the occurrence of the event is
consumed. In our case, to ensure the step-by-step
functioning of the state machine, we define for
each transition a trigger representing by a unique
event, a CallEvent that we called NextStep in our
subset, specific to the automaton.

• A guard: it is a condition for the crossing of a
transition. Although a transition is triggered, it
can only be crossed if it satisfies the guard that
may be defined. In our case, a guard is only a
textual condition, useful for the understanding of
the specification.

• An effect: the crossing of a transition can have an
effect. In our case, we limit the definition of
effect to temporal negligible actions to be sure
that this effect will not block the state machine
evolution.

It is this definition of a unique specific event as the trigger
of all transitions that will ensure the step-by-step
functioning. Indeed, the UML specification defines the
notion of run-to-completion for the processing of event by
state machine. It ensures that the processing of an event
occurrence can only be triggered if the processing of the
previous occurrence is finished. The processing of an
event occurrence represents the crossing of the transition
that it triggered and the end of the processing of all the
synchronous actions (not necessarily the asynchronous
one) defined in the targeted state.

For example, let’s describe the common functioning of an
automaton during one cycle: we consider that during one
cycle, when the automaton is called, the NextStep event is
generated; when it is generated, it is captured by the state
machine that will allow the crossing of one transition; the
crossing of the transition will place the state machine in a
new state and starts the processing of the actions defined
by this state; when the state finishes all the processing of
its synchronous actions, it is ready to cross its existing
transition, but in our case it is blocked thanks to the
trigger, waiting for the generation of a new occurrence of
the NextStep event that will occur in the next cycle.

Even if our pattern is based on the definition of this
unique specific event, there is a particular case that can
appear in our representation: the completion event. We
said that the crossing of a transition is always run by a
trigger, an event explicit or not. In our case, we have an
explicit event, NextStep, but we can also have the need to
define no trigger between two states. In this case, we
implicitly define a completion event as the trigger of the
existing transition. A completion event is an event that is
automatically generated at the end of all the processing of
the state’s actions and will automatically trigger the

 Page 4/8

crossing of the existing transition if this one has no trigger
defined. We will see the use of this particular event in a
next issue.

So, the solution to ensure the step-by-step functioning of
the automaton is:

• A unique specific CallEvent defined for all
transition triggers between states that may
occurred during different cycle

• Only define time negligible action for the effect
of a transition

• The activities of the states must be synchronous

We have seen how to manage the run of an automaton for
one cycle. But this functioning is based on a hypothesis: a
state only does synchronous actions. This is what will
guarantee that no asynchronous actions are running when
the next automaton is called and so preserve the expected
behaviour of the software. So, the next problem to solve is
to ensure that the behaviour of each state of the automaton
is synchronous.

Third issue: the synchronism in an automaton state

An automaton state can have three types of defined
actions, all represented by activities:

• Entry behaviour: behaviour executed when the
state is entered. Its processing is completed prior
to all over actions in the state.

• Do Activity: behaviour executed while being in
the state. It finishes by itself or when the state is
exited.

• Exit behaviour: behaviour executed when the
state is exited. It is executed to completion only
after the others actions of the state are finished.

In our case, we restricted the definition of activities in the
state in the entry behaviour only. In this condition, we
ensure that the actions of the state are always completed at
the end of the run-to-completion processing and so we
ensure the synchronous behaviour of each state.

Furthermore, we limited the definition of activity in a
state to activity that can be done in one cycle and in a
synchronous way too. That is why, like explained
previously, we banned the use of all possible
asynchronous actions (like SendSignalAction for
example) from the use of activity diagram.

In this way, we can guarantee a step-by-step functioning
of each automaton and so the expected cycle management
of automaton.

We can resume the pattern for this issue as follow:

• Only define activity in the entry behaviour of a
state

• Only use CallOperation action, CallBehavior
action and Opaque action in activity diagram

Fourth issue: the sequencing of automata

This is one of the major issues of the software
representation. The goal is to call, at each cycle, each
automaton in order to process their task one after the other
in a predefined sequence. To ensure that behaviour, we
define a pattern based on the notions of Operation and
CallOperation Action.

First, we described previously that each component of the
software is structurally represented by a block and its
behaviour is represented by an automaton (state machine)
which is attached to this same block. Now, we define for
each block an operation. This operation, once called, will
generate a Call Event, named NextStep in our case, which
will make the attached automaton evolve to one step. This
is the expected behaviour that we presented previously.

Secondly, in order to realize the call the operation, we rely
on a CallOperation Action defined in an activity. This
activity is defined in the state machine representing the
global manager behaviour of the software. It is this global
manager which is in charge to guarantee the call sequence
of the different automata, like described Figure 1. The
activity is composed of numerous CallOperation Actions
that will call the operation of all the different blocks of the
modelling software, in a defined order.

Finally, the expected processing is the following. At each
clock tick, the behaviour of the global manager is
processed. It runs the activity defined below. The first
CallOperation Action is called. It will generate the
NextStep event that will make the given automaton
evolve. The particularity of a CallOperation Action is, if
defined as “synchronous”, to be blocking while the
processing started by the call of the operation are not
completed. So, the activity cannot call the next
CallOperation Action while the previous automaton has
not completed all of its processing, processing triggered
by the CallOperation Action and more precisely the
generation of the event thanks to the call of the block
operation. So it permits to obtain the sequenced call of
each component.

To summarize, we can describe the pattern as follow:

• An operation for each block

• A CallOperation Action defined “synchronous”
in the activity of the global manager that will
permit the call of the block operation

• The link between the CallEvent NextStep of the
block automaton and the operation of the block

Fifth issue: the behaviours encapsulation

Another issue is the management of the complexity of the
software specification. In fact, the use of the modelling
was decided because of the difficulty of the textual
specification to cope with the complexity of the software.
With the modelling, it is easier to realize the specification,
and more precisely to structured the modelling itself.

 Page 5/8

In the subset that we defined, we authorize what we can
call the encapsulation of behaviours. The user can, for a
reason of visibility or factorization, define an automaton
that will describe a specific behaviour. This automaton
can be reused by other automata and be called in a special
state, named the submachine state.

The submachine state is a state which references a state
machine. It is possible to enter a submachine state by
what is called entry points, (specific entry in the
referenced state machine) and can be exited by exit points
(specific exit in the referenced state machine). In our case,
we limit as much as possible the number of entry points at
only one, in order to limit the complexity.

Another specific state for the definition of more refined
behaviour is the composite state. It allows refining the
behaviour of a state in the same state machine.

The use of submachine state implies the use of a particular
event that we talked previously: the completion event.
Indeed, the existing transitions of a submachine state have
no explicit trigger defined. This particularity can be
explained easily: the transition targeting an exit point in
the state machine referenced by the submachine state
already has an explicit trigger defined. The crossing of
such transitions triggers the exit of the submachine state
and so triggers the crossing of the exited transitions of this
state. So it is not necessary to test the occurrence of the
same event twice for exiting the same state.

It is also possible to encapsulate activity thanks to the
CallBehavior Action.

So the solution for the behaviours encapsulation is:

• Use of submachine to reference state machine in
order to factorize behaviour or the visibility of
the modelling

• Use of composite state in order to refine the
behaviour of a state

• The transitions exiting a submachine state is
triggered by a completion event

• The states and transitions in a state machine
referenced by a submachine of a composite state
follow the same rules defined previously

Other issues

Other rules and patterns are available in our subset but we
will not detail more of them in this paper, the major
concepts that allow the specification have already been
described. All these definitions have been regrouped in
guidelines for the use of the project teams.

4. TOPCASED, support for our use of Model Driven
Engineering

The definition of the formalism used for the modelling
represents the prior and one of the most important works
for the use of MDE. But the needs of the project teams are

not limited to the definition of this formalism. They also
need tools to accompany them in their use of the
modelling. For our project, the choice naturally felt on the
TOPCASED framework.

The TOPCASED framework is an open-source platform
for the development of critical embedded systems. It was
initiated in 2004 in Toulouse by a consortium of many
industrialists and academics. It is based on the Eclipse
environment, promoting the creation and the addition of
functionalities by the community. It allows activities of
modelling, requirements analysis, model simulation, tests,
validation, code and document generation, etc…

In our project, it was mainly used for the modelling
activities thanks to its UML/SysML modeller.
Furthermore, during the life-cycle of the project, other
needs appeared and the teams started to think how derive
benefits of the modelling thanks to the TOPCASED
Framework.

So, another use of the TOPCASED Framework was for
the requirement management. Indeed, like we said
previously, textual specification had already been created
but they were too complex to be exploited, that is why
project teams decided to move to MDE. Once the
modelling phase achieved, the teams needed to link
textual requirements to the model and to ensure the
traceability. For this task, the teams used TOPCASED
Requirement[5]. This tool is a solution integrated in the
TOPCASED framework which allows users to import
textual requirements into models and to create easily
traceability links between requirements and model
elements.

Once requirements linked to model, one another benefit
that appeared was the document generation from
modelling. Indeed, TOPCASED integrated a tool for this
task, named GenDoc2. GenDoc2 is an EPL project, which
uses EMF and Acceleo M2T technologies, in order to
produce documentation from a model and a template
document. It’s a generic tool so it can be configured to
generate specific document compliant with any
documents template coming from standard. It is available
to download on the Eclipse marketplace
(http://marketplace.eclipse.org/content/gendoc2). In our
case, it was used to generate the SRD (Software
Requirements Data) document, document asked for the
certification of the software according to the DO-178b
norm. A specific template has been developed and the
generation has been performed on the model and its
linked requirements.

But the use of specific functionalities is not the only
benefits derive of the modelling and the TOPCASED
framework. For example, the users have derived benefits
from the modeller for another use than modelling. Always
in accordance with the DO-178B norm, they have to
create a document named the Software Verification Cases
and Procedures (SVCP). They easily succeed in creating
this document by reusing the modelling for its creation

 Page 6/8

and the definition of verification cases. No tools have
been developed for this activity, but we can think for the
future about the automation of the method and the
generation of this document from the model.

Furthermore, some of these tools have been adapted for
particular needs of the project team and others tools, more
confidential, have also been developed to answer specific
needs of the project. It is important to notice that these
adaptations and development have been realized in
parallel with the project, so the project teams had to deal
with this constraint too.

5. Project teams feedback

5.1. The capitalizing on feedback

In our context, it is not a common way to use
UML/SysML for the specification of this kind of project.
So there is a real need to capitalize on feedback of its use.

We did that work by interviewing members of the project
teams who are able to work with these specifications
during the project.

Every interviewed actor already had some knowledge on
UML and some of the actors had already worked on
aeronautic embedded system project. We were able to
distinguish three different kinds of feedback: what were
the benefits of the use of MDE, what were the limits and
what can be improve.

5.2. The advantages of the modelling

One of the most recurrent advantages expressed by users
is the visual benefit of the modelling. It was the main goal
of this specification modelling to be more expressive and
intuitive than the textual specifications and it seems to
have fulfilled that commitment. For example, one of the
project teams did an informal test: they gave the two types
of specification (textual and modelling) to two different
people coming on the project; the result is that the
modelling has been more appreciated than the textual
specification. It seems very important for the users to gain
on the expression and the possibility to navigate easily in
the modelling, thanks to the TOPCASED Framework, has
been also really appreciated. That gain in expression and
intuition allowed new actors of the project to begin more
quickly and more easily on the project.

But there are also some warnings: some users think that
this visual benefit will not be so great if the project would
be more common and less complex.

Another benefit is the gain in communication and
coordination. In fact, users found that it was easier to
communicate between project actors, like between people
in charge of specification and designers. It is also easier to
organize tasks between project actors: the modelling
allows working on a part of it without knowing precisely

the others parts. So, it is easier to allocate the different
tasks of the project with low investment.

The possibility to derive benefits from the modelling for
the other step of the development cycle of the project was
also reported. For example, during the implementation
phase, the users manually used patterns from the
modelling for the code. This possibility allowed them to
make the task more easily. Another example, appeared
during the testing phase, it is that the users have been able
to propose new testing strategy that permit to verify
automata more independently, deriving benefit from the
expression of the modelling. It is almost too soon to draw
conclusions of the benefit of this new strategy but we can
already see that the use of modelling in an upstream phase
of the development process can offers new possibilities
for project teams.

Furthermore, the possibilities to use tools in the
TOPCASED framework to answer the specific needs of
the users were also well received. The modelling phase is
made with the TOPCASED modeller, so being able to
derive help for other phases of the project directly with
associated tools in the TOPCASED framework was seen
by the user like a gain in adaptability. For example, they
really appreciate the coherence inducted by the
documentation generation, coherence between the
modelling and the different textual documents generated.

5.3. The limits of the modelling

The major disadvantage is the size of the modelling
language. Indeed, in our project we limited the use of
UML/SysML to a subset adapted to our needs. The
number of concepts of the UML/SysML is huge and is
sometimes subject to interpretation and that is what
happened in our subset. Some interviewed users think that
the interpretation problems come from the fact that users
thought that their knowledge of UML will be sufficient to
use our subset but in reality, we restricted some concepts
of the language to particular use, like the synchronous
aspect. Another hypothesis emitted by some users is that
setting this methodology was too hard to succeed in one
time. In fact, whatever is the real reason, they encountered
some ambiguity in the use of the methodology. The result
of these ambiguities is a large number of duplicate of code
during the implementation phase. But, after seeing the
problem and insisting on the concepts of methodology
guide, they observed, not only the correction of the
preceding problem but a gain on the number of code lines
that they generated as well. From our point of view, we
think that these problems of ambiguity can be due to a
wrong strategy of communication of this document to the
users or the wrong adaptation of the document for the
targeted audience.

Another limit emitted by the team is that the method and
some tools have been developed in parallel with the
project. So there was an experimental side that, although
it was beneficial to the teams, it cost some setback. Other

 Page 7/8

limits have been expressed on the tools. One is that
sometimes, there is too many information on the screen
for the task that they are doing. The other is on the
UML/SysML editor used for the modelling. The editor
available takes all the concepts of UML/SysML Language
but in our case, we only use a subset of the language. So it
was at the charge of the user to decide what concepts to
use or not for the modelling. Thanks to that feedback, it
will be possible to think about some improvements on the
tools for the future.

A last limit is reported by the users. It concerns the fact
that the UML/SysML modelling is not used on all the
process. For example, the design phase is realized with
another modelling language. The interviewed users
reported that it was a kind disconcerting and frustrating to
have to go from a formalism to another.

5.4. The way to improve the method

The interviewed users did not only report the advantages
and the disadvantages of the use of MDE. They also
emitted recommendations for a future use in such a
context.

The first recommendation is to use the modelling method
on all the project cycle. In our case, we only use it on the
specification phase and we derive benefits for the other
phases. The passing between different modelling
languages or methods in a same process is tedious.
Moreover, if we use the same modelling approach on all
the process, we may be able to derive other benefits. For
example, we may think to the possibility to generate code
or pseudo-code from upstream modelling, idea that is not
currently possible but which was been emitted by the
interviewed users.

The second recommendation is to be able to verify the
model in an upstream step. How to have the certitude that
what we model is correct in comparison with the
expecting reality? Today, this certitude is hard to obtain
by a human because of the complexity and the precision
of the modelling. So, we can think for the future to
solutions of formal verification or simulation in order to
get more confident in the model and to reduce costs on
tests or problems reported in downstream phases.

The last recommendation is to define at the very
beginning of the process, the modelling formalism and the
tools that will be used. Like we see previously, project
teams reported that, although the tools and formalism was
beneficial to them, they also had some problems because
the works on methods and on some tools was done in
parallel. So maybe we can think to a formation on the
formalism in an upstream phase of the process or more
adapted methodological guidelines.

6. Conclusion

The subset of the global project which was treated was
very complex and subject to strong constraints. From our

point of view, it was seen as a pilot project for us in the
use of such an approach in this kind of context.

The first feedback are encouraging and show that this
kind of approach can be interesting for similar projects.
They showed that the gains providing by the modelling on
reading, understanding and communication have reached
the expectations.

The use of UML/SysML language to specify synchronous
constraints was also an interesting work. Indeed, it is not
common to use the UML/SysML language to model this
kind of behaviour, in an aeronautic context.

The support of the TOPCASED framework proves once
again the great interest of this tool for the development of
critical embedded systems and software and the many
opportunities it can give to project teams.

Although this project has permitted us to have a first
experiment of the use of MDE in software embedded
projects with so strong constraints, and more precisely the
use of UML/SysML language, it is necessary to collect
more feedback and to continue to work on the
improvement of the method before disposing of a mature
approach that may be used on future projects. The life
cycle of the project is not completed and we have seen
that there are many ways to improve the method, but this
first work has already shown the potential of the
approach.

7. Acknowledgement

The authors want to thank all the project teams for their
work and particularly all the actors who accept to take
time to share their experience on this project with us.

8. References

[1] OMG : “Unified Modeling Language : Superstructure”,
2005.

[2] OMG : “System Modeling Language”, 2010.

[3] P. Farail, P. Gaufillet, A. Canals, C. Camus, D.
Sciamma, P. Michel, X. Crégut, M. Pantel : "The
TOPCASED project : a toolkit in open source for critical
aeronautic systems design”. ERTS, Toulouse, 2006.

[4] RTCA : "DO-178B – Software Considerations in
Airborne Systems and Equipment Certification”. 1992.

[5] R. Faudou, T. Faure, S. Gabel, C. Mertz : "TOPCASED
Requirement: a model-driven, open-source and generic
solution to manage requirement traceability”. ERTS,
Toulouse, 2010.

9. Glossary

EMF: Eclipse Modelling Framework

EPL: Eclipse Public Licence

MDE: Model Driven Engineering

M2T: Model to Text

OMG: Object Management Group

SRD: Software Requirements Data

 Page 8/8

SVCP: Software Verification Plan and Procedures

SysML: System Modelling Language

TOPCASED: Toolkit in OPen source for Critical Application &
SystEms Development

UML: Unified Modelling Language

