
HAL Id: hal-02263431
https://hal.science/hal-02263431

Submitted on 4 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software Qualimetry at Schneider Electric: a field
background

Hervé Dondey, Christophe Peron

To cite this version:
Hervé Dondey, Christophe Peron. Software Qualimetry at Schneider Electric: a field background.
Embedded Real Time Software and Systems (ERTS2012), Feb 2012, Toulouse, France. �hal-02263431�

https://hal.science/hal-02263431
https://hal.archives-ouvertes.fr

Page 1

Software Qualimetry at Schneider Electric:
a field background

By Hervé Dondey - Strategy & Innovation - Software Efficiency Team – Schneider Electric
and Christophe Peron – SQuORING Technologies

Abstract: This paper presents the Source Code Quality Indicators (SCQI) project led by the Strategy &

Innovation corporate team to deploy Software Qualimetry within a large-scale multi-national

organization such as Schneider Electric (SE)
1
. The related method (SCQI) was designed from a list of

relevant use cases and relies on the main concepts of the SQALE [1] evaluation method. To support this

method, SE has selected the SQuORE [2] platform thanks to its capability to allow large-scale

deployment together with high versatility and adaptability to local needs. Feedback and lessons

learned from initial deployments are now used to speed up the qualimetry process institutionalization

within the whole company.

1. FOREWORD AND INTRODUCTION

Producing software products with the appropriate level of quality, under the time and resources

constraints established in projects is definitively a key challenge for industries where software

innovation impacts on business competitiveness increasingly.

Unfortunately, in the “Time-Money-Quality” devil’s triangle, software product quality often plays a

subsidiary role from a business point of view where functionality always keeps a dominant position.

However, when they face operational failures and difficulty in maintaining or extending larger and

larger source code, mature organizations start understanding that lack of quality is rather more

expensive than the quality itself. And that prevention and early bug detection can be of high return on

investment.

As a prerequisite, software quality must be specified in an explicit and measurable way. If not, it is

worthless for project tradeoff against cost and time well-established indicators, useless as part of

formal acceptance, and meaningless for post-mortem analysis and capitalization.

2. THE SOURCE CODE QUALITY INDICATORS (SCQI) METHOD

The Main Goals

The SCQI method aims to support the measurement activities of the internal quality of software

product with an objective, impartial, reproducible and repeatable method. The key challenge is to

combine and aggregate all measurement data available in a common approach in order to monitor

software product quality with effective remediation plan for software developers.

Using a common quality model defined at corporate level and dedicated to source code first, each R&D

centre shall be able to assess effective product quality level based on both static (e.g. complexity

measurement, rule checking) and dynamic (e.g. test coverage) source code analysis results.

1 Schneider Electric’s profile: The global specialist in energy management

As a global specialist in energy management with operations in more than 100 countries, Schneider Electric offers integrated

solutions to make energy safe, reliable, efficient, productive and green across multiple market segments. The Group has

leadership positions in energy and infrastructure, industrial processes, building automation, and data centres/networks, as well as

a broad presence in residential applications. With 19.6 billion euros sales in 2010, the company's 130,000+ employees are

committed to help individuals and organizations “Make the most of their energy.”

To reach this objective, around 2500 Software engineers (distributed in more than 60 R&D centres in 25 countries) are developing

PC and embedded software / firmware (C/C++/C#/Java …), as well as PLCs applications, integrated within multi-level architecture

solutions.

Software Qualimetry at Schneider Electric: a field background

Page 2

The SCQI method addresses three basic concepts of Software Qualimetry (see Fig. 1):

- the Software Product: it shall clearly state

what work products generated by software

processes are to be measured to assess the

Quality Objectives;

- the Quality Model: It shall provide the

breakdown of software product quality into

characteristics, sub-characteristics and then

establish the link with internal properties of

the software product;

- the Analysis Model: it shall specify the rules

and computation used for assessing the

level of performance of the software

product regarding the Quality Objectives.

Fig. 1: Basic concepts of Software Qualimetry

The supporting process, infrastructure and tools have also been considered very early by the entities in

charge of the SCQI project. As mentioned in the next chapter, they all are key conditions of success and

clearly secure the return on investment.

Considering Source Code as a Vital Software Product

There is no surprise here. In the SCQI method, the software product under evaluation is the source

code. Definitively not a new idea would suggest Halstead [3]. But, even if some work products such as

requirements, design or tests may impact the quality objectives more significantly, the source code

remains vital. Indeed, if some software comes without requirements or test cases, none comes without

pieces of code… and even millions of lines. Source code also impacts some quality characteristics

significantly and mostly remains a “human-made” product, so potentially highly faulty. At last,

compared with other work products, the source code is quite simple to measure thanks to static

analyzers. These are many reasons to monitor and control the source code thus increasing software

developer productivity by early defect detection and less code to rework.

Establishing Source Code Quality Model as a Corporate Standard

The SE Source Code Quality Model (SCQM) is derived from the ISO/IEC 9126 International Standard [4],

enhanced with input from Dromey [5]. As shown in fig. 2, it consists of two upper level main

characteristics: Maintainability and Re-usability, each refined in four attributes and one to three sub-

attributes per attribute. This breakdown of software product quality is now considered a corporate

standard for SE. It means that each SE entity should have to consider and report source code quality

performance through this commonly acknowledged quality model.

Fig. 2: The Source Code Quality Model, Schneider Elect ric - Corporate standard part.

Software Qualimetry at Schneider Electric: a field background

Page 3

At the lower level, the sub-attributes are not intended to be sub-divided and should allow being

evaluated by measures and/or rules which are considered as measurable internal properties of the

source code. These internal properties are selected from the Source Code Quality Indicators handbook

common to all Schneider Electric entities where each property is clearly specified using:

- an internal property name,

- a type: “Measure” or ”Rule”,

- the artifact scope: Application, Package, File, Class and Method/Function, …,

- the applicable thresholds (for measure only) depending of the artifact scope,

- a severity level: i.e. “High”, “Mild”, “Low” to be used by the Analysis Model.

Tailoring the Quality Model to the Needs and Constraints

The diversity of technical contexts (e.g. PC and embedded software, firmware) and technologies in use

(C, C++, C#, Java) within the SE R&D centres is managed by tailoring the Quality Model at the level of

the internal properties. At that level, each R&D centre could select, add or remove measures and rules,

set up specific thresholds and adjust severity levels for each internal property.

Usual taloring allows getting a balanced distribution of product quality rating between “poor” and

“good” artifacts: roughly a quarter of ”poor”, a half of “fair” and a quarter of “good”.

Fig. 3 shows in yellow the tailored internal property checks done for a R&D centre producing PC

software written in C#.

Fig. 3: The Maintainability part of the Quality Mod el

tailored for PC software written in C#

Specifying a Relevant Analysis Model

Once established, the quality model serves as a framework for specifying all necessary indicators to

evaluate the quality of source code.

As defined in the ISO/IEC 15939 standard [6], “an indicator is a measure that provides an estimate or

evaluation of specified attributes derived from a model with respect to define information needs”

where a “model” is “an algorithm or calculation combining one or more base and/or derived measures

with associated criteria”.

To ensure a repeatable, reproducible, objective and impartial evaluation, the SCQI Analysis Model has

been based on the SQALE method [1] and the popular concept of the Technical Debt [7].

Software Qualimetry at Schneider Electric: a field background

Page 4

The Technical Debt can be defined as the cost of

remediating / refactoring the software components

to remove (intentional or unintentional) defects or

to comply with requirements. In such a case, a

coding standard, programming rule or internal

property is considered a Maintainability, Reliability

or Portability requirement.

The SQALE method defines rules for aggregating the

remediation costs, either in the Quality Model tree

structure, or in the hierarchy of the source code

artifacts.

As illustrated on Fig. 4, this simply means that the

Technical Debt at a quality characteristic level: e.g.

Maintainability is the sum of the Technical Debts of

all associated sub-characteristics: i.e. Analysability,

Changeability, Stability, Testability. And that the

Technical Debt of a source code artifact (e.g. a

source file) is the sum of the Technical Debts of the

embedded artifacts (e.g. the functions) added to the

artifact intrinsic Technical Debt.

Fig.4: Breakdown of the SCQM Index per

software characteristic

In order to provide the development teams with a comparative evaluation, the SCQI Analysis Model

specifies a set of Key Performance Indicators (KPI).

As recommended in [2] but too often omitted, a KPI shall provide a level of performance, first of all:

“the degree to which the needs are satisfied, represented by a specific set of values for the quality

characteristics” [2]. This implies associating a scale to a base or derived measure and performing a

rating.

The main KPI used in the SCQI Analysis Model is based on the Technical Debt Density: i.e. the average

Technical Debt per thousand of source lines of code (KLOC). The lower is the density, the better the

source code.

In addition, for Learnability purpose, the standard

European Community energy label (see fig. 5) has

been chosen to provide a commonly understood

graphical summary of the level of performance of

source code regarding the expected requirements to

all stakeholders.

The table besides provides the key scale associated

to the Technical Debt Density. As an example, a

software project or folder containing between 2 and

5 major non conformities per KLOC would be rated

“C”.

Fig.5: The SCQI Technical Debt Density
Scale

Considering the ability to tailoring both the internal properties of the Quality Model and the KPI scales,

the SCQI Analysis Model has been designed to be customizable enough to fit the various levels of

maturity of the R&D centres within SE, the criticality of software products and the type of software

development processes and technologies.

Integrating Qualimetry into the Software Development Life Cycle

The deployment process applied by the SCQI project includes integrating source code qualimetry into

the Software Development Life Cycle (SDLC).

Software Qualimetry at Schneider Electric: a field background

Page 5

Fig. 6 explains how applying qualimetry activities all along the SDLC when using a waterfall

development process. The equivalent for an Agile development process such as Scrum is currently

under definition by SE teams. Three main strategies are highlighted:

1. Carry out source code quality assessment at the end of the development just before starting

maintenance … so, with a risk of being too late for effective project’s benefits,

2. Perform source code quality assessment on intermediate milestones : e.g. “Quality stage gate”,

3. Perform as soon as and as frequently as possible quality checks.

The latter would comply with an Agile development process.

Fig. 6: Three main strategies to carry-out qualimet ry activities in

software development process life cycle.

The main use cases (or purpose of evaluation) supported by this process are:

- internal quality audit prior to product launching : e.g. a “GO/NOGO” decision,

- internal quality audit prior to open source component selection,

- quality assessment prior sub-contracted component acceptance ,

- quality assessment before stage gate or project milestone; Release for integration (at component

level), Release for validation (at application level),

- internal quality check of intermediate builds in the continuous integration process

- quality assessment to estimate workload before maintenance

At last, the detailed SCQI verification process is naturally derived from the standard software product

evaluation process specified in the part 5 of the ISO/IEC 14598 International standard [8].

Selecting the Supporting Toolset: the SQuORE Platform

It has been identified very early that automating the SCQI process and integrating it smoothly within

the developer environment would be a key condition for a successful deployment.

The infrastructure required to support the SCQI process has been setting up based on Continuous

Integration environments such as Cruise Control [9] or Jenkins [10].

The SQuORE software platform edited by SQuORING Technologies [2] has been selected to:

- collect and store measurement data into a centralized database,

- aggregate base and derived measures to provide Key Performance Indicators,

- provide rating of software artifacts according to the SCQI Analysis Model,

Software Qualimetry at Schneider Electric: a field background

Page 6

- support trend analysis from milestone to milestone allowing classic Statistical Process Control [11]

for process monitoring and improvement,

- ensure immediate and up-to-date access to the data and indicators to all stakeholders.

Beyond pure performances, an intuitive and user friendly web-based interface was also a key

requirement for SE to ease the adoption of the tools by the development teams.

Using a double drill-down, the SQuORE platform supports the two main use cases for developers quite

simply:

- locating risky constructions and complex components to be reworked in priority,

- identifying artifacts whose level of performance has decreased since the previous version and may

have fallen to a unsatisfactory level.

The Fig. 7 below provides a screenshot from the SCQI customization into the SQuORE platform:

Fig.7: A Screenshot from a SCQI dashboard into the SQu ORE product including the product level of

performance (e.g. a Rated “C” artifact) and some as sociated charts

The SQuORE Platform is delivered with versatile parsers for C,

C++, C# and Java code. They provide usual but efficient static

analysis techniques:

- Complexity and coupling source code metrics such as

specified in the HIS standard [12]: e.g. Cyclomatic Complexity

[13],

- Control flow analysis (see example in Fig. 8),

- Programming rule checking,

- Code cloning detection.

Fig. 8: A control flow graph of a

C function

It allows Schneider Electric R&D centres to quickly get up to speed with a basic SCQI Analysis Model

with no other measurement and analysis tool required.

However, the SQuORE platform is mainly used to interoperate with additional third party tools or

“Data Providers” as defined in [6] using standard or specific connectors according to the format of data

to be imported into the SQuORE data base.

Software Qualimetry at Schneider Electric: a field background

Page 7

Usual data providers for the SQuORE platform are:

- Rule checking tools such as CheckStyle[14], CodeSonar [15], Coverity [16], FxCop [17], Klocwork,

[18] or Polyspace[19],

- Test coverage measurement tools such as gcov [20] or NCover [21].

In the context of the SQCI project, such interoperability was also a key criterion for selecting the

supporting toolset. Indeed, it allows the SCQI rating to be more accurate and comprehensive by

aggregating results from tools that are already well integrated in the various and eclectic development

environments available in SE.

3. FEEDBACK FROM THE FIELD

This section presents some key feedback and lessons learned from the various deployments of the

SCQI method that have been performed all over SE since 2010 by the Software Efficiency team.

Establish the scope of the evaluation clearly

It may seem obvious one stated, but it shall always be reminded to the developers that the evaluation

perimeter shall only include the relevant product components.

When considering the source code, a developer starting applying the SCQI method usually swiftly

selects all source files (e.g. all “*.c” file) in a given folder or from the configuration management system

as part of the project and get them automatically analyzed by SQuORE. In such a case, the selection

could contain generated code, test drivers and stubs, re-useable packages, deliverable components,

even useless or obsolete source files.

At the end of the process, the developer sometimes complains about the fact that the remediation

plan does not only focus on the effective code he/she develops or maintains but also includes change

proposals on non relevant pieces of code … when he/she explicitly provided the selection of the files

to be analyzed.

Indeed, evaluating the level of Maintainability of generated source code is totally meaningless

assuming that nobody will ever open the corresponding file to locate and fix a bug.

So, to avoid wasting time understanding findings or diagnoses on non relevant pieces of code, a strict

definition of the product scope: i.e. a list of software artifacts is required to keep the project team

members focused on the actual valuable part of the source code to define an effective remediation

plan. If some source files do not need to be maintained or re-used as is, don’t assess them!

Make your own “Technical Debt”

The Technical Debt concept as just the “cost of remediation” clearly misses the level of criticality of the

defects/non conformities found.

Towards the goal of providing the developers with an optimized remediation plan, the highest

Technical Debt does not necessarily mean the worst or most critical artifact or the one to be corrected

first. Indeed, a costly remediation may not be of great benefit regarding a cheaper one but clearly a

bug.

Considering the 4 following change proposals being part of a remediation plan:

a) completing function comment headers for Analysability purpose,

b) specifying a default clause at the end of a switch structure for Fault Tolerance,

c) factorizing cloned code for Changeability and Testability,

d) adding a missing break statement ending a case block of a switch structure to avoid

unintentionally falling through the next case,

the last one has definitively the lowest cost of remediation but the highest benefit for the Maturity of

the application as it clearly removes a latent defect with no impact regarding Stability. So, the action d)

should be placed with the highest priority in the optimized remediation plan.

Software Qualimetry at Schneider Electric: a field background

Page 8

Therefore, the Technical Debt finally in use in the SCQI Analysis Model looks much more a quantified

“penalty” linked to a remediation priority level than a pure remediation cost. Such a Technical Debt has

been established from a trade-off between remediation costs, expected benefits, and Stability i.e. the

risk of side effects when modifying the code.

Deliver an easy-to-access solution “out-of-the-box”

In many organizations including SE, software qualimetry is often perceived as painful and time-

consuming by project managers or software developers. So, arguing they are busy and under pressure,

it is an easy game for them to bypass or postpone the source code verification; a usual human self-

defence mechanism when facing changes or new responsibilities.

To take apart from this, the SCQI project has set up a shared infrastructure based on continuous

integration environments to automate data collection and analysis. Then, only a web-browser is

needed to get access to the results on the intranet. All stakeholders can easily benefit from up-to-date

data and indicators.

Ensure simple use cases for the end-users

When process improvement is tool-based, the learning curve and the training process should not be

underestimated.

Facing a new method and a new tool, beginners may get lost in front of the amount of information and

the multiple browsing capabilities (e.g. drilling down the artifact hierarchy or the KPI tree) and then

forget their initial goal: i.e. building up an optimized remediation plan using the SCQI method.

To minimize this risk, user training materials shall provide the end-users with very few simple use cases

where they learn how getting started and access to the heart of the matter in a few mouse clicks.

In addition, the SQuORE decision model has been configured to automatically generate a limited

selection of the key findings so called “defect reports”. For beginners, setting up a remediation plan

can be just limited to sorting the proposed defect reports by priority and export the most relevant ones

into the project change tracking system or the product backlog in case of an Agile process.

Extend the scope of quality evaluation when possible

When initiated, the SCQI were restricted to source code. However, mature projects have expressed

their need for considering complementary work products such as requirements, design models, test

related artifacts, very early. Indeed, test coverage measurement as well as data from change

management would clearly help evaluating Reliability more accurately but also the performance of the

related software processes [22], [23].

In addition, the SQuORE platform integrates measures from configuration management such as the

Stability Index [12]: i.e. the percentage of unchanged code since the previous version. It delivers

additional information for optimizing the remediation plan. Indeed, there may be no need of proposing

remediation actions on a software component that has not been changed since many versions or even

years.

Optimize standardized “configurations”

From all previous deployments, several typical contexts and configurations have been identified

related to:

- the level of maturity of the organization in software,

- the type of technology / languages and,

- in-place tool chain and assessment purposes.

Software Qualimetry at Schneider Electric: a field background

Page 9

The table below shows some of these typical configurations. They can be packaged and optimized to

speed up the deployment process by delivering “ready-to-use” configurations to the R&D centres.

Project Maturity Data Providers Configuration and Training

Low Level:
No code review or analysis yet
in place.
No continuous integration

All technologies:
CPD (Copy/paste detection)
SQuORE (Source code metrics)

- Corporate standard Quality Model
- SQuORE deployed as a static code
analyzer and qualimetry dashboard
- Training/coaching provided only to
super-users (senior software developer)

Medium Level:
Code review and/or one or
more static code analysers
running at different steps during
development.

No continuous integration

All technologies:
CPD (Copy/paste detection)
SQuORE (Source code metrics)

C/C++: Klocwork, Coverity,
CodeSonar
C# : FxCop
Java: Checkstyle

- Quality Model adapted to the local
technical rules set
- Rule Checking results integrated into
SQuORE
- Qualimetry dashboard shared within the
team from the SQuORE server
- Training/coaching provided to some
key users (i.e. senior software developers
and quality engineers)

High Level:
Code review supported by static
code analyzers running all
along the software development
lifecycle.

Continuous integration
including static code analysis,
unit testing and code coverage
measurement

All technologies:
CPD (Copy/paste detection)
SQuORE (Source code metrics)

C/C++: Klocwork, Coverity,
CodeSonar, Gcov
C#: FxCop, Nunit, Ncover
Java: Checkstyle, Junit,
FindBugs

- Quality Model adapted to the local
technical rules set
- All results integrated in automatic tool
chain
- Qualimetry dashboard shared within
team in development loop
- Training/coaching provided to all team
members.

4. CONCLUSION AND PERSPECTIVES

The SCQI project has mainly justified its return on investment from a higher productivity of the

software development and testing teams. Indeed, a better quality of the source code clearly leads to

less rework, less testing and review.

The gain on investment can be established and demonstrated from:

- a lower rate of bugs per kilo line of code due to early defect detection,

- a higher rate of change requests implemented per Man/Day due to less code to maintain and a

code easier to dive in.

As of today, it is too early to evaluate the gain on investment in such a quantified way. However,

leveling off the Technical Debt for existing projects would be considered as a first success ensuring no

regression in Maintainability of the legacy code. This is the first goal assigned to the project managers.

On another hand, the SCQI are just spreading within SE. And this takes various ways:

Deploying on more and more R&D centres: The ultimate goal is for all software projects within SE to

use the SCQI. In the next quarter, several new deployments are already planned all around the world:

e.g. China, Australia, Canada; clearly, a first fulfillment for the SCQI as the deployment is funded by the

R&D centres and initiated on a voluntary basis.

Adding new data providers: All along the future deployments, the SCQI project will face new field

configurations leading to more and more third party tools interoperating with the SQuORE platform. At

last, the SCQI should be more and more accurate and future implementations easier and faster.

Software Qualimetry at Schneider Electric: a field background

Page 10

Including architectural data: Evaluating some internal properties on the architecture or general design

of the application misses information and measures. The SQCI supporting toolset will provide such

capabilities soon.

Towards a “Capitalization Database”: The SQuORE platform includes statistical features e.g.

histograms, correlation matrices. Assuming the collection of the relevant data, such data analysis

features will be used for return of experience studies or post-mortem analyses:

- demonstrate the ROI of the SCQI as stated below,

- identify correlation between “Quality-In-Use” variables under monitoring e.g. the number of bugs,

and potential explanatory “product and processes attributes” variables e.g. code complexity, test

coverage.

Such studies should lead to effective tuning of the SCQM and forecasting capabilities for Project

Monitoring and Control.

REFERENCES

1. More information on sqale.org

2. More information on squoring.com

3. Halstead (1977) - Elements of software science –
Elsevier

4. ISO/IEC 9126-1: 2001 – Software Engineering –
Product quality – Part 1: Quality model

5. Dromey (1994) – A model for software product –
Software Quality Institute – Griffith University
Nathan, Brisbane

6. ISO/IEC 15939:2002- Software Engineering –
Software measurement process

7. Cunninghan (1992). – The WyCash Portfolio
Management System.

8. ISO/IEC 14598:1999- Information technology –
Software product evaluation

9. More information on cruisecontrol.sourceforge.net

10. More information on jenkins-ci.org

11. Zhang, Kim (2010) – Monitoring Software Quality
Evolution for Defects – IEEE Software

12. HIS Source Code Metrics (2005) – Hersteller
Inititative Software AK Softwaretest

13. McCabe (1976) - A Complexity Measure –
IEEE Transactions on Software Engineering –
Vol. SE-2

14. More information on checkstyle.sourceforge.net

15. More information on grammatech.com

16. More information on coverity.com

17. More information on microsoft.com

18. More information on klocwork.com

19. More information on mathworks.com

20. More information on gcov-eclipse.sourceforge.net

21. More information on ncover.com

22. IEEE Std 928.2 (1988) - Software Maturity
Index

23. Graves, Karr, Marron, Siy (1998) - Predicting
Fault Incidence using software change history –
NISS Tech. report 80

