
HAL Id: hal-02263430
https://hal.science/hal-02263430v1

Submitted on 4 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The product line engineering approach in a
model-driven process

H Dubois, V. Ibanez, C. Lopez, Joseph Machrouh, N Meledo, P. Mouy, A.
Silva

To cite this version:
H Dubois, V. Ibanez, C. Lopez, Joseph Machrouh, N Meledo, et al.. The product line engineering
approach in a model-driven process. Embedded Real Time Software and Systems (ERTS2012), Feb
2012, Toulouse, France. �hal-02263430�

https://hal.science/hal-02263430v1
https://hal.archives-ouvertes.fr

 Page 1

The product line engineering approach in a model-driven process
H. Dubois1, V. Ibanez2, C. Lopez 3, J. Machrouh4,

N. Meledo2, P. Mouy1, A. Silva5
1: CEA LIST, Boîte Courrier 94, 91191 Gif-sur-Yvette Cedex, France

2: THALES AVIONICS, 3, Rue Toussaint Catros, 33187 Le Haillan Cedex, France
3: Tecnalia, Parque Tecnológico de Bizkaia, E.202, 48170 Zamudio, Spain

4: THALES R&T, Campus Polytechnique, 1 avenue Augustin Fresnel, 91767 Palaiseau Cedex, France
5: Fraunhofer IESE, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

{Hubert.Dubois@cea.fr, Vincent.Ibanez@fr.thalesgroup.com, Cristina.Lopez@tecnalia.com, Joseph.Machrouh@thalesgroup.com,
Nicolas.Meledo@fr.thalesgroup.com, Patricia.Mouy@cea.fr, Adeline.Silva@iese.fraunhofer.de}

Abstract: The European CESAR1

Keywords: model-based methodology, product line
engineering, requirements, system architecture,
variability management.

 project intends to
provide industrial companies with a customizable
systems engineering platform (a Reference
Technologic Platform) that can be used across
several application domains (aeronautics,
automotive, industrial automation, railway, and
space). This paper focuses on the work performed in
the aeronautics domain and presents an innovative
tooled-up approach for product line engineering
used in the Thales Avionics use case. This approach
implements the automatic generation of product
models from variability models with the guaranty of a
requirements database. Domain engineering is here
developed in a model-driven process.

1. Motivation

In the world of avionics, depending on the mission, it
should be possible to communicate in continental
area, in remote and in oceanic area. In order to
perform this communication, several types of media
are used (VHF for continental area, HF and satellite
communication for remote and oceanic area). In an
aircraft, communication is divided into three main
parts: tuning of radio equipment, voice exchange via
reception and signal transmission, and audio
management in the cockpit area. These
functionalities evolve depending on the use case
chosen for the mission (see Figure 1).
The goal of this study is to manage these radio
management variabilities according to the different
use cases. We want to automate as much as
possible the generation of the models of the final
product with respect to the initial requirements of the
selected variant. Code generation is not considered
here.

1 See CESAR website: http://www.cesarproject.eu

Figure 1: Radio management use case

In order to achieve this goal, we introduce in the
following sections a method that combines model-
driven development with product line engineering.
First, we present a brief overview of the approach;
then the more specific aspects (domain definition,
consistency management between models and
requirements, and, finally, variability management).
For each step, we briefly introduce tools. In the third
section, we then describe the application of the
proposed methodology on the industrial use case
using the various tools selected before. The last
section summarizes the experiment conclusions and
gives some recommendations for future work.

2. The proposed methodology

2.1 General process

Figure 2 shows the process used to perform this
study. It is based on product line engineering and is
divided into two main phases: domain engineering
and application engineering. In the first phase, the
domain engineer performs consistency management
between the models and the requirements database
and also defines the variability model and the
corresponding association with the domain models.
Then, during the application engineering phase, the
application engineer resolves the variability model,
according to the use case and, with tool support,
generates the corresponding requirements and
models for the final product.

mailto:Hubert.Dubois@cea.fr�
mailto:Vincent.Ibanez@fr.thalesgroup.com�
mailto:Cristina.Lopez@tecnalia.com�
mailto:Joseph.Machrouh@thalesgroup.com�
mailto:Nicolas.Meledo@fr.thalesgroup.com�
mailto:Patricia.Mouy@cea.fr�
mailto:Adeline.Silva@iese.fraunhofer.de�
http://www.cesarproject.eu/�

 Page 2

Figure 2: Process workflow

2.2 A specific metamodel

First of all, we have to define the domain model that
will be considered here. We base our approach on
the MaxSysML domain model defined in the CESAR
project [3], where concepts and relations are
defined. The purpose of MaxSysML is to propose a
dedicated and integrated language for system
design adapted to the CESAR platform with common
aspects shared by all application domains.
The MaxSysML approach considers different steps
that span the system architecture design; MaxSysML
also describes the relations between these steps:

• Operational analysis: focus on customers’
needs.

• Functional and non-functional needs analysis:
focus on the system itself (behavior,
safety…).

• Logical architecture analysis: identification of
the system’s components (roles,
relationships, properties).

• Physical architecture analysis: similar to
logical architecture analysis, but allocated to
components.

The MaxSysML metamodel has been implemented
as a Domain Specific Language (DSL) in the
Papyrus MDT2

The implementation, as illustrated in Figure 2, is
done using the technique of UML enhancement with
profile mechanism [12], and, more specifically in this
case, as a SysML profile [10]. This profile
implements the different elements that compose the
operational view, the functional analysis, the logical
architecture, and the physical level.

 tool. Figure 3 illustrates the
integration of the CESAR conceptual metamodel as
a SysML profile into the Papyrus tool.

2 See: http://wiki.eclipse.org/MDT/Papyrus

Figure 3: MaxSysML DSL as a SysML profile

With respect to the functionalities of Papyrus MDT,
an adaptation of the standard UML and the SysML
modeling environment is possible when selecting the
SysML template that initiates a new model
conforming to the MaxSysML DSL. This adaptation
covers specific modeling facilities (palette,
preferences for manipulated elements, visual
enhancements) that are covered by the proposed
Eclipse-based Papyrus MDT modeling environment.

2.3 Consistency management

Figure 4: Consistency management

As shown in Figure 4, the model is statically
analyzed to extract the data functions and generate
an ontology. This step is currently performed
manually as its automation was not the principal
objective of our cooperation; however, it could be
easily automated. The ontology, its associated
boilerplate, and the requirements are used as inputs
for DODT [8], a boilerplate and ontology handling
tool. It is used to check the consistency of the
ontology by identifying discrepancies and/or
ambiguities with the requirements expressed in
DOORS3

3 See IBM Rational DOORS,

. If ambiguities exist, the user has to specify
the respective issues. The requirements are updated
with this additional information and boilerplate, and
then a new consistency checking is done. This

http://www.ibm.com

http://wiki.eclipse.org/MDT/Papyrus�
http://www.ibm.com/�

 Page 3

process is iterated until complete verification has
been accomplished.

2.4 Variability management

Since radio communication systems have a strong
degree of commonality, we use product line
engineering to take advantage of this and reuse the
already defined requirements and functional
decomposition, as well as the consistency checking,
as much as possible. The idea is to perform these
analyses just once and to be able to generate the
appropriate requirements and models for each
different mission automatically.

To do so, we rely on variability management tools,
which allow us to manage variability in different
artifacts used throughout the development. Some
tools offer better integration with development tools,
while others still lack such support, but are still
helpful, as they help us to identify dependencies
among variabilities.

Various variability management tools are available.
Some of them are based on the feature diagram
approach [6, 9] in which the feature model is the
central node around which the different product line
models are designed throughout the whole product
life cycle. There also exist some other approaches
[2, 4, 13, and 14] that propose to directly identify
variable elements in architecture or behavioral
models of the product line to address what is called
cross-sectional variability.

Within the CESAR project, three tools for managing
variability have been defined/extended. Their
integration into development tools, however, is an
on-going task, whereas commercial tools enable
integration into several tools used for embedded
system development (such as IBM DOORS or
Papyrus MDT). In particular, pure::variants4

In our case study (see Figure 5), we tested the
usage of both commercial and non-commercial tools.
pure::variants was used to manage variability in both
requirements and functional decomposition models.
The other tools used, which are being developed in
the CESAR project, were the PLUM and CVL tools.

 allows
managing variabilities in requirements and design
documents, which are issues of interest to us.

4 See pure-systems Website: http://www.pure-systems.com

Figure 5: Variability management

3. Application to case study

In this section, we describe the usage of the different
techniques and related tools in the radio
management use case. This description concerns
the consistency of the ontology, requirements
management, as well as the modeling and
generation of product-specific models based on the
domain models.

3.1 Domain ontology consistency

For this task, the usage of DODT allows the user to
directly connect to the DOORS requirements library
from which the requirements database is uploaded.
The DODT tool automatically launches DOORS
when starting. Three inputs are needed: a set of
requirements (taken from the DOORS tool); a set of
boilerplates expressed in a dedicated file that is
uploaded in the tool, and a domain ontology that can
be expressed in a Papyrus modeling formalism by
using variables. Once these different elements are
launched, the DODT offers different functionalities to
the user. These functionalities can be listed in two
subgroups as illustrated in Figure 6:

1. Editing functionalities. The user can edit the
requirements, the boilerplates, and the ontology;
the DODT tool guarantees the consistency of
data shared between tools (DOORS and
Papyrus here).

2. Validation functionalities for requirements
analysis. Several types of analyses are available
in the DODT tool:
2.1. “Completeness” of the requirements with

respect to concepts available in the
ontology that are not related to any
requirement;

2.2. Detection of “inconsistency” between pairs
of requirements;

2.3. “Ambiguity” analysis (cf. Figure 7a), which
detects inaccuracy of a requirement w.r.t. a
related concept of a given requirement
which may be refined in the ontology;

 Page 4

2.4. “Noise” detection, which detects
requirements in which concepts are not
declared in the ontology;

2.5. “Opacity” analysis, which detects the
usage of unrelated concepts in the same
requirement;

2.6. “Redundancy” for duplicated requirements.

A summary of these different metrics is given for the
complete set of requirements as illustrated in Figure
7b.

Usage of the DODT tool allows the engineer to get
complete traceability between the concepts of the
domain and the requirements it manages.

 Let us now describe in detail how the models are
defined (the models that are also used as input for
DODT).

3.2 System models

System models are defined in the Papyrus tool
modeling environment. Models are defined as
SysML models using the MaxSysML profile defined
in the CESAR project. MaxSysML is a SysML profile
(as illustrated in Figure 8).

Figure 6: DODT - Inputs and functionalities

Figure 7: DODT - Requirements analysis functionalities: metrics (7a) and ambiguity detection (7b)

Editing commands

Analysis commands

Boilerplate selection

Requirement edition w.r.t. ontology inputs

Requirements database

 Page 5

Figure 8: Papyrus - MaxSysML is a SysML profile

This profile extends the Block SysML definition by
defining two kinds of elements: LogicalContext and
LogicalComponent. FlowPort may be associated
with these elements (extension of a SysML
FlowPort with the dedicated stereotype).

MaxSysML integrates elements for each of these
phases of model-based design of complex systems.
For instance, let us consider the MaxSysML
definition for logical analysis (cf. Figure 9).

Figure 9: Papyrus - MaxSysML logical analysis

The MaxSysML profile has been developed and
implemented in the Papyrus MDT tool with dedicated
modeling facilities, including a specific modeling
environment with a MaxSysML palette, etc. An
example of a functional view of the radio use case
can be seen in Figure 10. The elements are defined
as MaxSysML elements (with their related
stereotypes).

Figure 10: Papyrus MDT modeling with MaxSysML profile

It is structured into several packages that define
dedicated modeling elements for operational
analysis, system analysis (or functional analysis),
logical analysis, physical analysis, and architecture
definition.

Next, we present the definition of variability models
by the different tools that were tested for this case
study and their relations with the system models and
with the requirements.

3.3 Variability modeling with PLUM

Let us first consider the usage of PLUM5

A decision model in PLUM is implemented as
illustrated in Figure 11. We define functional
variability and actions (called validity actions) related
to these variability points. Related operational
variability questions are associated with these
decision nodes.

 [1]. PLUM
was used for managing variability in requirements.
The principle in PLUM is as follows: During the
domain engineering phase, we build a decision
model that maps decisions to requirements. Then,
during the application engineering phase, a
resolution model is defined by answering the
questions associated with the decisions, which leads
to a set of requirements associated with the variant.

Figure 11: PLUM - Decision Model

The mapping between the requirements and a
decision model is done by manually defining a set of
requirements that are associated with a decision
node (identified by the related identifier in the
decision model), which is selected in a specific
workflow that the user must define. This is done in
an XML file created by the user as illustrated in
Figure 12.

5 See PLUM website: http://www.tecnalia.com/plum

http://www.tecnalia.com/plum�

 Page 6

Figure 12: PLUM - Mapping between requirements and
decision model

Then, we define a resolution model as illustrated in
Figure 13. In this model, the user makes a selection
regarding the different variation points defined in the
decision model previously defined.

Figure 13: PLUM - Resolution model

Finally, to generate the variant, we execute the
workflow w.r.t. this resolution model on the decision
model. A set of requirements that refer to the current
variant is then created in a dedicated XML file.

3.4 Variability modeling with CVL

The CVL6

Since CVL uses a different approach, we first explain
its usage. The principle of CVL is to start from the
complete design of the system (as previously
presented in Papyrus with functional decomposition
and data flow diagrams), then to define variability in
terms of variants that the system could not support
and, finally, to produce the system with the selected
features (those that were not deleted). We illustrate
this usage on the use case.

 tool has been used to manage variabilities
in data function models.

The variability model can be expressed as a tree as
represented in Figure 14.

6 See CVL website: http://www.omgwiki.org/variability/

doku.php?id=cvl_tool_from_sintef

Figure 14: CVL - Variability Feature Model

This tree can also be seen as a model (cf. Figure 15)
in which we represent what we do not want to have
in the variant to be produced (a subtractive variant
w.r.t. the complete solution).

Figure 15: CVL - Diagram for Variability Models

This model is built as follows: We define new
variants as models generated from variability
expressions. Variability is expressed as a fragment
substitution, where the elements of the base model
contained in a placement fragment (the user selects
the modeling elements in the model view of the
Papyrus MDT model – Figure 16) will be replaced by
those contained in the replacement fragment (the
replacement fragment is an empty fragment here,
since we delete variability fragments from the
complete solution).

Figure 16: CVL - Selection of the fragment

http://www.omgwiki.org/variability/�

 Page 7

The result is represented in Figure 17, where the
complete model is shown on the right-hand side and
the variant automatically generated with CVL from
the selected fragment is depicted on the left-hand
side. Elements present in the complete model
disappear in the variant solution.

Figure 17: CVL - Generation of the variant

3.5 Variability modeling with pure::variants

Finally, the usage of the commercial tool
pure::variants is evaluated in this context.
pure::variants is used as follows: We must first
define a feature model, then family models of the
system on the one side and of the requirements on
the other side. The variant is then generated with the
respective list of fulfilled requirements and the
related Papyrus model.

Just as in the previous approaches, we start by
defining the variant model as a feature model
implemented in pure::variants. See Figure 18 for an
illustration on the use case.

Figure 18: pure::variants - Feature model

The requirements are then imported from the
DOORS tool. The requirements can be associated
with the feature model previously defined as
illustrated in Figure 19.

Figure 19: pure::variants - requirements and feature model.

A family model contains rules that associate
elements of the feature model with elements in the
Papyrus model. This is illustrated in Figure 20,
where we can see that model elements can be
selected (and others not selected) depending on
their association with a given feature from the
decision model. The selected elements are
highlighted in the diagram view.

Figure 20: pure::variants - System models and feature model

A variant can be generated from a feature model as
illustrated in Figure 21.

 Page 8

Figure 21: pure::variants - decision model

This feature model can now be used to produce the
final models for: 1) the related requirements and 2)
their related model. The requirements are generated
as illustrated in Figure 22 and can be uploaded to a
new DOORS file.

Figure 22: pure::variants - generated requirements

Related to these requirements associated with the
generated variant, a dedicated Papyrus model is
produced as illustrated in Figure 23. This model can
be automatically produced as a UML file, which will
contain only those modeling elements that fit with the
choices made in the decision model.

Figure 23: pure::variants - generated model

The pure::variants tool offers strong coupling with
requirements management using DOORS and with
system modeling using the Papyrus tool.

4. Conclusion

The CESAR solutions are a promising asset for
embedded systems development in the field of
intelligent transportation systems, where there is a
huge margin for improvement of development
processes. Among the several solutions that are
developed within the CESAR project, our approach
offers methods and tools for developing domain
models with respect to a requirements database in
order to ensure conformity between the boilerplate
representation of these requirements and the
models, and to ultimately generate a product from
product line models automatically. All these
approaches have been implemented and illustrated
in the context of a radio management use case
proposed by Thales Avionics.

This experiment used many tools included in the
Reference Technology Platform (RTP) of the
CESAR project. The commercial tool pure::variants
(not included in the RTP) was also tested in this
experimentation. This approach is also compliant
with a common meta-model (called MaxSysML) for
system modeling used within CESAR. This system
model, like the requirements database, is shared by
different tools; the product line process uses these
databases and modifies them while guarantying their
integrity. Consistency is ensured between the
system models and requirements database by using
the ontology (with DODT). Many functionalities are
included in these tools; however, the effort needed to
connect them to other artifacts varies from tool to
tool.

Despite this promising tool chain for product line
engineering, some effort is still needed to help end
users develop real applications. The major issue is
support for the graphical layout of variability models
rather than only for the structural layout. Some
verification rules also have to be developed to check
the consistency and the completeness of the
generated models with variability tools. A unique
feature model for requirements and model variability
would be more convenient for widespread usage.
For ontology management, automatic initialization
from the models would also be interesting.

Acknowledgements

The research leading to these results has received
funding from the ARTEMIS Joint Undertaking under
grant agreement n°100016 and from French,
German and Spanish national programs and funding
authorities.

 Page 9

5. References

[1] Aldazabal A. and Erofeev S. Product Line
Unified Modeller (PLUM). Eclipse Summit
Europe 2007, October 10-11, Ludwigsburg,
Germany.

[2] Atkinson C., Bayer J., Bunse C., Kamsties E.,
Laitenberger O., Laqua R., Muthig D., Paech B.,
Wust J., and Zettel J., Component-Based
Product Line Engineering with UML, Addison-
Wesley Professional, 2001.

[3] CESAR Deliverable D_SP3_R2.2_M2,
Architecture modeling methodology for RTP V2.
2011.

[4] Clauss M., Modeling variability with UML, GCSE
2001 Young researchers Workshop, 2001.

[5] Clements P. and L. Northrop. Software product
lines: practices and patterns, Addison-Wesley,
2001.

[6] Czarnecki K., Østerbye K., and Völter M.,
Generative programming, Object-Oriented
Technology, ECOOP 2002 Workshop Reader,
pp. 15–29, 2002.

[7] Farfeleder S., Moser T., Krall A., Stålhane T.,
Zojer H. and Panis C. DODT: Increasing
Requirements Formalism using Domain
Ontologies for Improved Embedded Systems
Development. In Poster Session of the 14th IEEE
Symposium on Design and Diagnostics of
Electronic Circuits and Systems (DDECS 2011),
Cottbus, Germany, April 2011.

[8] Hull E, Jackson K. and Dick J. Requirements
Engineering, Springer, Second Edition, 1995.

[9] Kang K.C., Kim S., Lee J., Kim K., Shin E., and
Huh M., FORM: A feature-; oriented reuse
method with domain-; specific reference
architectures, Annals of Software Engineering,
vol. 5, pp. 143–168, 1998

[10] OMG. OMG System Modeling Language
Specification (OMG SysML). Version 1.2, OMG
document number: formal/ 2010-06-01 (2010).

[11] Pohl K., Böckle G. and van den Linden F. J.,
Software Product Line Engineering:
Foundations, Principles and Techniques,
Springer, 2005.

[12] Selic B. A Systematic Approach to Domain-
Specific Language Design Using UML, ISORC,
pp.2-9, 10th IEEE International Symposium on
Object and Component-Oriented Real-Time
Distributed Computing (ISORC'07), 2007.

[13] Tessier P., Servat D., and Gérard S.,
Variability management on behavioral models,
VaMoS Workshop, pp. 121–130, 2008.

[14] Thiel S. and Hein A., Systematic Integration of
Variability into Product Line Architecture Design,
Software Product Lines, G.J. Chastek, ed.,
Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 130-153, 2002.

