
HAL Id: hal-02263407
https://hal.science/hal-02263407

Submitted on 4 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fan-C, a Frama-C plug-in for data flow verification
Pascal Cuoq, David Delmas, Stéphane Duprat, Victoria Moya Lamiel

To cite this version:
Pascal Cuoq, David Delmas, Stéphane Duprat, Victoria Moya Lamiel. Fan-C, a Frama-C plug-in for
data flow verification. Embedded Real Time Software and Systems (ERTS2012), Feb 2012, Toulouse,
France. �hal-02263407�

https://hal.science/hal-02263407
https://hal.archives-ouvertes.fr

Fan-C, a Frama-C plug-in
for data flow verification

Pascal Cuoq3, David Delmas1, Stéphane Duprat2, and Victoria Moya Lamiel2

1 Airbus Operations S.A.S., 316 route de Bayonne, 31060 Toulouse Cedex 9, France, Firstname.Lastname@airbus.com
2 Atos Origin, 6 Impasse Alice Guy, B.P. 43045, 31024 Toulouse Cedex 03, France, Firstname.Lastname@atosorigin.com

3 CEA, LIST, Software Safety Laboratory, PC 94, 91191 Gif-Sur-Yvette Cedex, France, Firstname.Lastname@cea.fr

Résumé DO-178B compliant avionics devel-
opment processes must both define the data
and control flows of embedded software at de-
sign level, and verify flows are faithfully imple-
mented in the source code. This verification is
traditionally performed during dedicated code
reviews, but such intellectual activities are
costly and error-prone, especially for large and
complex software. In this paper, we present
the Fan-C plug-in, developed by Airbus on top
of the abstract-interpretation-based value and
dataflow analyses of the Frama-C platform, in
order to automate this verification activity
for C avionics software. We therefore describe
the Airbus context, the Frama-C platform, its
value analysis and related plug-ins, the Fan-C
plug-in, and discuss analysis results and on-
going industrial deployment and qualification
activities.

Keywords:

Abstract interpretation, static analysis, value anal-
ysis, data flow analysis, avionics software, DO-178B,
industrial application

1 Introduction

1.1 Industrial context

Avionics software running on on-board computers
are major components of the systems of an aircraft. Such
software products are thus subject to certification by
Certification Authorities, and developed according to
stringent rules imposed by the applicable DO-178B/ED-
12B [19] international standard.

Among the many activities described in [19], ver-
ification activities are the heaviest. Indeed they are
responsible for a large, increasing part of the overall
costs of avionics software developments. Considering the
steady increase of the size and complexity of this kind of
software, classical V&V processes, based on massive test-
ing campaigns and complementary intellectual analyses,
hardly scale up within reasonable costs. For a decade,
Airbus has therefore been implementing formal tech-
niques developed by academia into its own verification
processes [22], for some avionics software products.

1.2 Static analysis at Airbus

Available formal techniques include model-checking,
deductive methods and abstract interpretation based
static analysis. The items to be verified being final prod-
ucts, i.e. source or binary code, model-checking is not
considered relevant here. Some program proof techniques
based on deductive methods have been successfully in-
troduced to verify limited software subsets, on which the
Caveat tool [15,12] is now used for certification credit.

So far however, the most successful technique has
definitely been abstract interpretation based static anal-
ysis [6,5,7]. It is currently used industrially for certifi-
cation credit on many avionics software products devel-
oped at Airbus to compute safe upper-bounds of stack
consumption with AbsInt StackAnalyzer, and/or worst-
case execution time with AbsInt aiT WCET [23,21].
Other static analysers have been shown to be industri-
ally usable :

ASTRÉE [14] to prove the absence of run-time errors on
synchronous control-command programs, has been
transfered to software avionics projects.

FLUCTUAT [13] to assess the numerical accuracy of
floating-point operators of these programs, is cur-
rently in the process of being transfered to opera-
tional development teams.

Moreover, all such analysers are automatic, a require-
ment for efficient industrial use.

1.3 Automating reviews and analyses of
source code

Among verification activities required by DO-178B,
(intellectual) reviews and analyses of source code are
prescribed [19, 6.3.4], in particular as a means to verify
the “correctness of the code with respect to the soft-
ware requirements and the software architecture, and
conformance to the Software Code Standards”.

The Frama-C platform has been shown to be suit-
able to automate such activities in a sound way. For
instance, the Taster plug-in developed by Airbus to verify
conformance to Airbus avionics Coding Standards [11]
has already been successfully transfered to operational
development teams.

In this paper, we present the Fan-C plug-in devel-
oped by Airbus (with Atos Origin as a subcontractor),
which makes use of the abstract interpretation based

2

value analysis of Frama-C to automate another hith-
erto intellectual activity : the review of source code to
verify the conformance of data and control flows with
design requirements. With this aim, section 2 gives an
overview of the Airbus context, regarding data and con-
trol flows and verification of conformance. Next, section
3 presents the Frama-C platform and its value analysis,
section 4 describes the related Inout and Users plug-ins,
and section 5 describes the Fan-C plug-in itself and how
it makes use of the services offered by Frama-C. Finally,
section 6 discusses results, prospects and operational
deployment.

2 Data and control flows in avionics
software

2.1 Requirements from applicable standards

DO-178B compliant avionics development processes
must define the data and control flows of embedded
software at design level, as required by [19, 11.10]. Ac-
cordingly, [19, 6.3.4.b] prescribes reviews and analyses
of source code as a means to verify conformance to the
associate design requirements : “The objective is to
ensure that the Source Code matches the data flow and
control flow defined in the software architecture.”

2.2 Data and control flow analyses

In the avionics context, data and control flow analy-
ses are performed either globally, on the complete pro-
gram, or componentwise, on subsets of the complete call
graph.

Properties of interest For each entry point of the
analysed call graph, we want to determine the lists of
inputs, outputs and calls.

inputs are parameters of the entry point function and
global variables whose initial values may be read
during some execution of this function. A special
case occurs with volatile variables, which are con-
sidered inputs even if they are written before read.

outputs are parameters of the entry point function
and global variables which may be written to dur-
ing some execution of this function. Variables both
inputs and outputs are called inout. Outputs which
are not inputs are called out. Inputs which are not
outputs are called in.

calls are external functions (with respect to the anal-
ysed subset) that may be called during some exe-
cution of the entry point function. A list computed
from the (syntactic) call graph does not meet this
specification, as :
– it fails to consider computed calls ;
– it is unable to report that functions f1 and f2

below have different calls.

1 void g(int c) {

2 if (c==1) h1();

3 if (c==2) h2();

4 }

5 void f1(void) { g(1); }

6 void f2(void) { g(2); }

For instance, for function f below :

1 typedef void (* T_FUN)();

2 extern void h0(), h1(), h2(), h3(), h4();

3 const T_FUN t[]={h0 ,h1 ,h2 ,h3 ,h4};

4 int g;

5 volatile int v;

6 void f(int a, int *b, int *c, int *d) {

7 int i=*d;

8 *b=i;

9 if (*b) *b=g;

10 else *c=g+a;

11 v=*b;

12 while (v && i >314) i/=3;

13 for (i=0; i<5; i++)

14 if (*c && i%2) (*t[i])();

15 }

in variables are a, *d, t[1], and t[3] ;

out is variable *b ;

inout variables are *c, g, and v.

calls are h1 and h3.

Airbus practise In most Airbus avionics software de-
velopment processes, data and control flow verification
is performed at unit level, i.e. on a small subsets of the
call graph containing the source code of typically one to
ten C functions, each composed of ten to hundred lines
of code. Reviewers rely on the in/out/inout specifica-
tions for external functions called by each subset, which
are in turn verified independently.

The verification is performed by intellectual code
review on all Airbus avionics software products, except
for those verified by Unit Proof, where Caveat automates
this activity. Such intellectual reviews are costly and
error-prone, especially for large and complex software
where Caveat is not applicable. Hence the need for the
Fan-C plug-in.

2.3 Connection with functional verification

All functional verification techniques, from unit and
integration testing to program proof, check the observ-
able behaviours of an effective implementation against a
set of requirements. Behaviours are execution traces re-
duced to observable outputs, and outputs are compared
with expected values in relation to relevant inputs. For
any such technique to be efficient, one must ensure the
set of relevant inputs and outputs in the implementation
is exactly the same as in the requirements.

Otherwise, if the designs only require “procedure F

sets resource R to zero”, verification might fail to detect
some spurious, and possibly harmful functionalities of
F, like on the example below :

3

1 int R;

2 extern int spurious_R;

3 void F() { R=0; spurious_R ++; }

Beyond conformance to applicable standards, it is thus
essential to verify data and control flows are identical in
the designs and in the implementation, as a prerequisite
to any meaningful functional verification.

3 Frama-C’s value analysis

Frama-C [4] is a framework that allows static analy-
sers, implemented as plug-ins developed in OCaml [16]
to collaborate towards the study of a C program [10].
Although it is distributed as Open Source, Frama-C is
very much an industrial project, both in the size it has
already reached 4 and in its intended use for the certi-
fication, quality assurance, and reverse-engineering of
industrial code. The development is lead by teams inside
CEA LIST and INRIA Saclay-Ile de France and started
within two research projects 5 in which Airbus and, in
the latter, Atos Origin, participated. The plug-ins used
in this application rely very much on the collaborative
approach offered by Frama-C. In this architecture, each
plug-in makes the results it has computed available to
other plug-ins through the API of its choice. A value
analysis resolves pointers, and enables, in subsequent
passes, the computation of synthetic information that
characterizes the analyzed functions. A detailed descrip-
tion of Frama-C’s architecture can be found in [11,20].

Frama-C’s value analysis [9] is a general-purpose
automatic static analysis plug-in. The value analysis
computes possible sets of values for variables in a C
program. It uses forward propagation, starting from
the entry point of the target program. Functions calls
are unrolled (the analysis is context-sensitive). Inside
a function, propagation follows the function’s Control
Flow Graph (it is path-sensitive). Loops can be unrolled
up to a point determined by the user, according to the
desired precision. The value analysis is loosely based on
the principles of abstract interpretation. It is essentially
non-relational, meaning that the memory states that are
propagated along the control flow graph mostly contain
independent information about each variable’s value.

The value analysis emits alarms when a construct
in the analysed program may be unsafe (uninitialized
access, use of a dangling pointer, overflows in signed
integer arithmetics, invalid memory access, invalid com-
parison of pointers, division by zero, undefined logical
shift, overflows in conversions from floating-point to
integer, infinite or NaN resulting from a floating-point
operation, undefined side-effects in expressions). After

4. Between 100 and 300 thousand lines of OCaml, depend-
ing which plug-ins are counted.

5. This work has been partly supported by the French
ANR (Agence Nationale de la Recherche) during the CAT
(C Analysis Toolbox) and U3CAT (Unification of Critical C
Code Analysis Techniques) projects.

it emits such an alarm, it continues the propagation as-
suming the dangerous circumstances did not take place.
Consider for instance a read access *p at a program
point where p has been determined to be NULL or &a.
The analyser emits an alarm to the effect that p must
be a valid pointer and produces the contents of variable
a for this expression. The value for p in the propagated
memory state is also reduced to &a.

Both kinds of results, alarms and values, can be
used in their own right. Alarms tell the user if the
analyzed program may exhibit undefined behaviors. The
values at each program point are guaranteed correct
for executions that reach that point without invoking
undefined behavior. The user may be interested in the
latter without wishing to verify the former. This is in
particular what we do in the application described in
this article. A short overview of the abstract domains
employed by the value analysis is provided in annex A.

3.1 API

The function !Db.Value.access is one of the func-
tions provided to custom plug-ins. It takes a program
point (of type Cil_types.kinstr), the representation of
an lvalue (of type Cil_types.lval) and returns a rep-
resentation of the possible values for the lvalue at the
program point.

Another function, !Db.Value.lval_to_loc, translates
the representation of an lvalue into a location (of type
Locations.location), which is the analyzer’s abstract
representation for a place in memory. The location re-
turned by this function is free of memory accesses or
arithmetic. The provided program point is used for
instantiating the values of variables that appear in ex-
pressions inside the lvalue (array indices, dereferenced
expressions). Thanks to this and similar functions, a
custom plug-in may reason entirely in terms of abstract
locations, and completely avoid the problems of pointers
and aliasing.

Access to data that would take up too much memory
to retain and/or would seldom be useful, such as, for
each statement, the unjoined list of the individual states
that have been propagated through that statement, is
provided through the installation of guest functions.
The guest functions are called at different steps during
the analysis, when parts of the data are available, and
before that data is forgotten to make room for the next
computations.

3.2 Initial state generation for context-free
analyses

The analysis needs an initial state to propagate from
the entry point of the target code. For whole-program
analysis, the initial state contains the initial values of
global variables, or the single abstract value that repre-
sents 0, +0. and NULL for globals without an initializer.

In this application, the value analysis is used in
its context-free mode, where the entry point of the

4

analysis is not assumed to be the entry point of the
program. Instead, global variables are assumed to have
been modified and contain arbitrary data at the time
the analysis starts.

Initial values for global variables are in this mode gen-
erated according to each variable’s type. Global variables
of pointer type contain the non-deterministic superpo-
sition of NULL and of the addresses of variables that
the analyzer allocates, and recursively fills in, following
the same algorithm. For an array type, non-aliasing
subtrees of values are generated for the first few cells
of the array. All remaining cells are made to contain a
non-deterministic superposition of the first ones.

3.3 Recording results for subsequent analyses

For each statement, the join of all the memory states
that have been associated to this statement during the
entire analysis is accumulated in a table. Hash-consing
[8] is employed to memory limit usage.

So as to make hash-consing more efficient, Patricia
trees [17] are used for representing maps indexed by
base adresses. The maps indexed by intervals that make
up the contiguous memory contents abstract domain
are currently represented with an ad-hoc, inadequate
data structure, but the goal is to move to a structure [3]
with properties comparable to that of Patricia trees.

4 Auxiliary plug-ins Inout and Users

The plug-ins Inout and Users are part of Frama-C
and distributed as Open Source. These plug-ins compute
synthetic information at the level of the C function : the
former computes, for each function f, the memory zones
read and written by f, whereas the latter computes the
set of functions that f may call.

The two plug-ins have in common that they rely on
the value analysis results, but only on the “values” part
and not on the “alarms” part. Both produce results
that only apply to executions that are free of undefined
behavior. If, on the side, the absence of undefined be-
haviors is verified, either with the value analysis or the
technique of the verifier’s choice, all the best : these
plug-ins’ results then apply to all executions. Other-
wise this limitation, that most static analysis tools for
verifying high-level properties on C code have, applies.

4.1 Plug-in Users

The plug-in Users computes, for each function f, a
list of the functions that f calls directly or indirectly.
The results are based on call stacks that occur during
the value analysis ; the list is only guaranteed to contain
functions that are called from f in the conditions for
which the value analysis was configured.

The lists are computed by means of a hook provided
by the value analysis. Each time, during the analysis,
the control is transfered from a function f to a direct

callee g, all functions present in the current call stack
(including f) are marked as using g. The plug-in Users
in Frama-C’s March 2010 development version handles
examples from section 2 optimally, computing the list
of functions called from f in the second example there
as h1, h3.

4.2 Plug-in Inout

The plug-in Inout uses the results from the value
analysis to compute lists of input and output locations
for each function. There are several possible definitions
of inputs and outputs (should they include the func-
tion’s formal arguments ? local variables ? hold for exe-
cutions for which the function terminates only, or take
into account non-terminating executions ?), so different
command-line options and API calls tap into quite a
few variants computed by this plug-in.

The memory zones abstract domain A memory
zone is represented as a map from base addresses to
unions of intervals representing ranges of bits. As an
example, the variable int x; may be translated to the
memory zone {{&x → [0..31]}}. Similarly to what is
done for values, the ranges of bits can usually, for print-
ing, be reverse-engineered into more user-friendly in-
dexes and member names. Memory zones are different
from the interpretation of lvalues during the value anal-
ysis because it is always possible to join two memory
zones without loss of information, whereas abstract val-
ues for an assignment destination, represented as pair of
the location of the first bit and a size in bits, can only
be joined precisely when the sizes are identical.

Imperative inputs and outputs So-called “impera-
tive” inputs and outputs are computed in a linear pass
on the function’s statements, accumulating the memory
zones read and written. This means that variables that
are only read after having been written are included in
the imperative inputs.

Operational inputs Another notion of inputs was
defined to complement the above. The operational inputs
at a point of a function are the memory zones that can
influence an execution that reaches that point. This
notion is yet different from functional inputs (locations
that influence the results of the function) in that an
operational input that isn’t a functional input may still
cause the function to crash, as variable p in the code
snippet { R = *p; R = a; return R; }.

The operational inputs analysis uses a dedicated
abstract domain. An element of this dedicated domain
is a pair composed of the memory zone that can influence
an execution up to the current program point and of the
memory zone that is guaranteed to have been written
at the current program point. The first component is
represented in the memory zone lattice and the second

5

one in the reversed memory zone lattice, so that it only
contains zones that are guaranteed to have been written.
It is simpler to see how this works on an example.

1 int x, y, *p, c, a;

2
3 void f(void)

4 {

5 if (c)

6 p = &x;

7 else

8 p = &y;

9 *p = 3;

10 x = a + 1;

11 a = *p;

12 }

In the above example, the condition expression of the if
statement reads variable c. The state {c}, {} is therefore
propagated to lines 6 and 8. Both these statements assign
a constant address to p, both transforming the state into
{c}, {p}. The join of these states, propagated to line 9,
is the same. Line 9 reads from p, but p already occurs
in the set of variables guaranteed to have been written,
so it is not added to the inputs. Results from the value
analysis are used to determine that the assignment may
write to x or y, but neither x nor y is guaranteed to
be written by the assignment. The state propagated to
line 10 is therefore {c}, {p}. In line 10, x is assigned
an expression that depends on a, and a is not in the
current guaranteed outputs, so the state propagated to
line 11 is {c, a}, {x, p}. Finally, when analysing line
11, results from the value analysis resolve the expression
*p to x or y again. All together, variables x, y, and p are
read by the right-hand side of the assignment at line 11.
But both x and p are in the memory zone guaranteed to
have been written at that point, so only y needs to be
added to the memory zone of variables read. The final
state is {c, a, y}, {x, p, a}.

From this analysis, we can conclude that among
the executions captured in the conditions the value
analysis was configured, it is always enough to set y, c
and a before executing the function to test all possible
behaviors of the function 6.

The memory zone {c, a, y} for operational inputs
is approximated. A better analysis would be able to
see that y is not an operational input. One approach
to improve the precision on this example is to separate
the states that come from the if at line 5 in a fash-
ion inspired from ASTRÉE’s trace partitioning, and to
apply the operational inputs computation separately
on both abstract execution paths. In fact, there are
value analysis options to do exactly that, and get the
optimal operational inputs {c, a}, but these options

6. The “operational inputs” notion was first defined to
answer a need expressed in the context of automatic test
generation. Frama-C would tell the test generation tool to
generate values for variables y, c and a in order to test the
function.

remain undocumented pending stabilization of their user
interface.

The example can be replayed on a computer with
Frama-C installed, using the command-line :

frama-c -inout -lib-entry -main f ex_inout.c

“Operational inputs on termination” are taken from the
state that reaches the end of the function. “Operational
inputs” (that take into account non-terminating execu-
tion paths) are computed by joining the states associated
to each of the function’s statements.

5 The Fan-C plug-in

The Fan-C plug-in (Flow analysis for C) is a custom
Frama-C plug-in which verifies the conformance of data
and control flows of source code written in C. It imple-
ments three main functionalities : annotation generation,
flow analyses, and result generation.

5.1 Annotation generation

As mentioned in sections 3 and 4, Frama-C’s value
analysis and auxiliary plug-ins analyse the C code acces-
sible from the entry point of the analysis, together with
the ACSL [2] contracts for the external called functions.

Fan-C, however, is designed to also analyse Airbus
programs free from ACSL annotations. All header files of
these programs are generated from design tools, which
annotate them with equivalent information. In partic-
ular, parameters in function prototypes are annotated
with normalised comments, such as :

– /* in */ for input parameters ;
– /* out */ for output parameters ;
– /* in out */ for parameters which are both in-

puts and outputs ;
– /* Array */ for pointer parameters meant to pass

arrays by reference.
For every external function that may be called from the
entry point of the analysis, Fan-C generates appropriate
ACSL assign clauses from the types and normalised
comments of its parameters. Fan-C may also be used
with ACSL annotated programs : existing annotations
may be preserved or overwritten, depending on Fan-C
options. Fan-C generated clauses define dependencies
between operands in the following way :

//@ assigns *X \from Y;

void F (int * /* out */ X, int /* in */ Y);

The ACSL annotation above means :
– F does not modify any memory location but the

one pointed to by X ;
– the value of *X after F is called can only depend

upon the initial value of Y. If the \from clause
were omitted, *X would depend on all reachable
locations, including itself.

6

Note that the reads or writes to global variables are not
provided, on purpose. What we verify against design
requirements is not the flows of the complete program,
but the contribution of each entry point to the global
flow. This choice could lead to semantically incorrect
analyses. To avoid this situation :

1. we assume no external called function writes the
same globals as the analysed subset of the call graph :
this is enforced by the design process, and checked
a posteriori.

2. Fan-C adds an extra fdc_side_effect global vari-
able to the list of inputs and outputs in the ACSL
contract of every called function, so that no two
calls of the same external function can be assumed
by the value analysis to have the same effects.

For instance, given the below function prototype

1 extern unsigned int Compute

2 (const int * const /* in */ pIn ,

3 int * const /* out */ pOut1 ,

4 int * const /* out array */ pA1 ,

5 int /* inout */ pA2 [25]);

Fan-C generates the following ACSL contract

1 assigns fdc_side_effect \from *pIn ,

pA2 [..];

2 assigns *pOut1 \from *pIn , pA2 [..];

3 assigns pA2 [..] \from *pIn , pA2 [..];

4 assigns pA1 [..] \from *pIn , pA2 [..];

5.2 Flow analyses and result generation

Once the annotation generation is completed, Fan-C
launches value, Inout, and Users analyses in context-free
mode, and filters the results. This action is performed
for each specified entry point of the source code.

Every operand (global variable or function parame-
ter) of the program is filtered from the lists computed
by options -out-external, -input-with-formals and -

inout of the Frama-C Inout plug-in. Fan-C then classifies
operands as in, out or inout, taking into account their
types and types qualifiers — especially volatile. Fan-C
also filters the list of calls computed the Frama-C Users
plug-in, in order to preserve only external functions
with respect to the analysed entry point. Finally, Fan-C
formats an ASCII file summarising the list of analysed
entry points, and the data and control flows computed
for each of them.

5.3 Frama-C external plug-in developer view

Use of Frama-C APIs in Fan-C The implementation
of Fan-C by Airbus (with Atos Origin as a subcontractor)
was made thanks to the facilities provided by the Frama-
C platform (see sections 3, 4). Fan-C makes use of several
Frama-C APIs in order to properly interact with general
services provided by the framework :

– The Cil API [18] provides miscellaneous useful
data structures and operations over the Abstract
Syntax Tree (AST) generated by Frama-C (see
section 3). This API is widely used in the Fan-C
plug-in to handle parameter types from function
declarations.

– The Globals and Kernel_function modules sup-
ply general-purpose services to handle function
interfaces and global variables. They are used to
interface with function declarations (with formal
parameters) and global variables from the AST
generated by Frama-C. Indeed Fan-C needs infor-
mation about global variables and declared func-
tions through all the phases of the plug-in, espe-
cially the annotation generation and the results
phase.

– Db : plug-ins register their APIs in the Db module
to allow other plug-ins to use them. This makes it
possible to exploit the following Frama-C plug-ins :
– The Inout plug-in computes data flows, as ex-
plained in section 4.
– The Users plug-in calculates control flows.

– The Locations module to handle memory loca-
tions for AST elements. It is mainly used in the
Fan-C plug-in for the management of normalised
comments in the annotation generation phase (see
5.1).

– The Zone module associates operands from the
Locations module with identifiers and ranges of
bits. It makes it possible to handle memory zones,
which are part of the data-structures computed
by the Inout plug-in.

– The Base database provides an API for managing
uninitialised variables. The use of this module is
necessary to exploit Inout analysis results, so Fan-
C employs it in the result treatment phase (see
5.2).

– The Logic_const module helps building logic
terms. As ACSL annotations are based on logic
terms, the Fan-C ACSL annotation generation takes
advantage of this module.

Experience feedback From the viewpoint of external
industrial developers of Frama-C plug-ins, several points
from the development of Fan-C are worth emphasising :

– Frama-C offers the possibility of preserving nor-
malised comments using a very low level but trivial
method of access, provided option -keep-comments

is used.
– Frama-C implements a default annotation genera-

tion, which Fan-C overwrites. This is made possible
by the services from module Globals, which al-
lows in-place AST modification.

– Exploiting Inout results is made simple, consider-
ing the complexity of the Inout and Value plug-
ins.

7

6 Results and prospects

6.1 Industrial case study

First prototypes of Fan-C, based on the Carbon-
20110201 release of Frama-C, have been experimented
together with an operational development team, mainly
on a complex subset of a DAL C ARINC 653 [1] ap-
plication. This subset contains two concurrent threads,
and processes large, complex data structures : arrays of
thousands of pointers to structures, with (statically allo-
cated) linked lists. It contains of about 40,000 lines of C
code and is composed of about 1000 C functions, 500 of
which implement low-level design requirements, hence
considered entry points for unit (and flow) verification.
The expected data and control flows of every such func-
tion are described as part of the design document of the
subset.

Header files generated by the design tool are anno-
tated with normalised comments, as described in sec-
tion 5.1. These comments are processed by Fan-C to
produce ACSL assign clauses. The clauses summarizing
each callee f are used by the value analysis of Frama-C
as a substitute for f’s implementation when verifying a
caller.

Note that the value analysis of Frama-C only handles
sequential code. Multi-threaded code, as targeted here,
is analyzed correctly as long as every variable shared
between asynchronous processes is declared volatile.
Some shared variables protected by explicit critical sec-
tions have thus been redeclared volatile. The code is
then analysed completely automatically without mod-
ification, together with some stubs for the primitives
of the ARINC 653 operating system, and for library
functions similar to memset and memcpy.

6.2 Results

Among the 500 call graphs of the analysed software
subset :

– 85% are analysed in less than 5 seconds ;
– 97% are analysed in less than a minute ;
– 99% are analysed in less than 30 minutes ;
– 0.4% are analysed in more than an hour ;

Using the Airbus GRID computing facilities to run
analyses in parallel, the complete analysis of the whole
software subset takes about 2 hours. Fan-C results are
compared with flow requirements extracted from de-
signs by the design tool. Fan-C analyses produce correct
results : no inputs, outputs or calls are forgotten with
respect to the real executions. In some cases however,
(about 10% of the analysed entry points), the analysis
is still lacking some precision.

1 void my_memset(void *s, char v, int l) {

2 int i;

3 for (i=0; i<l; i++) ((char*)s)[i]=v;

4 }

5 typedef struct { char s[30]; int i; } T_S;

6 T_S s1;

7 int v;

8 void f() {

9 my_memset (&s1 , 0, sizeof(s1));

10 v=s1.i;

11 }

For instance, function f above has no input, and two
outputs : s1 and v. Nevertheless, the Fan-C analysis with
default options concludes s1.i may also be an input.
The cause is the joins performed during the analysis
of the loop of the my_memset function, which fails to
prove every byte of s1 is always written. In this case, we
have to change the analysis parameters to improve the
precision. Requiring the loop to be completely unrolled
(36 turns because of padding) is enough to solve this
precision issue.

1 extern void g(int * /* out */ i);

2 int x, y;

3 void f() { g(&x); y=x+1; }

A similar issue occurs for the code above. Fan-C treats
x as both an output and an input, as the semantics of
the ACSL assigns clause generated from the prototype
of g is “*i may be assigned during the execution of g”.

1 /*@ behavior fdcGen:

2 assigns *i;

3 assigns *i \from \nothing; */

4 extern void g(int *i) ;

No available annotation may express “*i is always as-
signed”. In the cases where this is an issue, we have no
better solution than write a C stub for g.

6.3 Prospects

In this paper, we have shown how Airbus has been
able to develop the Fan-C plug-in on top of the Frama-C
platform. Fan-C mainly uses Frama-C’s value analysis
and auxiliary plug-ins, and makes it possible to auto-
mate existing code reviews aiming at verifying data and
control flows on C code. Fan-C uses existing design spec-
ification annotations, and gives them the same meaning
reviewers do, in order to verify precisely the same proper-
ties. A lot of the work was in making sure Fan-C offered
a drop-in replacement for the existing process.

Fan-C is currently being used in an industrial context
within operational development teams. Some extra work
is still required to reduce non automatic activities, due
to remaining imprecision issues, to the bare minimum.
As an avionics software team has decided to use the
tool for certification credit, in replacement of intellectual
reviews, Fan-C and the parts of Frama-C it uses will need
to be qualified as a verification tool, according to the
DO-178B/ED-12B aeronautical international standard.
Precise information on the principles and architecture of
Frama-C and relevant plug-ins will be needed from CEA
LIST, in order to come up with a sound and cost-efficient
qualification strategy.

8

A Frama-C’s value analysis domains

A.1 Abstract domain for arithmetic values

An abstract domain for sets of integers or reals is
used internally. Values of the analyzed C program are
not interpreted directly in this domain, even when they
have type int or float, since an int variable can, after
an implementation-defined conversion, hold an address.

The domain for integers/reals is the disjoint union of
8-or-less integer sets, integer intervals with congruence
information (of more than 8 elements), and double-
precision floating-point closed intervals.

Describing this domain as a disjoint union is slightly
inaccurate : the singleton {0} is identified with the
floating-point interval [+0.0 .. + 0.0]. One example
reason for identifying them is the problem of the initial
value of a global variable declared as :

union U1 { unsigned int i ; float f;} u;

Since no initializer is provided at the definition of
variable u of type union U1, its first member i is ini-
tialized to zero. Programs using such an union may rely
on the fact that if read through member f, this initial
value represents the single-precision floating-point num-
ber +0.0. Coalescing {0} and [+0.0 .. + 0.0] means not
having to choose between the two abstract values in this
case.

A.2 Base addresses

Each declared variable, including functions, defines a
corresponding base address. Although according to the
C99 standard, function addresses deserve to be treated
differently from data pointers, no distinction is made
between them in our modelization. Each string literal in
the program also creates a corresponding base address.
Lastly, yet an additional base address in the value analy-
sis’ memory model is NULL. Base addresses are assumed
to be separated, that is, two offsets from two distinct
base addresses are never the same location.

A.3 Interpretation of precise pointers

Pointers are interpreted as maps from addresses to
integral values. The concretization of a map is the union,
for each base address, of the corresponding offsets with
respect to that base. For instance, the map that as-
sociates base address &v to the element {4; 8} of the
lattice of arithmetic values corresponds to the concrete
addresses (char*)&v+4 and (char*)&v+8.

Integers are injected into addresses through base
NULL. In particular, {0} is injected into {{NULL+ {0}}}.
Each C rvalue is interpreted in the abstract domain for
addresses ; integer expressions are interpreted as offsets
with respect to NULL most of the time : this offers
uniform treatment if the integer expression later turns
out to represent an absolute address in memory, that

embedded C programs are prone to access occasionally.
The offsets, expressed in bytes, are converted back to
indexes and member names when pretty-printing results
destined to the user.

This uniform representation allows heterogenous
pointer casts and unions to be handled, even when
these are used to convert pointers to and from integers.
When handling pointer casts, the value analysis makes
assumptions not strictly allowed by the standard, but
which seem to correspond to embedded programmers’
expectations.

A.4 Hierarchy of imprecise pointers

There are arithmetic operations on pointers that
the analysis is unable to make sense of. One example
is bitwise operations on the bits of an address, which
are programmed with some knowledge of the memory
layout. Such operations may be used to isolate the page
identifier of an address, to round a pointer up to the
nearest aligned address, etc.

The abstract domain actually used to represent ad-
dresses contains a whole additional hierarchy of values
for representing the results of such operations. The addi-
tional values only retain the information of which base
addresses were involved in the computation. The anal-
ysis traces which base addresses were involved in the
computation, so that it know which parts of memory
may be involved if the imprecise value is later derefer-
enced for reading or writing. In the example below, the
abstract value for p is computed as the imprecise ele-
ment {{ garbled mix of &{q} }}. The analyzer does
not know whether p is safe to dereference, nor, if it is,
does it know if *p is safe. It emits alarms for both. It
knows, however, that if p and *p are provably valid, the
latter can only point somewhere in the base address r,
so that the assignment to **p modifies r and does not
modify s.

1 int **p,q,r,s;

2 q = (int) &r;

3 p = (int**)(3 * (unsigned int)&q -

4 2 * (unsigned int)&q);

5 **p = 12;

This mechanism allows the analyzer, whenever its
permissive memory model causes it to see strange opera-
tions where there are none, to revert to a field-insensitive
analysis. The value analysis’ memory model allows, for
instance, to access a member of a struct through an
offset from another member. This is necessary to ana-
lyze precisely low-level code, but in turns means that it
may be needlessly difficult to analyse a program manip-
ulating, say, structs containing both pointer members
and int array members. The mechanism described here
would come into play in the analysis of such a program.

Imprecise values also contain information about the
location in the program of the probable cause of the
imprecision. This information is not relevant for the
application described in this article, but it would be

9

useful when aiming for more precise result from the
value analysis, for instance for the verification of the
absence of undefined behaviors.

A.5 Memory locations

When an lvalue such as *e is found on the left-hand
side of an assignment, the first step is to evaluate ex-
pression e in the addresses abstract domain. The offsets
in the results of this evaluation, which are expressed
in bytes, are then converted to bits. This allows uni-
form treatment of bitfields 7. Destination locations in
assignments are interpreted as a pair of an address (with
offsets in bits) and a size in bits. The size is determined
from the type of the lvalue.

A.6 Memory

Values as found in memory The previous section de-
scribes how valid values of different types are represented
in a uniform way. The memory of a C program may, in
addition to these values, contain uninitialized variables
and dangling pointers. The C99 standard refers to them
as “indeterminate contents”. In the value analysis’ mod-
elization, a memory read access, if it succeeds, produces
a value that isn’t uninitialized or dangling. The abstract
domain for values as found in memory is the product
of the domain for rvalues with a binary domain for ini-
tializedness and another for non-danglingness. Having
non-absorbing values for “uninitialized” and “dangling”
allows to recover the value a variable has if it is in fact
well-defined.

Uninitialized Dangling
| |

Initialized Not dangling

1 {

2 int l;

3 if (e1)

4 l = 17;

5 if (e2)

6 y = 25 + l;

7 }

In the above example, unbeknownst to the analyzer,
condition e2 implies condition e1. The program is there-
fore safe. The value analysis emits an alarm to the effect
that variable l must be initialized inside the second
if where it is used. This is unavoidable if the analyzer

7. Again, the analyser makes assumptions beyond what
is guaranteed by the standard on the implementation of
bitfields. This is unfortunate but necessary. Programs that
access bitfield representations need to be analyzed with the
same assumptions the program was written against, or the
missing information precludes any precise analysis. Programs
that use bitfields but do not use pointer or union tricks to
access their representation need only the analyzer to choose
one representation. In this case, the results of the analysis
do not depend which one as long as it is consistent.

doesn’t have the expressivity necessary to recognize that
e2 implies e1. However, the analyzer still is able to guar-
antee that if the program is safe, then the final value
for y can only be 42.

1 {

2 int *p, g;

3 {

4 int l;

5 p = &l;

6 if (e1)

7 p = &g;

8 }

9 if (e2)

10 *p = 3;

11 }

Dangling pointers are treated identically. Leaving
the block where a local variable l is defined as an
operation that affects the entire state. The value in
memory ({{&g ; &l}}, Initialized,Not dangling), rep-
resenting the address of either g or l, is transformed
into ({{&g}}, Initialized,Dangling), representing the ad-
dress of g or a dangling pointer. Reading the value
({{&g}}, Initialized,Dangling) from memory causes an
alarm and produces the value {{&g}}.

Memory state For a uniform treatment of aggregates
(arrays, structs and unions), an intermediate lattice
that maps intervals of bits to values in memory is used
for each base address. This abstract domain is called
the “contiguous memory contents” abstract domain.
A memory state is represented as a map from base
addresses to contiguous memory contents.

Références

1. Inc. (ARINC) Aeronautical Radio. ARINC 653. Avion-
ics application software standard interface, March 2006.
http ://www.arinc.com/.

2. Patrick Baudin, Jean-Christophe Filliâtre, Claude
Marché, Benjamin Monate, Yannick Moy, and Virgile
Prevosto. ACSL : ANSI/ISO C Specification Language
(preliminary design V1.4), preliminary edition, October
2008.

3. Richard Bonichon and Pascal Cuoq. A merge-
able interval map. In Studia Informatica Uni-
versalis Special Issue JFLA2010. Hermann, 2011.
To appear. Conference version available online
http ://studia.complexica.net/Art/AC-JFLA10-01.pdf.

4. Löıc Correnson, Pascal Cuoq, Armand Puccetti,
and Julien Signoles. Frama-C User Manual,
2011. http ://frama-c.com/download/frama-c-user-
manual.pdf.

5. Patrick Cousot. Abstract interpretation based formal
methods and future challenges. In Reinhard Wilhelm,
editor, Informatics, volume 2000 of Lecture Notes in
Computer Science, pages 138–156. Springer, 2001.

6. Patrick Cousot and Radhia Cousot. Abstract interpre-
tation : a unified lattice model for static analysis of

10

programs by construction or approximation of fixpoints.
In Proceedings of the 4th Symposium on Principles of
Programming Languages, pages 238–252, Los Angeles,
California, US, 1977. ACM Press.

7. Patrick Cousot and Radhia Cousot. Basic concepts
of abstract interpretation. In IFIP Congress Topical
Sessions, pages 359–366. Kluwer, 2004.

8. Pascal Cuoq and Damien Doligez. Hashconsing in an
incrementally garbage-collected system : a story of weak
pointers and hashconsing in ocaml 3.10.2. In Proceedings
of the 2008 ACM SIGPLAN workshop on ML, ML ’08,
pages 13–22, New York, NY, USA, 2008. ACM.

9. Pascal Cuoq and Virgile Prevosto. Frama-C’s value anal-
ysis plug-in, 2011. http ://frama-c.com/download/frama-
c-value-analysis.pdf.

10. Pascal Cuoq, Julien Signoles, Patrick Baudin, Richard
Bonichon, Géraud Canet, Löıc Correnson, Benjamin
Monate, Virgile Prevosto, and Armand Puccetti. Expe-
rience report : Ocaml for an industrial-strength static
analysis framework. In ICFP ’09 : Proceedings of the
14th ACM SIGPLAN international conference on Func-
tional programming, pages 281–286, New York, NY, USA,
2009. ACM.

11. David Delmas, Stéphane Duprat, Victoria Moya Lamiel,
and Julien Signoles. Taster, a frama-c plug-in to en-
force coding standards. In ERTSS 2010 : Proceedings of
Embedded Real Time Software and Systems. SIA, 2010.

12. David Delmas, Stéphane Duprat, Benjamin Monate, and
Patrick Baudin. Proving temporal properties at code
level for basic operators of control/command programs.
In ERTS 2006 : Proceedings of Embedded Real Time
Software. SIA, 2008.

13. David Delmas, Eric Goubault, Sylvie Putot, Jean
Souyris, Karim Tekkal, and Franck Védrine. Towards an
industrial use of fluctuat on safety-critical avionics soft-
ware. In Maŕıa Alpuente, Byron Cook, and Christophe
Joubert, editors, FMICS, volume 5825 of Lecture Notes
in Computer Science, pages 53–69. Springer, 2009.

14. David Delmas and Jean Souyris. Astrée : From research
to industry. In Hanne Riis Nielson and Gilberto Filé,
editors, SAS, volume 4634 of Lecture Notes in Computer
Science, pages 437–451. Springer, 2007.

15. Stéphane Duprat, Denis Favre-Félix, and Jean Souyris.
Formal verification workbench for airbus avionics soft-
ware. In ERTS 2008 : Proceedings of Embedded Real
Time Software. SIA, 2006.

16. Xavier Leroy, Damien Doligez, Jacques Garrigue, Di-
dier Rémy, and Jérôme Vouillon. The Objective
Caml system. http ://caml.inria.fr/pub/docs/manual-
ocaml/index.html.

17. Donald R. Morrison. Patricia—practical algorithm to
retrieve information coded in alphanumeric. Journal of
the ACM, 15(4) :514–534, 1968.

18. George C. Necula, Scott McPeak, Shree Prakash Rahul,
and Westley Weimer. CIL : Intermediate Language and
Tools for Analysis and Transformation of C Programs.
In CC ’02 : Proceedings of the 11th International Confer-
ence on Compiler Construction, pages 213–228, London,
UK, 2002. Springer-Verlag.

19. Inc. RTCA. DO-178B, Software Considerations in Air-
borne Systems and Equipment Certification. United
States. Federal Aviation Administration, 1992.

20. Julien Signoles, Löıc Correnson, and Virgile Pre-
vosto. Frama-C Plug-in Development Guide, 2011.
http ://frama-c.com/download/frama-c-plugin-
development-guide.pdf.

21. Jean Souyris, Erwan Le Pavec, Guillaume Himbert, Vic-
tor Jégu, and Guillaume Borios. Computing the worst
case execution time of an avionics program by abstract
interpretation. In In Proceedings of the 5th Intl Work-
shop on Worst-Case Execution Time (WCET) Analysis,
pages 21–24, 2005.

22. Jean Souyris, Virginie Wiels, David Delmas, and Hervé
Delseny. Formal verification of avionics software prod-
ucts. In Ana Cavalcanti and Dennis Dams, editors,
FM, volume 5850 of Lecture Notes in Computer Science,
pages 532–546. Springer, 2009.

23. Stephan Thesing, Jean Souyris, Reinhold Heckmann,
Famantanantsoa Randimbivololona, Marc Langenbach,
Reinhard Wilhelm, and Christian Ferdinand. An ab-
stract interpretation-based timing validation of hard
real-time avionics software. In DSN, pages 625–. IEEE
Computer Society, 2003.

