
HAL Id: hal-02263398
https://hal.science/hal-02263398

Submitted on 4 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SysML for embedded automotive Systems: lessons
learned

J-D Piques, E Andrianarison

To cite this version:
J-D Piques, E Andrianarison. SysML for embedded automotive Systems: lessons learned. Embedded
Real Time Software and Systems (ERTS2012), Feb 2012, Toulouse, France. �hal-02263398�

https://hal.science/hal-02263398
https://hal.archives-ouvertes.fr

 Page 1/10

SysML for embedded automotive Systems: lessons lear ned

J-D. Piques1, E. Andrianarison2

(1): Valeo - Powertrain Systems Business Group – Electrical Vehicle Product Group
 (2): Valeo - Group Electronic Expertise and Development Services

14 avenue des Béguines, F-95892 Cergy-Pontoise Cedex

Abstract : This paper deals with the first lessons
learned from using the SysML language to support
the System Engineering activities when developing
automotive embedded systems and products with a
particular focus on illustrating improvement solutions
that have been experimented and validated in Valeo
pilot projects.

Keywords : Model Based Engineering, System
Modeling, SysML, System Engineering, SysCARS

1. Introduction and overview

Motivations
Increasing complexity of technical systems, business
models and safety regulation (ISO26262) requires
higher formalization effort.
The Model Based System Engineering (MBSE)
approach is a key lever for automotive lean
processes to cope with this context and still ensuring
flexibility and R&D efficiency on innovative products.

Main lessons learned
Although SysML has become the de facto standard
for MBSE, a supporting methodological background
was and is still mandatory. The SysCARS
methodology [1], which is summarized in Part 2 ,
defines the sequence of SysML diagrams and
artefacts to be released in order to implement the
engineering process. However pilot projects have
shown this was not sufficient and other critical issues
have been addressed.
A major issue is the adoption of SysML existing
modelers which are too complicated for non software
engineers, providing no guidance on which diagram
and artefact to use among overloaded GUIs. To
support adoption and deployment control, a workflow
driven approach is described in Part 3 and is
implemented by a Valeo profile including ergonomic
macros for Artisan Studio modeler.
Moving from a document centric approach to model
based engineering shall also ensure formal coupling
to requirement related tools. Part 4 addresses these
aspects together with strategy regarding traceability
checks and connection to tools such as DOORS and
Reqtify.
Still to facilitate adoption and due to weaknesses of
SysML compared to discipline modeling / simulation
tools, SysCARS support synchronization of structural
diagrams. This feature is described in Part 5 and is

used to perform behavioural studies in legacy tools
such as Simulink.
Finally Part 6 , summarizes issues related to system
and safety engineering coupling and presents
mechanisms supporting “Safety In the Loop” approach
(SaIL) targeting FMEA/FTA automation.

2. SysCARS methodology overview

SysCARS (System Core Analyses for Robustness
and Safety) is a Valeo methodology which provides
a practical help for system designers on how to
perform the sequence of System modeling activities
with SysML. This methodology, detailed in a
previous paper [1], is shortly summarized here.

2.1. SysCARS principles

SysCARS methodology added value consists in:
• Selecting a subset of SysML diagrams and

artefacts to be used in a convenient and
pragmatic way (learning curve optimization)

• Providing defined semantics to ensure diagrams
meaning and rules for verifying model
consistency

• Defining an obvious diagram sequence which
ensures modeling efficiency regarding company
processes

• Implementing stereotypes and templates for
automatic documentation generation at each
stage of the process

• Taking into account coupling constraints with
other processes or tools such as Reqtify from
IBM for requirement traceability or Simulink from
The Mathworks for functional modeling

The current methodology is therefore targeting the
optimum trade off for Valeo deployment and is built
from existing state of the art. It does not claim for
any theoretical novelty, while having merged
relevant best practices from existing approaches,
such as EIRIS methodology [2]. This implementation
is also taking maximum benefits from available
features of the selected SysML tool, namely Artisan
Studio from Atego.

2.2. SysCARS generic workflow

The overall System Engineering process begins with
analyzing the project context, considering the system
to be developed as a black box, and then
successively goes deeper into the details until
specifying internal component features. More

 Page 2/10

precisely the SysCARS methodology is divided into
five major phases:
• Stakeholder needs definition

• Requirements analysis

• Logical architecture design

• Physical architecture design

• Components needs definition
For clarity purpose, the process and the sequence of
activities are described in a pure sequential way.
However, in practice, different steps could be
performed simultaneously with iterative and mutual
refinements.
Moreover, each phase systematically ends with:
• Traceability analysis, to check the consistency

and completeness of activities performed and
artefacts created,

• Automatic generation of a document making a
synthesis of the activities performed (SND:
Stakeholder Needs Document, SyRD: System
Requirement Document, SyDD: System Design
Document, CND: Component Needs Document).

2.3. SysCARS optimized workflows

The SysCARS workflow is described below.

Physical
Architecture

Physical
Internal

Interfaces

Physical
Internal

Scenarios

Physical
Architecture

Physical
Internal

Interfaces

Physical
Internal

Scenarios

Stakeholders Needs
Definition

Requirements
Analysis

Physical Architecture
Design

Logical Architecture
Design

Context Usage
User

Scenarios Modes

External
Interfaces

Main
Services

System
Scenarios

States

Internal
Functions

Physical
Architecture

Phy Internal
Interfaces

Phy Internal
Scenarios

1a 1b 1c 1d

2a 2b 2c 2d

3a

4b 4c 4d

GROUPING

Logical
Architecture

Log Internal
Interfaces

3c3b

Candidate
Solutions

4a

BDD UCD SD STM

IBD STMSDUCD

AD BDD IBD

BDD IBD SDBDD

SND

SyRD

SyDD
ALLOCATION

Physical
Architecture

Physical
Internal

Interfaces

Physical
Internal

Scenarios

Physical
Architecture

Physical
Internal

Interfaces

Physical
Internal

Scenarios

Stakeholders Needs
Definition

Requirements
Analysis

Physical Architecture
Design

Logical Architecture
Design

Context Usage
User

Scenarios Modes

External
Interfaces

Main
Services

System
Scenarios

States

Internal
Functions

Physical
Architecture

Phy Internal
Interfaces

Phy Internal
Scenarios

1a 1b 1c 1d

2a 2b 2c 2d

3a

4b 4c 4d

GROUPING

Logical
Architecture

Log Internal
Interfaces

3c3b

Candidate
Solutions

4a

BDD UCD SD STM

IBD STMSDUCD

AD BDD IBD

BDD IBD SDBDD

SND

SyRD

SyDD
ALLOCATION

Figure 01: SysCARS System Engineering Process

The last stage (Component Needs Definition) has
not been represented, because it is mainly an
extraction of component artefacts from the physical
architecture.
The kind of diagram used at each step is given by its
SysML acronym attached to the related activity
block: Block Definition Diagram (BDD), Internal
Block Diagram (IBD), Use Case Diagram (UCD),
Sequence Diagram (SD), STate Machine diagram
(STM), Activity Diagram (AD)
Lessons learned on pilot projects have shown that in
most situations it makes sense to bypass the
elaboration of the logical breakdown and to directly
allocate internal functions onto the physical
architecture blocks. Indeed, physical architectures
are very often frozen because resulting from carry

over products and therefore the investigation of
several candidate solutions is not necessary.
Consequently, two kinds of optimized workflow have
been defined depending on the project typology:
• SysCARS-XS (eXtended Stream): For innovative

products, the whole set of activities of the [figure
01] are performed, and in particular the
investigation of several physical architectures.

• SysCARS-CS (Core Stream): For carry over
products, the activities represented by grey boxes
on the [figure 01] are not performed.

3. Workflow-driven approach

3.1. A specific profile for customizing SysML

GUIs of SysML existing tools remain too complicated
for a non software specialist, which is the targeted
audience for System Engineering. Indeed, SysML
user interfaces provide confusing and unneeded
features from the UML world. Very often, UML and
SysML artefacts and diagrams are mixed without
any possibility for the user to limit to a pure SysML
scope. Moreover, no guidance is provided on the
relevant diagram to be used and on the correct
ordering of operations.
To cope with these drawbacks, a specific ergonomic
profile (thereafter referred to as “Valeo Profile”) has
been developed, introducing the concept of
workflow-driven approach. The basic idea behind the
workflow-driven approach is to provide the System
engineer with a step by step help throughout the
SysCARS engineering workflow. Moreover, at each
step of the workflow, only relevant features and
diagrams are available in a simplified GUI.
The mechanisms of the workflow driven approach
are detailed in the chapters below.

3.2. Workflow diagram navigation

When creating a new model with the Valeo profile,
this model directly opens a pre-defined “workflow
diagram”. The “workflow diagram” is the central
element of the Valeo Profile, defining the sequence
of modeling activities to be performed in accordance
with the SysCARS methodology [1]. In fact, the
workflow diagram is simply a statechart diagram,
where states and super-states respectively
correspond to elementary activities and main stages
of the SysCARS methodology. No more than one
elementary state can be active at one moment; i.e.
only one kind of elementary activity should be
performed. On the workflow diagram represented
below, the active state is highlighted in blue.

 Page 3/10

Pre-defined Package Structure Embedded SysCARS WorkflowPre-defined Package Structure Embedded SysCARS Workflow

Figure 02: Valeo Profile GUI Overview

It is possible to navigate the states of the workflow
diagram and to select the workflow commands
available: “Next Step”, “Previous Step”, “Go to
step…”. Then the modeling step is changed
accordingly.

Workflow Menu

Figure 03: Valeo Profile Navigation

A second kind of navigation mechanism is available
from the workflow diagram. Right-clicking on each
state allows to reach the diagrams summarizing the
results of this modeling step. The relevant diagrams
should have been attached as associated diagrams
once created.
The implementation of the workflow in the profile is
not frozen but configured using a dedicated XML file.
This option enables further evolutions on the
SysCARS workflow.

3.3. Pre-defined package structure

When creating a new model with the Valeo Profile,
this model is also provided with a pre-defined
package structure. This package hierarchy is directly
correlated to states and super states of the workflow
diagram, which in turn correspond to stages and
steps of the SysCARS methodology.
However, the user is free to organize differently
artefacts and diagrams within a different package
structure.
As previously, the pre-defined package structure is
not frozen but configured using a dedicated XML file.

3.4. GUI features defined by workflow state

The current active state of the workflow diagram is
used to monitor the look and feel of the SysML
modeler tool, in order to provide the user only with
the features required at this step of the system
modeling process. Consequently, command menus
available in the object browser and toolbar menus on
diagrams are both customized differently in each
state of the workflow diagram.
The diagram below clearly shows the level of
simplification on command menus reached by the
Valeo Profile.

Customized contextual Menu

Customized contextual Toolbar

Customized contextual Menu

Customized contextual Toolbar

Figure 04: Customized Menus

In the object browser window, the “create” command
menu displayed when right-clicking an existing
SysML object, is customized individually for each
type of SysML artefact and diagram.
In the graphical window, buttons available on each
kind of diagram toolbars are also customized
depending on the workflow diagram active state.
The GUI features are evolutionary and configured
from two dedicated XML files, one for the package
browser command menus and one for the diagram
toolbars.

3.5. Stereotypes for documentation

Documentation in a format that is easily
comprehensible by a broad range of stakeholders
remains an effective way to validate and
communicate system design information. The first
thing to do is to precisely define the expected
document format and contents by creating a
corresponding template for the publishing tool. The
same document template will be re-used on different
projects, without any modification. Then, thanks to
the publishing feature of the SysML tool, automatic
document generation can be run on demand to
collect and format data from the SysML model,
without any special effort.
Furthermore, separation between modeling data and
document templates enables versatile customisation
either to generate generic outputs or to address
specific customer process.

 Page 4/10

The organisation of the documentation is also based
on the workflow diagram breakdown. One particular
kind of document (with related template) is defined
for each workflow diagram super-state, in order to
make the synthesis of modeling activities performed
within this stage:
• SND (Stakeholder Needs Document) for

Stakeholder needs definition stage
• SyRD (System Requirements Document) for

Requirements analysis stage
• SyDD (System Design Document) for Logical and

Physical architecture design
• CND (Components Needs Design) for

Components needs definition stage
SysML artefacts and diagrams created when being
in a given super-state of the workflow diagram are
automatically attached with stereotypes indicating
that they should appear in the document associated
with this super-state. The names of these
stereotypes are built with the name of artefact or
diagram prefixed by the name of the target
document (e.g: SND_requirement). It is also possible
to manually apply documentation stereotypes when
artefacts should appear in multiple documents

Stereotype for Documentation

Figure 05: Documentation Stereotype Example

The only thing left to do is to load in the publishing
tool the pre-defined documentation template related
to the workflow super-state to be documented, and
then to launch documentation rendering. Diagrams
and artefacts appearing in the final document are
automatically filtered depending on their
documentation stereotypes, i.e. on the stage of the
workflow they have been created.

4. Coupling to requirement management tools

4.1. Efficient collaboration between tools

Speaking about requirements in general may lead to
adopt wrong requirement management tooling
solutions. In fact, initial needs are iteratively refined
during the engineering process, producing different
levels of so-called requirements, corresponding to
very different kind of information. Typically these
requirements can be classified in three categories:
• User requirements describe the expected

services from the end user point of view.

• System requirements define the features of the
system necessary to fulfil its mission.

• Component requirements specify the internal
constitutive parts necessary to implement the
expected features.

Therefore, believing that a unique tool has the
capability to address efficiently these three layers of
information is incorrect. On the contrary, a pragmatic
approach adopted at Valeo is to take benefits from
tools optimised for each field and to make them
collaborate efficiently.
Another common mistake is to mix up two categories
of requirements related tools:
• Requirement definition tools are containers of

requirements (or any modeling artefacts used for
specification).

• Requirement traceability tools do not define any
requirements but have the ability to analyze
requirements from requirement definition tools,
and to analyze traceability links.

A tool of the second category (e.g. Reqtify) can
therefore be used as a gateway to optimise
collaboration between tools of the first category
(DOORS, SysML Artisan Studio, Simulink, …), for
synchronizing interface requirements and producing
the whole traceability analysis. Another interesting
property of this scheme is its ability to let people
working with their discipline specific tools (such as
Simulink for control design).
All the above mentioned principles are summarized
on the figure below, showing the typical mapping of
tools used at Valeo.

USER

Repository

Customer
Needs

Customer
Needs

User
Requirements

SYSTEM

Architecture Breakdown

COMPONENT Refined Requirements
Design/Validation Elements

Component
Requirements

REQTIFY

Traceability
Results

Product

Discipline

Customer

Development
Tools

Architecture
Tools

Figure 06: Requirements Related Tools Mapping

4.2. Distributed requirement storage

Classical requirement management approaches
assume that all requirements shall be written in
natural language inside a centralized database
(typically DOORS). Then, SysML modeling artefacts
are only considered as intermediary by-products that
need to be finally translated into textual
requirements. This process makes sense in the
aerospace or railway transportation fields were
certification procedures are document-centric by

 Page 5/10

nature. However, in the automotive area, without any
constraints from certification procedures, a pure
model-centric approach is far more efficient.
Consequently, maximum benefits are taken from
expressive power and semi-formal verification
capability of the SysML modeling language.
Requirements or requirements-like artefacts
produced during system modeling activities are not
reformulated in natural language into an external
centralized database. On the contrary, the model
itself becomes the reference and the automatically
generated documentation only an illustration of this
reference. This philosophy is also used at
implementation level, where requirements or more
exactly requirements-like artefacts remains
embedded into discipline specific native models
(such as Simulink models, for control design).
This approach optimises the requirement
management effort because requirements are
distributed among the tool locations where they have
been defined, at each stage of the engineering
process. As a counterpart, the consistency of the
distributed requirements storage must be supported
by powerful traceability tools, with efficient
mechanisms for synchronizing interface
requirements between modeling layers.

4.3. User requirements in external repositories

The initial stakeholder requirements (namely user
requirements) remain captured in text specifications
external to the SysML modeling tool, as in the
classical approach. Typically, these specifications
are stored in a DOORS database but may also be
described using classical word processing or table
editing softwares. The combination of the Reqtify
gateway and of Artisan Studio modeling tool
provides a mechanism to import external text
requirements by creating mirroring SysML
requirements directly into the SysML model and to
later maintain these data synchronized. In fact, three
kinds of synchronization mechanisms are available:
• Synchronization with a DOORS database
• Synchronization with any kind of requirement file

captured with Reqtify
• Synchronization with Excel files (feature added

by the Valeo Profile)
The SysCARS modeling activities performed to
analyze stakeholder needs can result in proposing
updates to the user requirements baseline. However,
the textual requirements are formally updated and
controlled in the external requirement repository and
changes are propagated to the SysML model thanks
to the synchronization mechanism

4.4. System and component requirements
inside the SysML model

Requirements produced during SysML modeling
activities are not reformulated in natural language
into an external centralized repository. As a

consequence, system and component level
requirements are located inside the SysML model,
taking benefits from internal traceability links with
other model artefacts.
The standard SysML requirement object being
mainly limited to an identifier and a description field,
it has been necessary to add complementary
attributes, for efficient requirement management.
The figure bellows shows these additional fields
added by the Valeo profile, using tag definitions.

Requirements Attributes

Figure 07: Stereotyped Requirements Attributes

Another approach under investigation, but not used
on the first pilot projects, is to limit the use of SysML
requirements to non functional requirements. Then,
functional requirements are represented by SysML
artefacts attached to constitutive blocks, typically by
operations and states. More than avoiding
reformulating functions (described by operations) or
states into functional requirements, this approach
also saves the cost of declaring traceability
relationships between structural elements and
related functions. Indeed, operations and states are
already tightly linked to their owning blocks.

4.5. SysCARS traceability model

The traceability model adopted in the SysCARS
methodology has been pragmatically defined taking
into account the features of the SysML modeling tool
and the kind of verification that could be later
performed.
The main rules used for defining traceability
relationships are the following:
• Derive is used between two levels of

requirements
• Refine is used between a use case or a scenario

and the requirement elicitated
• Satisfy is used between a model artefact (state,

port, operation, block) and the requirement
implemented

• Trace is used between two representations of the
same item, either refined between modeling
levels or reformulated at the same level

 Page 6/10

The figure below represents the corresponding
SysCARS traceability scheme.

Stakeholders Needs
Definition

Requirements
Analysis

Physical Architecture
Design

Logical Architecture
Design

MODES (STM)

Mod1

Mod2

Mod3

1
SCENARIOS (SD)

system
(context)

n

Mod1

Mod3

STATES (STM)

State1

State2

State3

1
SCENARIOS (SD)

system

n

State1

State3

F
1

1

System
(physical)

B1 B2

B1.1 B1.2 B2.1 B2.2
Fc

Fd

FeFa

FbPBS (BDD)

System (physical)

INTERFACES (IBD)
n

B1.1

B1.2

B2.1

Fc
Fd

Fa

SCENARIOS (SD)
n

B2.1 B1.2 B2.2

F
c

F
a

F
d

F
b

F1.1 F1.2 F1.2

DECOMPOSITIONS (AD)

1.2.1 1.2.3 1.2.4

n

Fa Fb Fe Fd

DECOMPOSITION

ALLOCATION

Intent1

Intent2

USAGE (UCD)
n

system
(context)

CONTEXT (BDD)
n

system

INTERFACES (IBD)
n

UserReqs

Service1

SERVICES (UCD)
n

Service2

SysReqs
SATISFIES

CompReqs

ALLOCATION

1a 1b 1c 1d

2a 2b 2c 2d

3a

4b 4c 4d

DECOMPOSITION

SATISFIES

SATISFIES

SATISFIES

SATISFIES

SATISFIES

REFINES

REFINES

DERIVES

DERIVES

SATISFIES

Stakeholders Needs
Definition

Requirements
Analysis

Physical Architecture
Design

Logical Architecture
Design

MODES (STM)

Mod1

Mod2

Mod3

1
MODES (STM)

Mod1

Mod2

Mod3

1
SCENARIOS (SD)

system
(context)

n

Mod1

Mod3

SCENARIOS (SD)

system
(context)

n

Mod1

Mod3

STATES (STM)

State1

State2

State3

1
STATES (STM)

State1

State2

State3

1
SCENARIOS (SD)

system

n

State1

State3

F
1

SCENARIOS (SD)

system

n

State1

State3

F
1

1

System
(physical)

B1 B2

B1.1 B1.2 B2.1 B2.2
Fc

Fd

FeFa

FbPBS (BDD)
1

System
(physical)

B1 B2

B1.1 B1.2 B2.1 B2.2
Fc

Fd

FeFa

FbPBS (BDD)

System (physical)

INTERFACES (IBD)
n

B1.1

B1.2

B2.1

Fc
Fd

Fa

System (physical)

INTERFACES (IBD)
n

B1.1

B1.2

B2.1

Fc
Fd

Fa

SCENARIOS (SD)
n

B2.1 B1.2 B2.2

F
c

F
a

F
d

F
b

SCENARIOS (SD)
n

B2.1 B1.2 B2.2

F
c

F
a

F
d

F
b

F1.1 F1.2 F1.2

DECOMPOSITIONS (AD)

1.2.1 1.2.3 1.2.4

n

Fa Fb Fe Fd

DECOMPOSITION

ALLOCATION

F1.1 F1.2 F1.2

DECOMPOSITIONS (AD)

1.2.1 1.2.3 1.2.4

n

Fa Fb Fe Fd

DECOMPOSITION

ALLOCATION

Intent1

Intent2

USAGE (UCD)
n

Intent1

Intent2

USAGE (UCD)
n

system
(context)

CONTEXT (BDD)
n

system
(context)

CONTEXT (BDD)
n

system

INTERFACES (IBD)
n

system

INTERFACES (IBD)
n

UserReqs

Service1

SERVICES (UCD)
n

Service2

Service1

SERVICES (UCD)
n

Service2

SysReqs
SATISFIES

CompReqs

ALLOCATION

1a 1b 1c 1d

2a 2b 2c 2d

3a

4b 4c 4d

DECOMPOSITION

SATISFIES

SATISFIES

SATISFIES

SATISFIES

SATISFIES

REFINES

REFINES

DERIVES

DERIVES

SATISFIES

Figure 08: SysCARS Traceability Scheme

Refine and Satisfy relationships shall connect
artefacts developed at the same modeling stage,
while Derive and Trace relationships are also
capable of linking artefacts of neighbouring levels.

4.6. Traceability analyses

The requirement traceability verification activities are
invoked throughout the whole system engineering
process. In fact, two kinds of traceability analyses
are performed:
• Internal traceability analysis between SysML

model artefacts, directly generated using the
SysML tool,

• External traceability analysis, between the
distributed requirement repositories, done using a
general purpose requirement traceability tool
such as Reqtify.

Internal traceability analyses are the ending activities
performed at each stage of the workflow to verify the
model consistency (refer to green states of the
workflow diagram, [figure 02]). They use requirement
tables and traceability matrices to check the
coverage of all requirements by appropriate model
artefacts, in accordance with the traceability model
presented at the previous paragraph. These
matrixes and tables are generated on demand at
Excel format.

4.7. Towards modeling rules verification

In future projects, it is plan to use a modeling rule
checker to automatically verify the consistency and
the completeness of the model, in accordance with
the traceability scheme. The idea of these rules is to
check that each kind of requirement is effectively
covered, and covered by the appropriate modeling
artefact.
The verification rules will be based on several
properties of the SysML objects and relationships:
• Category of object,
• Value of the stereotype indicating at which

modeling stage the object has been produced,

• Values of its specific qualification attributes,
• Type of relationship used between objects.
A typical rule should be written under the following
format:
• “Each requirement of this level and of this type

shall be covered by this category of object, with
this type of relationship, the linked objects being
respectively produced at these modeling stages”.

5. Coupling to control design tools

The issue of coupling a SysML tool to discipline
related tools (and particularly simulation tools) is not
studied in general but limited to coupling to control
design and software development environments, and
particularly to Matlab/Simulink.

5.1. Static verification rather than co-
simulation

Some approaches promote use of the SysML model
as an integration framework for building a whole
executable system model, in order to analyze the
dynamics of the system. To support this, the static
system modeling environment must be upgraded by
execution mechanisms, with closed connection to
discipline specific simulation tools.
This way has not been chosen at Valeo’s for several
reasons:
• A higher degree of sophistication of the SysML

environment would go against a wide adoption by
(generalist) system engineers.

• Somehow, there is a contradiction between flat
deep detailed modeling and the layered
refinement approach promoted by system
engineering.

• Simulation and co-simulation capabilities of
SysML tools are quite limited compared to
domain specific tools.

• For large scale system, a full integration
simulated model is practically intractable.

The final objective being the verification and
validation of the whole system model, a static
verification of traceability properties, as discussed in
previous paragraphs, has been preferred. The
purpose is then to gain maximal confidence in the
completeness of the intellectual progress which led
to the physical architecture solution.
In a second time, as explained in the next
paragraph, each component will be refined (and
possibly simulated) independently in its discipline
related development (and possibly modeling)
environment, based on input data from the system
model.

5.2. Transfer of structure description to
Simulink

The problem of collaboration between SysML and
Simulink is not stated in terms of (co)simulation but
rather in terms of efficiently transferring and

 Page 7/10

synchronizing modeling data between both
environments. The synchronization at architecture
description level was proven to be an efficient way to
transfer information between system engineering
teams and control design teams.
In practice, the approach selected for pilot projects
was to transfer the IBD structural descriptions of
control law components, from SysML towards
Simulink. The resulting Simulink models, initially
corresponding to empty structures are further
refined, and control algorithms implemented,
simulated and validated inside the Simulink modeling
and execution environment.
The two figures below show an example of
synchronization between a SysML Internal Block
Diagram and Simulink dataflow model.
 ibd Detailed Design [VehicleEnergyManager]

«block»
«Physical Block»

VehicleEnergyManagementUnit-VEMU

: CANBusController

VehicleAcceleration

CanFrame AccelPedalPosition

BatteryVoltage

IceTorqueRequest ElectricTorqueRequest

: TorqueRequestEstimatorAccelPedalPosition

TorqueRequest

: IceElectricBalanceManager

IceTorqueRequest

ElectricTorqueRequest

BatterySOC

TorqueRequest

TractionStatus

: BatterySOCEstimator

BatteryVoltage BatterySOC

vem_CanFrame

: TractionControlMonitor
VehicleAcceleration TractionStatus: CANBusController

VehicleAcceleration

CanFrame AccelPedalPosition

BatteryVoltage

IceTorqueRequest ElectricTorqueRequest

VehicleAcceleration

CanFrame AccelPedalPosition

BatteryVoltage

IceTorqueRequest ElectricTorqueRequest

: TorqueRequestEstimatorAccelPedalPosition

TorqueRequest

AccelPedalPosition

TorqueRequest

: IceElectricBalanceManager

IceTorqueRequest

ElectricTorqueRequest

BatterySOC

TorqueRequest

TractionStatus

IceTorqueRequest

ElectricTorqueRequest

BatterySOC

TorqueRequest

TractionStatus

: BatterySOCEstimator

BatteryVoltage BatterySOCBatteryVoltage BatterySOC

vem_CanFrame

: TractionControlMonitor
VehicleAcceleration TractionStatusVehicleAcceleration TractionStatus

Figure 09: SysML Controller Architecture (IBD)

TorqueRequestEstimator

AccelPedalPosition TorqueRequest

tre

TractionControlMonitor

VehicleAcceleration TractionStatus

tcm

IceElectricBalanceManager
TractionStatus

BatterySOC

TorqueRequest

ElectricTorqueRequest

IceTorqueRequest

iebm

BatterySOCEstimator

BatteryVoltage BatterySOC

bsocm

CANBusController

ElectricTorqueRequest

IceTorqueRequest

BatteryVoltage

VehicleAcceleration

AccelPedalPosition

bc

Figure 10: Simulink Controller Architecture
(Dataflow)

At the end of control design activities, Simulink
simulation results are summarized by measures of
efficiencies (MoEs) finally attached as “values” to the
corresponding SysML block.
Artisan Studio provides the main features required to
synchronize and update efficiently SysML structural
models and Simulink models: changes can be
propagated in both directions. However, extensions
in the existing mechanisms would be necessary for a
full interoperability between both environments.
These suggested evolutions are presented in the
next paragraph.

5.3. Mapping between SysML and Simulink
structural artefacts

The table below presents the detailed mapping for
an efficient synchronization of structural descriptions
between SysML Internal Block Diagrams and
Simulink Dataflow models. Currently existing
features of Artisan Studio are written in standard
font, while suggested extensions are written with
bold characters.

SysML Simulink
Internal Block Diagram Dataflow model
Block System MDL
Part Model Reference
 Sub-system
Flow port (in) Inport
 Trigger port
Flow port (out) Outport
Connector Connecting line
Name of the connected
out flow port

Connecting line name
(Signal name)

Item flow
Block description Documentation block
Sequence diagram Signal builder

Figure 11: Mapping Between IBD and Simulink

The main mandatory evolutions required are related
to the ability to deal with Simulink events and not
only with continuous flows. Indeed, events are
systematically used to specify control flow
mechanisms of algorithms. Therefore, it should be at
least possible to map SysML (in) Flow Ports onto
Simulink trigger ports (with “function call” trigger type
option).
The ability to transfer names to Simulink flow lines is
also mandatory, because in most situations they are
used as variable names by automatic code
generation tools.
It would be potentially very interesting to transfer
data related to the expected behaviour of the
algorithm. SysML sequence diagrams describing test
cases could be translated into Simulink signal builder
blocks.
The Simulink environment itself could also be
improved with the capability to declare traceability
links from Simulink sub-systems towards SysML
artefacts, and particularly requirements. These links
could be declared directly between tools or via an
intermediate XMI file.

 Page 8/10

6. Functional safety handling with SysCARS

The new regulation ISO26262 focusing on
Functional Safety, requires a higher level of
formalization and traceability, and promotes the
formalization of technical safety concepts in order to
validate system architectures regarding safety
expectations.
This part focuses on the ongoing SysCARS
evolutions to support Safety In the Loop (SaIL).

6.1. General

System engineering shall reconcile all the different
aspects of the system to be designed. Among the
multiple points of view, Functional safety is a key
one. The final architecture shall integrate both
system and functional safety expectations. Therefore
safety can not be addressed separately in a parallel
and disconnected engineering domain.

Despite following a regular system engineering
process, Functional safety uses dedicated analyses
to achieve safety demonstrations. In the rest of the
chapter, focus is dedicated to major synchronization
points, exchanged artefacts and impacts regarding
SysCARS process and tools.

6.2. System & safety process background

Performing process steps in the field, it appears that
system engineering has a natural tendency to focus
more on functional and nominal operations, while
Functional safety focuses on malfunctioning and
degraded operations. SysCARS is supporting both,
and provides guidance for technical safety concept
formalization as required by ISO26262:

At “Stakeholders Needs definition” level
Key engineering artefacts:

• specific scenarios related to critical safety
contexts or degraded operations

• specific safety modes, related performance
and availability of functions

SysCARS artefacts:
• using regular diagrams but dedicated to

safety focus and interactions
Safety scenarios are a convenient way to capture in
which conditions, malfunctions and safety goals are
identified during Hazard analyses

At “Requirement analysis” level”
Key engineering artefacts:

• safety requirements refining previous
understandings to define safety expectations

• specified external interfaces related to upper
level safety mechanisms

SysCARS artefacts:

• using regular diagrams but dedicated to
safety focus and interactions

Safety goals/requirements generally use a somehow
negative form (e.g. for an Electronic Power Steering,
avoidance of higher torque assist than requested).
While system engineers are flowing down “positive”
requirements (testable …), functional safety
engineering consists in:

• transforming such “negative” goals into
technical safety requirements allocated to
implementation technologies (HW, SW, …)

• applying proven design patterns (e.g. safety
mechanisms) during design of technical
safety concept to achieve this transformation

Safety goals and requirements are implemented with
regular SysML requirements and additional attributes
(ASIL, related context …)

At “Logical architecture design” level”
Key engineering artefacts:

• breakdown of provided services into internal
functions with flow down of ASIL

In general, due to a high level of reuse in the
automotive projects, the logical architecture, as
previously mentioned, is not seen as a valuable step,
except for innovation projects with intermediate
capitalization needs regarding allocation on multiple
physical candidate architectures.
The same applies to safety, where the major
objective is to ensure the link between high level
requirements and final implementation. Furthermore
the ASIL decomposition, having to demonstrate non
interference, makes only sense taking into
consideration hardware characteristics.

Define Stakeholders
Needs

Analyze
Requirements

Physical
Architectural Design

Functional
Architectural Design

MODES (STM)

Mod1

Mod2

Mod3

1
MODES (STM)

Mod1

Mod2

Mod3

1
SCENARIOS (SD)

system
(context)

n

Mod1

Mod3

SCENARIOS (SD)

system
(context)

n

Mod1

Mod3

STATES (STM)

State1

State2

State3

1
STATES (STM)

State1

State2

State3

1
SCENARIOS (SD)

system

n

State1

State3

F
1

SCENARIOS (SD)

system

n

State1

State3

F
1

1

System
(physical)

B1 B2

B1.1 B1.2 B2.1 B2.2
Fc

Fd

FeFa

FbPBS (BDD)
1

System
(physical)

B1 B2

B1.1 B1.2 B2.1 B2.2
Fc

Fd

FeFa

FbPBS (BDD)

System (physical)

INTERFACES (IBD)
n

B1.1

B1.2

B2.1

Fc
Fd

Fa

System (physical)

INTERFACES (IBD)
n

B1.1

B1.2

B2.1

Fc
Fd

Fa

UNUSED IN CORE STREAM (SysCARS-CS)UNUSED IN CORE STREAM (SysCARS-CS)

SCENARIOS (SD)
n

B2.1 B1.2 B2.2

F
c

F
a

F
d

F
b

SCENARIOS (SD)
n

B2.1 B1.2 B2.2

F
c

F
a

F
d

F
b

F1.1 F1.2 F1.2

DECOMPOSITIONS (AD)

1.2.1 1.2.3 1.2.4

n

Fa Fb Fe Fd

DECOMPOSITION

ALLOCATION

F1.1 F1.2 F1.2

DECOMPOSITIONS (AD)

1.2.1 1.2.3 1.2.4

n

Fa Fb Fe Fd

DECOMPOSITION

ALLOCATION

Intent1

Intent2

USAGE (UCD)
n

Intent1

Intent2

USAGE (UCD)
n

system
(context)

ACTORS (BDD)
n

system
(context)

ACTORS (BDD)
n

system

INTERFACES (IBD)
n

system

INTERFACES (IBD)
n

ALLOCATION

Service1

SERVICES (UCD)
n

Service2

Service1

SERVICES (UCD)
n

Service2

1a 1b 1c 1d

2a 2b 2c 6b

3a

4b 4c 4d

1a 1b 1c 1d

2a 2b 2c 6b

3a

4b 4c 4d

Services for
Hazard

Analysis (PHA)

Architecture
validated by

FMEA

Architecture
transferred to

BMT (Simulink)

Figure 12: SysCARS-CS coupling to safety activities

At “Physical architecture design” level”
Key engineering artefacts:

• ASIL decomposition once internal functions
are allocated to physical parts

• “ASIL” of internal parts and interfaces (due
to highest ASIL function allocated)

 Page 9/10

• introduction of additional parts related to
required safety mechanisms

• technical safety requirements impacting
specific discipline

SysCARS artefacts:
• customization of IBDs with specific visual

stereotypes to highlight safety related parts
In SysCARS-CS, iterations are achieved between
functional decomposition and physical architecture to
work out the relevant decomposition depth and
ensure the mapping. The same process is used to
iterate and introduce additional safety mechanisms.

Interactions and shared artefacts
System and safety points of view are completing
each other, enriching the same artefacts which shall
be kept consistent in a common referential.
Considering process iterations, an initial set of
scenarios, internal functions, physical parts … is
released by system engineers, and then modified or
completed by safety engineers to meet safety
expectations. Setting up SysCARS as a common
backbone to couple system and safety engineering
solves these issues.

6.3. Safety specific verifications

Whereas system and safety generate common
design artefacts, discrepancy occurs when taking
into account safety related verifications.

Failure Modes and Effects Analyses (FMEA)
To check the safety relevance of a given architecture
(functions allocated on physical), a common analysis
is the FMEA. Each part is considered as possibly
being faulty, and occurrence of undesirable events at
system scope are assessed.
To achieve such analyses, the system descriptions
shall be extended to dysfunctional modeling at part
level:

• part, input and output fault modes
• part behaviour regarding faulty inputs, fault

propagation to outputs
• intrinsic part fault propagation to outputs

These descriptions (together with part relations)
allow mathematical checking of system properties
such as occurrence of a undesirable event.
Furthermore, working out dysfunctional behaviour
per each part of the architecture allows:

• to enable computer aided verification of the
architecture using FMEA principles

• to capitalize dysfunctional behaviour per part
and therefore ease reuse of architecture
subsets within new systems

• an easier peer reviewing of dysfunctional
descriptions (per part), whereas review of
traditional FMEA is difficult

Fault tree analyses (FTA)
While FMEA is a deductive approach, allowing to
verify compliance of a given architecture regarding
all undesirable events (bottom up), FTA is a top
down approach (inductive) done per undesirable
event working out relevant contributing faults.
Automated FMEA verification may output a FTA
linking undesirable event to the relevant faults within
the architecture (issues under work). This feature
appears to be a major lever for efficient deployment
of the ISO26262, while traditionally FTA and FMEA
are concurrently done. Furthermore, the merged
FTA is a key enabler to move forward quantitative
analyses.
To draw FTA trees, either generated from
architecture verification or done by hand from top to
down, specific profiles have to be set up in the
SysML editor.

Merged FTAS
ys

te
m

 d
ec

om
po

si
tio

n

FMEA

FMEA

Hazard
analysis

Feared
event

Generated
FTA

Generated
FTA

Generated
FTA

FE

Generated
FTA

Figure 13: FTA Generation from SysCARS

6.4. Process and tooling considerations

From a process point of view, the key shared
artefact is the physical architecture (key interface
between system levels as well), including allocated
technical functions, and completed with
dysfunctional information.

Dysfunctional descriptions in system process
Such approach already exists in some industrial
domains and tools are available in order to achieve
such safety architecture verification (e.g. using the
Altarica language and model checker).
These studies are in general performed by safety
modeling experts. The involvement of system
designer is reduced to providing information during
interviews. This process and required safety
modeling skills are a major show stopper for
automotive deployment.
The SysCARS objective is to tightly couple
engineering domains. System designers are the
ones who best know both functional and
dysfunctional behaviour. Therefore, dysfunctional
modeling shall be integrated in their processes (at
least for initial versions, later completed by safety
experts).

 Page 10/10

Thus, a pragmatic dysfunctional formalization is
under study, which will be a subset of Altarica
available concepts, also taking benefits from York
FTPC research and using as much as possible easy
notations such as Boolean algebra.
Transformation to Altarica tools (or others) with
generation of the required code (taking into
consideration safety design patterns or functions
typologies) is targeted.

6.5. SysCARS-SaIL status

While lessons learned have confirmed SysCARS
capability to formalize ISO26262 technical safety
concepts, extension is required to seamlessly
implement “SaIL” concept (Safety In the Loop).
Introduction of dysfunctional modeling and coupling
to safety tools, will allow efficient safety architecture
verification. Valeo internal effort is completed by
collaboratively addressing these topics in the
framework of European projects such as SAFE
(ITEA2, Safe Automotive soFtware architEcture).

7. Conclusion

Learning on Valeo pilot projects have confirmed that
the SysML language offers an adequate lever to
extend the modeling practices to the area of System
Engineering including functional safety analyses.
Valeo experiences have shown that a successful
approach requires a precisely defined modeling
methodology (SysCARS).
Furthermore, the customisation of existing tools in a
workflow driven mindset is mandatory. However,
further improvements remain necessary on
commercial tools regarding ergonomics and
interfacing with simulation and safety analyses tools.

8. Acronyms

AD Activity Diagram
ASIL Automotive Safety Integrated Level
BDD Block Definition Diagram
CND Component Needs Document
FMEA Failure Mode Effects Analysis
FTA Fault Tree Analysis
FTPC Fault Transformation and Propagation

Calculation
GUI Graphical User Interface
HW HardWare
IBD Internal Block Diagram
ISO26262 Automotive Functional Safety Regulation
ITEA Information Technology for European

Advance
MBSE Model Based System Engineering
MDL Simulink file extension
MoE Measure Of Effectivness
REQ REQuirement Diagram
SAFE Safe Automotive soFtware architEcture
SD Sequence Diagram
SND Stakeholders’ Needs Document
STM STate Machine diagram
SaIL Safety In the Loop
SyDD System Design Document
SyRD System Requirements Document
UCD Use case Diagram

9. References

[1] Eric Andrianarison, Jean-Denis Piques: "SysML for
embedded automotive Systems: a practical
approach", ERTS 2010.

[2] Françoise Caron: "Exigences et ingénierie
système : Mise en œuvre avec SysML", EIRIS
Conseil, 2008.

[3] A. Arnold, G. Point, A. Griffault, A. Rauzy “The
Altarica formalism for describing concurrent
systems”, 2000

[4] Richard F. Paige, Louis M. Rose, Xiaocheng Ge,
Dimitrios S. Kolovos, and Phillip J. Brooke: “FPTC:
Automated Safety Analysis for Domain-Specific
Languages”, 2008

Further bibliographical references can be found in [1]

