J-D Piques

E Andrianarison

SysML for embedded automotive Systems: lessons learned

Keywords: Model Based Engineering, System Modeling, SysML, System Engineering, SysCARS

This paper deals with the first lessons learned from using the SysML language to support the System Engineering activities when developing automotive embedded systems and products with a particular focus on illustrating improvement solutions that have been experimented and validated in Valeo pilot projects.

Introduction and overview

Motivations

Increasing complexity of technical systems, business models and safety regulation (ISO26262) requires higher formalization effort. The Model Based System Engineering (MBSE) approach is a key lever for automotive lean processes to cope with this context and still ensuring flexibility and R&D efficiency on innovative products.

Main lessons learned

Although SysML has become the de facto standard for MBSE, a supporting methodological background was and is still mandatory. The SysCARS methodology [START_REF] Andrianarison | SysML for embedded automotive Systems: a practical approach[END_REF], which is summarized in Part 2, defines the sequence of SysML diagrams and artefacts to be released in order to implement the engineering process. However pilot projects have shown this was not sufficient and other critical issues have been addressed. A major issue is the adoption of SysML existing modelers which are too complicated for non software engineers, providing no guidance on which diagram and artefact to use among overloaded GUIs. To support adoption and deployment control, a workflow driven approach is described in Part 3 and is implemented by a Valeo profile including ergonomic macros for Artisan Studio modeler. Moving from a document centric approach to model based engineering shall also ensure formal coupling to requirement related tools. Part 4 addresses these aspects together with strategy regarding traceability checks and connection to tools such as DOORS and Reqtify. Still to facilitate adoption and due to weaknesses of SysML compared to discipline modeling / simulation tools, SysCARS support synchronization of structural diagrams. This feature is described in Part 5 and is used to perform behavioural studies in legacy tools such as Simulink. Finally Part 6, summarizes issues related to system and safety engineering coupling and presents mechanisms supporting "Safety In the Loop" approach (SaIL) targeting FMEA/FTA automation.

SysCARS methodology overview

SysCARS (System Core Analyses for Robustness and Safety) is a Valeo methodology which provides a practical help for system designers on how to perform the sequence of System modeling activities with SysML. This methodology, detailed in a previous paper [START_REF] Andrianarison | SysML for embedded automotive Systems: a practical approach[END_REF], is shortly summarized here.

SysCARS principles

SysCARS methodology added value consists in:

• Selecting a subset of SysML diagrams and artefacts to be used in a convenient and pragmatic way (learning curve optimization) • Providing defined semantics to ensure diagrams meaning and rules for verifying model consistency • Defining an obvious diagram sequence which ensures modeling efficiency regarding company processes • Implementing stereotypes and templates for automatic documentation generation at each stage of the process • Taking into account coupling constraints with other processes or tools such as Reqtify from IBM for requirement traceability or Simulink from The Mathworks for functional modeling The current methodology is therefore targeting the optimum trade off for Valeo deployment and is built from existing state of the art. It does not claim for any theoretical novelty, while having merged relevant best practices from existing approaches, such as EIRIS methodology [START_REF] Caron | Exigences et ingénierie système : Mise en oeuvre avec SysML[END_REF]. This implementation is also taking maximum benefits from available features of the selected SysML tool, namely Artisan Studio from Atego.

SysCARS generic workflow

The overall System Engineering process begins with analyzing the project context, considering the system to be developed as a black box, and then successively goes deeper into the details until specifying internal component features. More

SysCARS optimized workflows

The SysCARS workflow is described below.

Physical Architecture

Physical

Workflow-driven approach

A specific profile for customizing SysML

GUIs of SysML existing tools remain too complicated for a non software specialist, which is the targeted audience for System Engineering. Indeed, SysML user interfaces provide confusing and unneeded features from the UML world. Very often, UML and SysML artefacts and diagrams are mixed without any possibility for the user to limit to a pure SysML scope. Moreover, no guidance is provided on the relevant diagram to be used and on the correct ordering of operations.

To cope with these drawbacks, a specific ergonomic profile (thereafter referred to as "Valeo Profile") has been developed, introducing the concept of workflow-driven approach. The basic idea behind the workflow-driven approach is to provide the System engineer with a step by step help throughout the SysCARS engineering workflow. Moreover, at each step of the workflow, only relevant features and diagrams are available in a simplified GUI.

The mechanisms of the workflow driven approach are detailed in the chapters below.

Workflow diagram navigation

When The implementation of the workflow in the profile is not frozen but configured using a dedicated XML file. This option enables further evolutions on the SysCARS workflow.

Pre-defined package structure

When creating a new model with the Valeo Profile, this model is also provided with a pre-defined package structure. This package hierarchy is directly correlated to states and super states of the workflow diagram, which in turn correspond to stages and steps of the SysCARS methodology. However, the user is free to organize differently artefacts and diagrams within a different package structure.

As previously, the pre-defined package structure is not frozen but configured using a dedicated XML file.

GUI features defined by workflow state

The current active state of the workflow diagram is used to monitor the look and feel of the SysML modeler tool, in order to provide the user only with the features required at this step of the system modeling process. Consequently, command menus available in the object browser and toolbar menus on The GUI features are evolutionary and configured from two dedicated XML files, one for the package browser command menus and one for the diagram toolbars.

Stereotypes for documentation

Documentation in a format that is easily comprehensible by a broad range of stakeholders remains an effective way to validate and communicate system design information. The first thing to do is to precisely define the expected document format and contents by creating a corresponding template for the publishing tool. The same document template will be re-used on different projects, without any modification. Then, thanks to the publishing feature of the SysML tool, automatic document generation can be run on demand to collect and format data from the SysML model, without any special effort. Furthermore, separation between modeling data and document templates enables versatile customisation either to generate generic outputs or to address specific customer process.

The organisation of the documentation is also based on the workflow diagram breakdown. One particular kind of document (with related template) is defined for each workflow diagram super-state, in order to make the synthesis of modeling activities performed within this stage:

• The only thing left to do is to load in the publishing tool the pre-defined documentation template related to the workflow super-state to be documented, and then to launch documentation rendering. Diagrams and artefacts appearing in the final document are automatically filtered depending on their documentation stereotypes, i.e. on the stage of the workflow they have been created.

Coupling to requirement management tools

Efficient collaboration between tools

Speaking about requirements in general may lead to adopt wrong requirement management tooling solutions. In fact, initial needs are iteratively refined during the engineering process, producing different levels of so-called requirements, corresponding to very different kind of information. Typically these requirements can be classified in three categories:

• User requirements describe the expected services from the end user point of view.

• System requirements define the features of the system necessary to fulfil its mission. • Component requirements specify the internal constitutive parts necessary to implement the expected features. Therefore, believing that a unique tool has the capability to address efficiently these three layers of information is incorrect. On the contrary, a pragmatic approach adopted at Valeo is to take benefits from tools optimised for each field and to make them collaborate efficiently. Another common mistake is to mix up two categories of requirements related tools:

•

Distributed requirement storage

Classical requirement management approaches assume that all requirements shall be written in natural language inside a centralized database (typically DOORS). Then, SysML modeling artefacts are only considered as intermediary by-products that need to be finally translated into textual requirements. This process makes sense in the aerospace or railway transportation fields were certification procedures are document-centric by nature. However, in the automotive area, without any constraints from certification procedures, a pure model-centric approach is far more efficient. Consequently, maximum benefits are taken from expressive power and semi-formal verification capability of the SysML modeling language. Requirements or requirements-like artefacts produced during system modeling activities are not reformulated in natural language into an external centralized database. On the contrary, the model itself becomes the reference and the automatically generated documentation only an illustration of this reference. This philosophy is also used at implementation level, where requirements or more exactly requirements-like artefacts remains embedded into discipline specific native models (such as Simulink models, for control design). This approach optimises the requirement management effort because requirements are distributed among the tool locations where they have been defined, at each stage of the engineering process. As a counterpart, the consistency of the distributed requirements storage must be supported by powerful traceability tools, with efficient mechanisms for synchronizing interface requirements between modeling layers.

User requirements in external repositories

The initial stakeholder requirements (namely user requirements) remain captured in text specifications external to the SysML modeling tool, as in the classical approach. Typically, these specifications are stored in a DOORS database but may also be described using classical word processing or table editing softwares Another approach under investigation, but not used on the first pilot projects, is to limit the use of SysML requirements to non functional requirements. Then, functional requirements are represented by SysML artefacts attached to constitutive blocks, typically by operations and states. More than avoiding reformulating functions (described by operations) or states into functional requirements, this approach also saves the cost of declaring traceability relationships between structural elements and related functions. Indeed, operations and states are already tightly linked to their owning blocks.

SysCARS traceability model

The traceability model adopted in the SysCARS methodology has been pragmatically defined taking into account the features of the SysML modeling tool and the kind of verification that could be later performed.

The main rules used for defining traceability relationships are the following:

• Derive is used between two levels of requirements • Refine is used between a use case or a scenario and the requirement elicitated • Satisfy is used between a model artefact (state, port, operation, block) and the requirement implemented • Trace is used between two representations of the same item, either refined between modeling levels or reformulated at the same level

The figure below represents the corresponding SysCARS traceability scheme.

Stakeholders Needs Definition

Traceability analyses

The requirement traceability verification activities are invoked throughout the whole system engineering process. In fact, two kinds of traceability analyses are performed:

• Internal traceability analysis between SysML model artefacts, directly generated using the SysML tool, • External traceability analysis, between the distributed requirement repositories, done using a general purpose requirement traceability tool such as Reqtify. Internal traceability analyses are the ending activities performed at each stage of the workflow to verify the model consistency (refer to green states of the workflow diagram, [figure 02]). They use requirement tables and traceability matrices to check the coverage of all requirements by appropriate model artefacts, in accordance with the traceability model presented at the previous paragraph. These matrixes and tables are generated on demand at Excel format.

Towards modeling rules verification

In future projects, it is plan to use a modeling rule checker to automatically verify the consistency and the completeness of the model, in accordance with the traceability scheme. The idea of these rules is to check that each kind of requirement is effectively covered, and covered by the appropriate modeling artefact. The verification rules will be based on several properties of the SysML objects and relationships: • Category of object, • Value of the stereotype indicating at which modeling stage the object has been produced,

• Values of its specific qualification attributes,

• Type of relationship used between objects.

A typical rule should be written under the following format:

• "Each requirement of this level and of this type shall be covered by this category of object, with this type of relationship, the linked objects being respectively produced at these modeling stages".

Coupling to control design tools

The issue of coupling a SysML tool to discipline related tools (and particularly simulation tools) is not studied in general but limited to coupling to control design and software development environments, and particularly to Matlab/Simulink.

Static verification rather than cosimulation

Some approaches promote use of the SysML model as an integration framework for building a whole executable system model, in order to analyze the dynamics of the system. To support this, the static system modeling environment must be upgraded by execution mechanisms, with closed connection to discipline specific simulation tools. This way has not been chosen at Valeo's for several reasons: • A higher degree of sophistication of the SysML environment would go against a wide adoption by (generalist) system engineers. • Somehow, there is a contradiction between flat deep detailed modeling and the layered refinement approach promoted by system engineering. • Simulation and co-simulation capabilities of SysML tools are quite limited compared to domain specific tools. • For large scale system, a full integration simulated model is practically intractable. The final objective being the verification and validation of the whole system model, a static verification of traceability properties, as discussed in previous paragraphs, has been preferred. The purpose is then to gain maximal confidence in the completeness of the intellectual progress which led to the physical architecture solution. In a second time, as explained in the next paragraph, each component will be refined (and possibly simulated) independently in its discipline related development (and possibly modeling) environment, based on input data from the system model.

Transfer of structure description to Simulink

The problem of collaboration between SysML and Simulink is not stated in terms of (co)simulation but rather in terms of efficiently transferring and synchronizing modeling data between both environments. The synchronization at architecture description level was proven to be an efficient way to transfer information between system engineering teams and control design teams.

In practice, the approach selected for pilot projects was to transfer the IBD structural descriptions of control law components, from SysML towards Simulink. Artisan Studio provides the main features required to synchronize and update efficiently SysML structural models and Simulink models: changes can be propagated in both directions. However, extensions in the existing mechanisms would be necessary for a full interoperability between both environments. These suggested evolutions are presented in the next paragraph.

Mapping between SysML and Simulink structural artefacts

The table below presents the detailed mapping for an efficient synchronization of structural descriptions between SysML Internal Block Diagrams and Simulink Dataflow models. Currently existing features of Artisan Studio are written in standard font, while suggested extensions are written with bold characters. The Simulink environment itself could also be improved with the capability to declare traceability links from Simulink sub-systems towards SysML artefacts, and particularly requirements. These links could be declared directly between tools or via an intermediate XMI file.

SysML

 precisely the SysCARS methodology is divided into five major phases: • Stakeholder needs definition • Requirements analysis • Logical architecture design • Physical architecture design • Components needs definition For clarity purpose, the process and the sequence of activities are described in a pure sequential way. However, in practice, different steps could be performed simultaneously with iterative and mutual refinements. Moreover, each phase systematically ends with: • Traceability analysis, to check the consistency and completeness of activities performed and artefacts created, • Automatic generation of a document making a synthesis of the activities performed (SND: Stakeholder Needs Document, SyRD: System Requirement Document, SyDD: System Design Document, CND: Component Needs Document).

Figure 01 :

 01 Figure 01: SysCARS System Engineering Process The last stage (Component Needs Definition) has not been represented, because it is mainly an extraction of component artefacts from the physical architecture. The kind of diagram used at each step is given by its SysML acronym attached to the related activity block: Block Definition Diagram (BDD), Internal Block Diagram (IBD), Use Case Diagram (UCD), Sequence Diagram (SD), STate Machine diagram (STM), Activity Diagram (AD) Lessons learned on pilot projects have shown that in most situations it makes sense to bypass the elaboration of the logical breakdown and to directly allocate internal functions onto the physical architecture blocks. Indeed, physical architectures are very often frozen because resulting from carry

Figure 02 :Figure 03 :

 0203 Figure 02: Valeo Profile GUI Overview It is possible to navigate the states of the workflow diagram and to select the workflow commands available: "Next Step", "Previous Step", "Go to step…". Then the modeling step is changed accordingly.

Figure 04

 04 Figure 04: Customized Menus In the object browser window, the "create" command menu displayed when right-clicking an existing SysML object, is customized individually for each type of SysML artefact and diagram. In the graphical window, buttons available on each kind of diagram toolbars are also customized depending on the workflow diagram active state. The GUI features are evolutionary and configured from two dedicated XML files, one for the package browser command menus and one for the diagram toolbars.

 Figure 05: Documentation Stereotype Example

Figure 06 :

 06 Figure 06: Requirements Related Tools Mapping

Figure 07 :

 07 Figure 07: Stereotyped Requirements Attributes

Figure 08 :

 08 Figure 08: SysCARS Traceability Scheme Refine and Satisfy relationships shall connect artefacts developed at the same modeling stage, while Derive and Trace relationships are also capable of linking artefacts of neighbouring levels.

Figure

 Figure 09: SysML Controller Architecture (IBD)

Figure 11 :

 11 Figure 11: Mapping Between IBD and SimulinkThe main mandatory evolutions required are related to the ability to deal with Simulink events and not only with continuous flows. Indeed, events are systematically used to specify control flow mechanisms of algorithms. Therefore, it should be at least possible to map SysML (in) Flow Ports onto Simulink trigger ports (with "function call" trigger type option). The ability to transfer names to Simulink flow lines is also mandatory, because in most situations they are used as variable names by automatic code generation tools. It would be potentially very interesting to transfer data related to the expected behaviour of the algorithm. SysML sequence diagrams describing test cases could be translated into Simulink signal builder blocks. The Simulink environment itself could also be improved with the capability to declare traceability links from Simulink sub-systems towards SysML artefacts, and particularly requirements. These links could be declared directly between tools or via an intermediate XMI file.

 The resulting Simulink models, initially corresponding to empty structures are further refined, and control algorithms implemented, simulated and validated inside the Simulink modeling and execution environment. The two figures below show an example of synchronization between a SysML Internal Block Diagram and Simulink dataflow model.

	ibd Detailed Design [VehicleEnergyManager]			
				«block»		
				«Physical Block»		
			VehicleEnergyManagementUnit-VEMU	
			BatteryVoltage BatteryVoltage BatteryVoltage		BatterySOC BatterySOC BatterySOC	
				: BatterySOCEstimator : BatterySOCEstimator		
	BatteryVoltage BatteryVoltage BatteryVoltage				BatterySOC BatterySOC BatterySOC
	: CANBusController vem_CanFrame : CANBusController vem_CanFrame	VehicleAcceleration VehicleAcceleration VehicleAcceleration VehicleAcceleration VehicleAcceleration VehicleAcceleration	: TractionControlMonitor : TractionControlMonitor	TractionStatus TractionStatus TractionStatus	: IceElectricBalanceManager : IceElectricBalanceManager	IceTorqueRequest IceTorqueRequest IceTorqueRequest
	CanFrame CanFrame CanFrame		AccelPedalPosition AccelPedalPosition AccelPedalPosition		TractionStatus TractionStatus TractionStatus		ElectricTorqueRequest ElectricTorqueRequest ElectricTorqueRequest
	IceTorqueRequest IceTorqueRequest IceTorqueRequest	ElectricTorqueRequest ElectricTorqueRequest ElectricTorqueRequest			TorqueRequest TorqueRequest TorqueRequest
			AccelPedalPosition AccelPedalPosition AccelPedalPosition	: TorqueRequestEstimator : TorqueRequestEstimator		
					TorqueRequest TorqueRequest TorqueRequest

Functional safety handling with SysCARS

The new regulation ISO26262 focusing on Functional Safety, requires a higher level of formalization and traceability, and promotes the formalization of technical safety concepts in order to validate system architectures regarding safety expectations. This part focuses on the ongoing SysCARS evolutions to support Safety In the Loop (SaIL).

General

System engineering shall reconcile all the different aspects of the system to be designed. Among the multiple points of view, Functional safety is a key one. The final architecture shall integrate both system and functional safety expectations. Therefore safety can not be addressed separately in a parallel and disconnected engineering domain.

Despite following a regular system engineering process, Functional safety uses dedicated analyses to achieve safety demonstrations. In the rest of the chapter, focus is dedicated to major synchronization points, exchanged artefacts and impacts regarding SysCARS process and tools.

System & safety process background

Performing process steps in the field, it appears that system engineering has a natural tendency to focus more on functional and nominal operations, while Functional safety focuses on malfunctioning and degraded operations. SysCARS is supporting both, and provides guidance for technical safety concept formalization as required by ISO26262:

At "Stakeholders Needs definition" level Key engineering artefacts:

• specific scenarios related to critical safety contexts or degraded operations • specific safety modes, related performance and availability of functions SysCARS artefacts:

• using regular diagrams but dedicated to safety focus and interactions Safety scenarios are a convenient way to capture in which conditions, malfunctions and safety goals are identified during Hazard analyses At "Requirement analysis" level" Key engineering artefacts:

• safety requirements refining previous understandings to define safety expectations • breakdown of provided services into internal functions with flow down of ASIL In general, due to a high level of reuse in the automotive projects, the logical architecture, as previously mentioned, is not seen as a valuable step, except for innovation projects with intermediate capitalization needs regarding allocation on multiple physical candidate architectures. The same applies to safety, where the major objective is to ensure the link between high level requirements and final implementation. Furthermore the ASIL decomposition, having to demonstrate non interference, makes only sense taking into consideration hardware characteristics. • introduction of additional parts related to required safety mechanisms • technical safety requirements impacting specific discipline SysCARS artefacts:

Define Stakeholders Needs

• customization of IBDs with specific visual stereotypes to highlight safety related parts In SysCARS-CS, iterations are achieved between functional decomposition and physical architecture to work out the relevant decomposition depth and ensure the mapping. The same process is used to iterate and introduce additional safety mechanisms.

Interactions and shared artefacts

System and safety points of view are completing each other, enriching the same artefacts which shall be kept consistent in a common referential. Considering process iterations, an initial set of scenarios, internal functions, physical parts … is released by system engineers, and then modified or completed by safety engineers to meet safety expectations. Setting up SysCARS as a common backbone to couple system and safety engineering solves these issues.

Safety specific verifications

Whereas system and safety generate common design artefacts, discrepancy occurs when taking into account safety related verifications.

Failure Modes and Effects Analyses (FMEA)

To check the safety relevance of a given architecture (functions allocated on physical), a common analysis is the FMEA. Each part is considered as possibly being faulty, and occurrence of undesirable events at system scope are assessed. To achieve such analyses, the system descriptions shall be extended to dysfunctional modeling at part level:

• part, input and output fault modes • part behaviour regarding faulty inputs, fault propagation to outputs • intrinsic part fault propagation to outputs These descriptions (together with part relations) allow mathematical checking of system properties such as occurrence of a undesirable event. Furthermore, working out dysfunctional behaviour per each part of the architecture allows:

• to enable computer aided verification of the architecture using FMEA principles • to capitalize dysfunctional behaviour per part and therefore ease reuse of architecture subsets within new systems • an easier peer reviewing of dysfunctional descriptions (per part), whereas review of traditional FMEA is difficult

Fault tree analyses (FTA)

While FMEA is a deductive approach, allowing to verify compliance of a given architecture regarding all undesirable events (bottom up), FTA is a top down approach (inductive) done per undesirable event working out relevant contributing faults. Automated FMEA verification may output a FTA linking undesirable event to the relevant faults within the architecture (issues under work). This feature appears to be a major lever for efficient deployment of the ISO26262, while traditionally FTA and FMEA are concurrently done. Furthermore, the merged FTA is a key enabler to move forward quantitative analyses.

To draw FTA trees, either generated from architecture verification or done by hand from top to down, specific profiles have to be set up in the SysML editor.

Process and tooling considerations

From a process point of view, the key shared artefact is the physical architecture (key interface between system levels as well), including allocated technical functions, and completed with dysfunctional information.

Dysfunctional descriptions in system process

Such approach already exists in some industrial domains and tools are available in order to achieve such safety architecture verification (e.g. using the Altarica language and model checker). These studies are in general performed by safety modeling experts. The involvement of system designer is reduced to providing information during interviews. This process and required safety modeling skills are a major show stopper for automotive deployment. The SysCARS objective is to tightly couple engineering domains. System designers are the ones who best know both functional and dysfunctional behaviour. Therefore, dysfunctional modeling shall be integrated in their processes (at least for initial versions, later completed by safety experts). Thus, a pragmatic dysfunctional formalization is under study, which will be a subset of Altarica available concepts, also taking benefits from York FTPC research and using as much as possible easy notations such as Boolean algebra. Transformation to Altarica tools (or others) with generation of the required code (taking into consideration safety design patterns or functions typologies) is targeted.

SysCARS-SaIL status

While lessons learned have confirmed SysCARS capability to formalize ISO26262 technical safety concepts, extension is required to seamlessly implement "SaIL" concept (Safety In the Loop). Introduction of dysfunctional modeling and coupling to safety tools, will allow efficient safety architecture verification. Valeo internal effort is completed by collaboratively addressing these topics in the framework of European projects such as SAFE (ITEA2, Safe Automotive soFtware architEcture).

Conclusion

Learning on Valeo pilot projects have confirmed that the SysML language offers an adequate lever to extend the modeling practices to the area of System Engineering including functional safety analyses. Valeo experiences have shown that a successful approach requires a precisely defined modeling methodology (SysCARS). Furthermore, the customisation of existing tools in a workflow driven mindset is mandatory. However, further improvements remain necessary on commercial tools regarding ergonomics and interfacing with simulation and safety analyses tools.

Acronyms

AD