
HAL Id: hal-02263395
https://hal.science/hal-02263395v1

Submitted on 4 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MADES: A SysML/MARTE high level methodology for
real-time and embedded systems

Imran Rafiq Quadri, Andrey Sadovykh, Leandro Soares Indrusiak

To cite this version:
Imran Rafiq Quadri, Andrey Sadovykh, Leandro Soares Indrusiak. MADES: A SysML/MARTE high
level methodology for real-time and embedded systems. Embedded Real Time Software and Systems
(ERTS2012), Feb 2012, Toulouse, France. �hal-02263395�

https://hal.science/hal-02263395v1
https://hal.archives-ouvertes.fr

MADES: A SysML/MARTE high level
methodology for real-time and embedded systems

Imran Rafiq Quadri∗, Andrey Sadovykh∗
∗Softeam, 21 Avenue Victor Hugo,

75016 Paris, France
Email:{Firstname.Lastname}@softeam.fr

Leandro Soares Indrusiak†

†University of York,
York, United Kingdom
Email:lsi@cs.york.ac.uk

Abstract—Rapid evolution of real-time and embedded systems
(RTES) is continuing at an increasing rate, and new method-
ologies and design tools are needed to reduce design complexity
while decreasing development costs and integrating aspects such
as verification and validation. Model-Driven Engineering offers
an interesting solution to the above mentioned challenges and is
being widely used in various industrial and academic research
projects. This paper presents the EU funded MADES project
which aims to develop novel model-driven techniques to improve
existing practices in development of RTES for avionics and
surveillance embedded systems industries. MADES proposes a
subset of existing UML profiles for embedded systems modeling:
namely MARTE and SysML, and is developing new tools and
technologies that support design, validation, simulation and
eventual automatic code generation, while integrating aspects
such as component re-use. In this paper, we first introduce
the MADES language, which enables rapid system design and
specification that can be then taken by underlying MADES tools
for goals such as simulation or code generation. Finally, we
illustrate the various concepts present in the MADES language
by means of a car collision avoidance system case study.

Index Terms—Real-Time and Embedded Systems, Model-
Driven Engineering, SysML, MARTE, MADES language

I. I NTRODUCTION

Embedded systems have become an essential aspect of
our professional and personal lives. From avionics, transport,
defense, medical and telecommunication systems to general
commercial appliances such as smart phones, gaming con-
soles; these systems with real time constraints:Real-Time
and Embedded Systems(RTES) are now omnipresent, and it
is difficult to find a domain where these miniaturized sys-
tems have not made their mark. The important characteristics
of RTES include: low power consumption, reduced thermal
dissipation and radiation emissions, among others; offering
advantages and new opportunities to integrate more powerful,
energy efficient processors, peripherals and related resources
into the system.

A. Motivations

However, as computing power increases, more function-
alities are expected to be realized and integrated into an
embedded system. Unfortunately, the fallout of this complexity
is that the system design (particularly software design) does
not evolve at the same pace as that of hardware due to issues
such as development budget limitations, reduction of product

life cycles and design time augmentation. Additionally, de-
velopment costs and time to market shoot up proportionally.
Without the usage of effective design tools and methodologies,
large complex RTES are becoming increasingly difficult to
manage, resulting in critical issues and what has finally ledto
the famousproductivity gap. The design space, representing
all technical decisions that need to be elaborated by the design
team is therefore, becoming difficult to explore. Similarly,
manipulation of these systems at low implementation levels
such asRegister Transfer Level(RTL) can be hindered by
human interventions and the subsequent errors.

Thus effective design methodologies are needed to decrease
the productivity gap, while resolving issues such as related
to system complexity, verification and validation, etc. Among
several possibilities, elevation of design abstraction levels
seems the most promising one. High abstraction level based
system design approaches have been developed in this context,
such asModel-Driven Engineering(MDE) [1] that specify
the system using the UML (Unified Modeling Language)
graphical language.

B. Elevating design abstraction levels

MDE enables high level system modeling of both software
and hardware, with the possibility of integrating heteroge-
neous components into the system. It allows system level
(application/architecture) modeling at a high specification level
permitting several abstraction stages, each with a specificview
point. This Separation of Views(SoV) enables a designer
to focus on a domain aspect related to an abstraction stage
thus permitting a transition from solution space to problem
space. Using UML for system description increases the system
comprehensibility as it enables designers to provide high-
level descriptions of the system, that easily illustrate the
internal concepts (data dependencies, hierarchy, etc.). These
specifications can be reused, modified or extended due to their
graphical nature. Thus, MDE offers an interesting solution
to the above mentioned challenges and is being widely used
in various industrial and academic research projects. It is
supported by different technologies and tools such UML and
relatedprofilesfor high level system specifications. Moreover,
Model transformations[2] can then automatically generate
executable models or code from these abstract high level
design models.

C. Our contributions

Here, we first provide an overview of the MADES project
followed by our contributions. MADES [3], [4] is an EU
funded FP7 project which aims to develop novel model-
driven techniques to improve existing practices in develop-
ment of real-time and embedded systems for avionics and
surveillance embedded systems industries. MADES proposes
an effective subset of existing UML profiles for embedded
systems modeling: namely SysML [5] and MARTE [6], and
is developing new tools and technologies that support design,
validation, simulation and eventual automatic code generation,
while integrating aspects such as component re-use.

The contributions of this paper relate to presenting a com-
plete methodology for the design of RTES using a combination
of both SysML and MARTE, while avoiding incompatibilities
resulting from simultaneous usage of both profiles. While a
large number of works deal with embedded systems specifica-
tions using only either SysML or MARTE, we aim to present
a combined approach and illustrate the advantages of using the
two profiles. This contribution is significant in nature as while
both these profiles provide numerous concepts and supporting
tools, they are in turn difficult to be mastered by system
designer. For this purpose, we present the MADES language,
which associated with the namesake project focuses on an
effective subset of SysML and MARTE profiles and proposes
a specific set of unique diagrams for expressing different
aspects related to a system. In the paper, an overview of the
MADES language and the associated diagrams is presented,
that enables rapid design and progressive composition of
system specifications. The resulting models then can be taken
by underlying MADES tools for goals such as simulation or
automatic code generation.

Finally, we illustrate the various concepts present in the
MADES language by means of an effective real life embedded
systems case study: acar collision avoidance systemthat
integrates the MADES language and illustrates the different
phases of our developed design methodology.

The rest of this paper is organized as follows: section II
illustrates some related works, while section III gives a brief
overview of the MADES project, followed by a summarized
description of the MADES language in section IV. Afterwards,
section V presents our case study followed by a conclusion in
section VI.

II. RELATED WORKS

While a large number of researches exist that make use of
either SysML or MARTE for high level modeling of embedded
systems, due to space limitations, it is not possible here togive
an exhaustive description and we only provide a brief summary
on some of the works that make use of SysML or MARTE
based high abstraction levels and Model-Driven Engineering,
for RTES design and implementation.

The MoPCoM project [7] uses MARTE profile to target
modeling and code generation of reconfigurable embedded
systems. While the project inspires from SysML concepts such
as requirements and blocks, they are not fully integrated in

the design flow. The project uses the IBM Harmony1 process
coupled with Rhapsody2 UML modeling tool. Additionally,
MoPCoM proposes two distinct flows for system modeling and
schedulability analysis that increase design efforts. Similarly,
eDIANA [8] is an ARTEMIS project that uses MARTE profile
for RTES specification and validation. However, detailed spec-
ification of software and hardware aspects are not illustrated
in the project. While TOPCASED [9] differs from MADES,
as it focuses primarily on IDE infrastructure for embedded
systems and not on particular implementations.

Project SATURN is [10] is another EU FP7 project that aims
to use high level co-modeling approach for RTES simulation
and synthesis goals. However, the project only takes SysML
into account and proposes a number of UML profiles for
co-simulation, synthesis and code generation purposes. The
goal is to use carry out hardware/software modeling via these
profiles and generate SystemC for eventual VHDL translation
and FPGA implementation. Unfortunately, the project does not
utilizes the MARTE profile for hardware/software co-design
modeling. In [11], the authors provide a mixed modeling
approach based on SysML and the MARTE profiles to address
design space exploration strategies. However, the shortcomings
of this approach is that they only provide implementation
results by means of mathematical expressions and no actual
experimental results were illustrated.

The OMEGA European project [12] is also dedicated to
the development of critical real-time systems. However it uses
pure UML specifications for system modeling and proposes a
UML profile [13], which is a subset of the earlier UML profile
for Scheduling, Performance and Time (SPT), that has been
integrated in MARTE. The MARTES project emphasizes on
combined usage of UML and SystemC for systematic model-
based development of RTES. The results from this project in
turn, have contributed to the creation of the MARTE profile.
While INTERESTED [14] proposes a merged SysML/MARTE
methodology where SysML is used for requirement specifica-
tions and MARTE for timing aspects, it does not proposes
rules on combined usage of both profiles.

The MADES project aims to resolve this issue and thus
differentiates from the above mentioned related works, as
it focuses on an effective language subset combining both
SysML and MARTE profiles for rapid design and specification
of RTES. The two profiles have been chosen as they are both
widely used in embedded systems design, and are complimen-
tary in nature [15]. MADES proposes automatic generation
of hardware descriptions and embedded software from high
level models, and integrates verification of functional andnon-
functional properties, as illustrated in the following section.

III. MADES: GOALS AND METHODOLOGY

In this section, we provide a brief overview of the MADES
design methodology, as illustrated in Fig.1. Initially, the high
level system design models are carried out using the MADES

1http://www-01.ibm.com/software/rational/services/harmony/
2http://www-01.ibm.com/software/awdtools/rhapsody/

language and associated diagrams, which are represented later
on in section IV. After specification of the design models
that include user requirements, related hardware/software as-
pects and their eventual allocation along with schedulability
analysis; underlying model transformations (model-to-model
and model-to-text transformations) are used to bridge the
gap between these abstract design models and subsequent
design phases, such as verification, hardware descriptions
of modeled targeted architecture and generation of platform
specific embedded software from architecturally neutral soft-
ware specifications. For implementing model transformations,
MADES uses the Epsilon platform [16], that enables model
transformations, code generation, model comparison, merging,
refactoring and validation [17].

MADES Language

Design Models

Pla orm-

agnos c

code Hardware

architecture

descrip on

Hardware/

so ware

mappings

Compile-Time Virtualiza on

Pla orm-speci c code

Embedded software generation

Veri�cation

Veri ca on

scripts
User input

Simula on

scripts

Zot veri ca on

MHS descrip on

VHDL

Hardware description

generation

Figure.1: An overview of the global MADES methodology

Verification activities in MADES comprise of verification
of key properties of designed concepts (such as meeting
deadlines, etc.) and that of model transformations integrated
in the design flow [18], [19]. For verification and simulation
purposes, MADES uses the Zot tool [20], that permits veri-
fication of aspects, such as meeting critical deadlines, among
others. While closed-loop simulation on design models enable
functional testing and early validation.

Additionally, MADES employs the technique ofCompile-
Time Virtualization(CTV) [21], for targeting of non-standard
hardware architectures, without requiring development ofnew
languages or compilers. Thus a programmer can write architec-
turally neutral code which is automatically distributed byCTV
over a complex target architecture. Finally, code generation
(either in C/C++ or VHDL) can be carried out that can be
eventually implemented on modern state of the art FPGAs.
Currently MADES targets Xilinx FPGAs, however it is also
possible to adapt to FPGAs provided by other vendors such
as Altera or Atmel. Detailed description regarding the global
MADES methodology can be found in [22].

IV. MADES LANGUAGE: SYSML/MARTE SUBSET

Fig.2 gives an overview of the MADES language inherently
present in the design flow for the initial design models. The

MADES language focuses on a subset of SysML and MARTE
profiles and proposes a specific set of diagrams for specifying
different aspects related to a system: such as requirements,
hardware/software concepts, etc. Along with these specific
unique diagrams, MADES also uses classic UML diagrams
such asStateandActivity diagrams to model internal behavior
of system components, along withSequenceand Interaction
Overview diagrams to model interactions and cooperation
between different system elements. Softeam’s UML Modelio
tool [23] enables full development of MADES diagrams
and associated language, while a partial integration has been
currently carried out for a MADES open source modeler, that
is an extension of the Papyrus UML modeler [24]. We now
provide a brief description of the MADES language and its
related diagrams.

Figure.2: Overview of MADES language design flow

In the initial specification phase, a designer needs to carry
out system design at high abstraction levels. This design phase
consists of the following steps:

• System Requirements: The user initially specifies the
requirements related to the system. For this purpose, a
MADES Requirements Diagram is utilized that inte-
grates SysML requirements concepts.

• Use case Scenarios: Afterwards, the system requirements
are converted into use cases, described using MADES
Use Case Diagram that encapsulate SysML use case
concepts. This design phase is strongly related to the
functional high level specification described subsequently.

• High Level Specification: Each use case is converted
into a SysML block by means of MADESHigh
Level Block (or Internal Block) Specification
Diagram, that contains SysML Block (or internal block)
concepts respectively. This functionality is independentof
any underlying execution platform and software details.
It thus determineswhat is to be implemented, instead of
how it is to be carried out.

• Refined High Level Specification: The Refined High
Level Specification Diagram models MARTE
components, each corresponding to a SysML block.
Here, MARTE’s High level Application Modeling
package is used to differentiate between active and
passive components of the system.

The refined high level specification permits to link SysML
and MARTE concepts while avoiding conflicts arising due

to parallel usage of both profiles [15]. The conflicts related
to the two profiles are avoided as we do not mix SysML
and MARTE concepts in the same diagram, but instead focus
on a refinement scheme. Thus SysML is used for initial
requirements and functional description, while MARTE is
utilized for the enriched modeling of the global functionality
and execution platform/software modeling.

Thus, once the refined functional description is completed,
the designer can move onto the partitioning of the system in
question: depending upon the requirements and resources in
hand, he or she can determine which part of the system needs
to be implemented in hardware or software. We now describe
the different steps related to each design level by means of
MARTE concepts.

Related to the MARTE modeling, an allocation between
high level and refined high level specifications is carried out
using a MADESAllocation Diagram. Afterwards, a co-
design approach [25] is used to model the hardware and
software aspects of the system. The modeling is combined
with MARTE Non Functional PropertiesandTimed Modeling
package to express aspects such as throughput, temporal
constraints, etc. We now describe the hardware and software
modeling, which are as follows:

• Hardware Specification: The MADES Hardware

Specification Diagram in combination with
MARTE’s Generic Resource Modelingpackage enables
modeling of abstract hardware concepts such as
computing, communication and storage resources. The
design level enables a designer to describe the physical
system albeit at a abstraction level higher than the
detailed hardware specification level. By making use
of MARTE GRM concepts, a designer can describe a
physical system such as a car, a transport system, flight
management system, among others.

• Detailed Hardware Specification: Using theDetailed
Hardware Specification Diagram with MARTE’s
Hardware Resource Modelingpackage allows extension
and enrichment of concepts modeled at the hardware
specification level. It also permits to model systems
such as FPGA based System-on-Chips (SoCs), ASICs
etc. A one-to-one correspondence usually follows here:
for example, a computing resource typed as MARTE
ComputingResource is converted into a hardware pro-
cessor, such as a PowerPC or MicroBlaze [26], effectively
stereotyped as MARTEHwProcessor. Once the detailed
modeling is completed, an allocation diagram is then
utilized to map the modeled hardware concepts to detailed
hardware ones.

• Software Specification: The MADES Software

Specification Diagram along with MARTE’s
Generic Resource Modelingpackage permits modeling
of software aspects of an execution platform such as
schedulers and tasks; as well as their attributes and
policies (e.g. priorities, possibility of preemption).

• Detailed Software Specification: The MADESDetailed
Software Specification Diagram and related

MARTE’s Software Resource Modelingare used to
express aspects of the underlyingOperating System
(OS). Once this model is completed, an allocation
diagram is used to map the modeled software concepts
to detailed software ones: for example, allocation of
tasks onto OS processes and threads. This level can
express standardized or designer based RTOS APIs.
Thus multi-tasking libraries and multi-tasking framework
APIs can be described here.

Iteratively, several allocations can be carried out in our
design methodology: a software to hardware allocation permits
to associate schedulers and schedulable resources to related
computing resources in the execution platform, once the
initial abstract hardware/software models are completed.Sub-
sequently this initial allocation could lead to further enriched
allocation between the detailed software and hardware models
(an allocation of OS to a hardware memory, for example).
An allocation can also specify if the execution of a software
resource onto a hardware module is carried out in a sequential
or parallel manner. It should be noted that MARTEGeneric
Component Modelingpackage is used throughout the MADES
diagrams dealing with MARTE stereotypes for describing
the modeled concepts in a modular manner. Each MADES
diagrams only contains commands related to that particular
design phase, thus avoiding ambiguities of utilization of the
various concepts present in both SysML and MARTE.

Additionally, MARTE enables analysis based on schedula-
bility and performance criteria. Once a complete system is
specified and eventually allocated; UML behavioral diagrams
can be used in association with MARTESchedulability Anal-
ysis Modelingpackage for describing the behavior of system
components or the system itself. The schedulability analysis
helps to determine aspects such as worst case execution times,
missed deadlines etc; which can be expressed by the high level
models and in turn used as input for a schedulability analysis
tool, providing results that enableDesign Space Exploration
aspects by modifying in turn the high level design models.

Once the modeling aspects are completed, the high level
models can be utilized by model transformations to produce
intermediate or executable enriched models as well as code
for eventual implementation. Afterwards, simulation can be
carried out using third party tools to verify the correctness
and functionality of the generated code before moving onto
synthesis which enables to create actual implementation of
a RTES, for example a prototype in case of an FPGA. For
MADES, all these aspects related to verification, automatic
code generation and hardware implementation have been de-
tailed in [27]. We now present our case study that illustrates
our combined SysML and MARTE design methodology.

V. CAR COLLISION AVOIDANCE SYSTEM CASE STUDY

We now provide the car collision avoidance system (CCAS)
case study that is modeled in Modelio using the MADES
language and underlying methodology. Verification aspects,
automatic code generation and hardware implementation re-

lated to the CCAS have been illustrated in [27], and are not
the scope of this paper.

The car collision avoidance system or CCAS for short, when
installed in a vehicle, permits to detect and prevent collisions
with incoming objects such as cars and pedestrians. The CCAS
as shown in Fig.3 contains two types of detection modules.
The first one is a radar detection module that emits continuous
waves. A transmitted wave when collides with an incoming
object, is reflected and received by the radar itself. The radar
sends this data to an obstacle detection module, which in
turn removes the noise from the incoming signal along with
other tasks such as a correlation algorithm. The distance of
the incoming object is then calculated and sent to a primary
controller for appropriate actions.

Figure.3: The CCAS installed on a car to avoid collisions with
incoming objects

The image tracking module is the second detection module
installed in the CCAS. It permits to determine the distance of
the car from an object by means of image computation. The
camera takes pictures of incoming objects and sends the datato
a secondary controller, which executes a distance algorithm. If
the results of the computation indicate that the object is closer
to the car then a specified default value that means a collision
can occur. The result of this data is then sent to the primary
controller of the CCAS.

The primary controller when receives the data, acts accord-
ingly to the situation at hand. In case of an imminent collision,
it can carry out some emergency actions, such as stopping the
engine, applying emergency brakes; otherwise if the collision
is not imminent, it can decrease the speed of the car and can
apply normal brakes. We now describe the CCAS system in
detail subsequently.

A. SysML based modeling of CCAS

The CCAS design specifications start with SysML based
modeling, which involves the initial design decisions suchas
system requirements and functionality description.

1) Requirement Specifications:We first move on to the
system requirements that basically describe the overall needs,
constraints and limitations of the system. Using the SysML
inspired MADES Requirements Diagram, it is possible to
describe the system requirements at the initial phase of system
conception. In Fig.4, we illustrate the different requirements
of the CCAS system. It should be mentioned that only the
functionalrequirements of a system are described at this level.

Here, the different requirements for the CCAS are
described: theGlobal Collision Avoidance Strategy
determines the global requirement for the system which is
to detect incoming objects by means of either the radar or
the image tracking system. Additional requirements can be
derived from this global requirement, such as theImminent
Collision Strategy, Near Collision Avoidance

Strategy, Additional Timing requirements and
Changing Lanes Strategy. It should be noted that this
requirement specification is not complete in nature and
has a strong relation with other MADES diagrams. More
specifically, these specifications rely on use case scenarios and
the functional blocks, described in turn inHigh level Block
Specification Diagramfor their completion, as illustrated
later on. We thus will revisit this requirement diagram once
we specify these other aspects.

Initially, the user describes the system requirements which
state that if the distance from an object is less than 3 meters
than the CCAS should enter in a warning state. If it remains
in that state for 300 ms and distance is still less than 3 meters,
then the CCAS should decrease car speed and alert the driver
by means of an alarm and a Heads-up-display (HUD). If the
distance falls to 2 meters, the CCAS should enter in a critical
warning state. If it remains in that state for 300 ms and distance
is still less than 2 meters, then CCAS should apply emergency
brakes, deploy airbags and alert the driver as well.

The radar or the im age track ing

m odule should send the data to the

Controller every 100 m s v ia the

system bus and the comm un ication

should take 20 m s, dur ing which

the bus should be busy . I n case of

imm inent colli sion, the controller

should send the brake comm and

which should take no m ore than 20

m s

A dd i t i o n a l T i m i n g r e q u i r e m e n t s

When the dr iver is about to

change lanes or if the car

dev iates f rom the curr ent

lane intentionally , the dr iver

should b e notif ied v ia the

HUD. I f the dr iver is chaning

lanes him self, the car turn

signal should be on

Ch a n g i n g La n e s St r a t e g y

When ex ternal obj ect is less than 3

m eters away , the controller should

swi tch to a warning state. I f the system

rem ains in this state f or 300 m s, then

the dr iver should b e notif ied v ia an

alarm and HUD, norm al b rakes should

be app lied for 10 m s f or reducing car

spee d. Hazard warning lights should be

activated in the HUD.

Ne a r Co lli s i o n A v o i d a n ce St r a t e g y

When ex ternal obj ect is less than 2

m eters away , the dr iver should be

notif ied by an alarm and HUD, and

system should switch to a cr it ical

warning state. I f the system rem ains in

cr it ical warning state f or m ore than 300

m s and distance f rom obj ect is st ill less

than 2 m eters then the engine should be

stopp ed, brakes should be app lied,

seatbelts should be tensioned and air

bag should be deployed. The brakes

should be app lied f or 100 m s

I mm i n e n t Co lli s i o n St r a t e g y

Detect Colli sion by m eans of the

installed radar detection or by the

im age track ing system . Switching

betwee n radar and im age track ing

depending upon user requirem ents and

weather condit ions. Take app ropr iate

actions to avoid colli sions and notify

the dr iver

Gl o b a l Co lli s i o n A v o i d a n ce St r a t e g y

<<derive>>

<<derive>> <<derive>>

<<derive>>

Figure.4: Initial requirements specifications for the CCAS

Driver

Car Usecase Scenarios

No t i f i ca t i o n s t o o t h e r ca r s a n d p e d e s t r i a n s

A v o i d Co lli s i o n s

A pp l y Br a k e s

De c r e a se Sp ee d

Re v e r se Ca r

St o p Ca r

Dr i v e Ca r

St a r t Ca r

<<extend>>

<<extend>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Figure.5: The different case scenarios related to the CCAS

2) Use case scenarios:Once the requirement phase is
partially completed, we move onto describing the use case sce-
narios associated with our system via the MADESUse Case
Diagram. Here in Fig.5, we describe the different scenarios
associated with the car on which the CCAS is installed. The

figure illustrates some basic scenarios, such as the car being
started, stopped or being driven. TheAvoid Collisions
scenario makes use of other specified scenarios and is the
one that is related to the system requirements described in the
section.V-A1.

3) High Level Specification:Once the requirements and
use case scenarios of our system are specified; we move
onto the functional block description of the CCAS system
as described in Fig.6. For this, MADESHigh Level Block
Specificationor High Level Internal Block Specificationdia-
grams are used. This conception phase enables a designer to
describe the system functionality without going into details
how the functionality is to be eventually implemented. Here
the functional specification is described using SysML block
definition diagram concepts. The functional description can
be specified by means of UML concepts such as aggregation,
inheritance, composition etc. Equally, hierarchical composition
of functional blocks can be specified by means of internal
blocks, ports and connectors. Here we use these concepts
for describing the global composition of the CCAS. The
Car block is composed of some system blocks such as a
Ignition System, Charging System, Starting System,
Engine Component Parts, Transmission System and fi-
nally theCar Collision Avoidance Module which is the
main component related to our case study. Each functional
blocks can be composed of internal blocks, however, this step
has not been illustrated in the paper.

0..1

1..*

0 ..1

2 ..*

0 ..1

1

0..1
1

0..1

1

0..1

1

0..1
1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1 0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

Ca r

<< Bl o ck > >

En g i n e Coo li n g Sy s t e m

<< Bl o ck > >

En g i n e Oil Sy s t e m

<< Bl o ck > >

Ex h a u s t Sy s t e m

<< Bl o ck > >

Tr a n sm i ss i o n Sy s t e m

<< Bl o ck > >

Su sp e n s i o n a n d St ee r i n g Sy s t e m

<< Bl o ck > >

Fu e l Su pp l y Sy s t e m

<< Bl o ck > >

W i r i n g Ha r n e ss e s

<< Bl o ck > >

Ca r Co lli s i o n A v o i d a n ce Mo d u l e

<< Bl o ck , Re q u i r e m e n t Re l a t e d , A ll o ca t e d > >

W h ee l a n d T i r e Pa r t s

<< Bl o ck > >

W i n d o w s

<< Bl o ck > >

Doo r s

<< Bl o ck > >

Ch a r g i n g Sy s t e m

<< Bl o ck > >

A u d i o / Vi d e o Mu l t i m e d i a De v i ce s

<< Bl o ck > >

El e c t r i c Su pp l y Sy s t e m

<< Bl o ck > >

A i r Co n d i t i o n e r Sy s t e m

<< Bl o ck > >

Ga u g e s a n d Me t e r s

<< Bl o ck > >

I g n i t i o n Sy s t e m

<< Bl o ck > >

Sw i t ch e s

<< Bl o ck > >

St a r t i n g Sy s t e m

<< Bl o ck > >

En g i n e Co m p o n e n t Pa r t s

<< Bl o ck > >

Figure.6: High level specification using SysML block concepts

A v o i d Co lli s i o n s

The radar or the im age track ing

m odule should send the data to the

Controller every 100 m s v ia the

system bus and the comm un ication

should take 20 m s, dur ing which

the bus should be busy . I n case of

imm inent colli sion, the controller

should send the brake comm and

which should take no m ore than 20

m s

A dd i t i o n a l T i m i n g r e q u i r e m e n t s

When the dr iver is about to

change lanes or if the car

dev iates f rom the curr ent

lane intentionally , the dr iver

should b e notif ied v ia the

HUD. I f the dr iver is chaning

lanes him self, the car turn

signal should be on

Ch a n g i n g La n e s St r a t e g y

When ex ternal obj ect is less than 3

m eters away , the controller should

swi tch to a warning state. I f the system

rem ains in this state f or 300 m s, then

the dr iver should b e notif ied v ia an

alarm and HUD, norm al b rakes should

be app lied for 10 m s f or reducing car

spee d. Hazard warning lights should be

activated in the HUD.

Ne a r Co lli s i o n A v o i d a n ce St r a t e g y

When ex ternal obj ect is less than 2

m eters away , the dr iver should be

notif ied by an alarm and HUD, and

system should switch to a cr it ical

warning state. I f the system rem ains in

cr it ical warning state f or m ore than 300

m s and distance f rom obj ect is st ill less

than 2 m eters then the engine should be

stopp ed, brakes should be app lied,

seatbelts should be tensioned and air

bag should be deployed. The brakes

should be app lied f or 100 m s

I mm i n e n t Co lli s i o n St r a t e g y

Detect Colli sion by m eans of the

installed radar detection or by the

im age track ing system . Switching

betwee n radar and im age track ing

depending upon user requirem ents and

weather condit ions. Take app ropr iate

actions to avoid colli sions and notify

the dr iver

Gl o b a l Co lli s i o n A v o i d a n ce St r a t e g y

<<satisfy>>

<<satisfy>>

<<satisfy>>
<<satisfy>>

<<satisfy>>

<<refine>>

<<derive>>

<<derive>> <<derive>>

<<derive>>

Ca r Co lli s i o n A v o i d a n ce Mo d u l e

<< Bl o ck , Re q u i r e m e n t Re l a t e d , A ll o ca t e d > >

Figure.7: Completing the functional specifications of the
CCAS

4) Completing the Requirement Specifications:Once we
have finished the use case scenarios and functional block

specification of our system, it is possible for us to complete
the requirement specifications, as described in Fig.7.

As seen here, a related use case scenario and a functional
block has been added to the figure, which helps to complete
and satisfy the high level system requirements. It should be
noted here, that as seen in Fig.7, only theCar Collision
Avoidance Module block specified in the diagram is utilized
to satisfy the global system requirements. Thus, these system
requirements can be refined once an initial functional speci-
fication of system is completed. Since we are only interested
in the Car Collision Avoidance Module and not other
functional blocks of the car, it is this module that is the focus
of the subsequent design phases.

B. MARTE based modeling of CCAS

Once the initial design descriptions have been specified, itis
possible to partition and enrich the high level functionalities.
For this, MARTE concepts are used to determine which
parts of the system are implemented in software or hardware
along with their eventual allocation. Additionally, MARTE
profile enables to express non-functional properties related
to a system, such as throughput, worst case execution times,
etc. We now describe the MARTE based design phases in the
subsequent sections.

1) Refined High Level Specification:We now turn towards
the MARTE based modeling of the CCAS. All necessary
concepts present at theHigh Level Specification Diagram
correspond to an equivalent concept at theRefined High
Level Specification Diagram. Since we are only interested in
the Car Collision Avoidance Module at the higher level
specifications, an equivalent MARTE component is created.
TheRH Car Collision Avoidance Module is stereotyped
as a MARTERtUnit that determines the active nature of the
component. Fig.8 shows the related modeling of this concept.
TheRtUnit modeling element is the basic building block that
permits to handle concurrency in RTES applications [6]. It
should be mentioned that component structure and hierarchy
should be preserved between the two high level specification
diagrams. As in this particular example, no hierarchical com-
positions are present at the high level specifications forCar

Collision Avoidance Module, they are equally not present
in the underlying refined high level specifications.

RH_ Ca r Co lli s i o n A v o i d a n ce Mo d u l e

<< Rt Un i t > >

Figure.8: Refined high level specification of the CCAS

<<Allocate>> {kind (hybrid), nature (spatialAllocation)}

Ca r Co lli s i o n A v o i d a n ce Mo d u l e

<< Bl o ck , Re q u i r e m e n t Re l a t e d , A ll o ca t e d > >

RH_ Ca r Co lli s i o n A v o i d a n ce Mo d u l e

<< Rt Un i t , A ll o ca t e d > >

Figure.9: Allocation between high level/refined high level
specifications

2) Allocating High Level and Refined High Level Specifica-
tions: Afterwards, an allocation using the MADESAllocation

Diagram is used to map the high level specification concepts
to the refined high level specification concepts. This aspect
is represented in Fig.9. Using the MARTEallocation mecha-
nism, we express that the allocation ishybrid (both structural
and behavioral aspects are thus related from source to target)
andspatial in nature.

3) Clock Specification:Once the initial specification has
been carried out, modeling of hardware and software aspects
of the required functionality is possible in a parallel manner.
For that purpose, we first model the different clock types which
are used by the execution platform of the CCAS, as illustrated
in Fig.10. Here, an initial ideal clock type serves as the basis
for the Hardware and System clock types. All the clocks
types are discrete in nature using the MARTETimepackage.

<<TimedDomain>> CCAS Time Domain

I d e a l Cl o ck { n a t u r e (d i sc r e t e) , i sLo g i ca l }

<< Cl o ck Ty p e > >

Sy s t e m Cl o ck { n a t u r e (d i sc r e t e) , r e so l A tt r (10) }

<< Cl o ck Ty p e > >

Ha r d w a r e Cl o ck { n a t u r e (d i sc r e t e) , r e so l A tt r (10) }

<< Cl o ck Ty p e > >

Figure.10: Specification of clock types related to CCAS

We first define time domain to contain the clock types
related to the system. For this, a packageCCAS Time Domain
stereotyped asTimedDomain is created, respecting the tim-
ing notions in MARTE. Afterwards, we specify the clock
types present in our system as illustrated in the figure. We
specify three clock types:IdealClock, SystemClock and
HardwareClock; all appropriately stereotyped asClockType.
TheIdealClock is the basic clock type present in the system
referencing a certain frequency, while the other two reference
this basic clock and run at much higher frequencies.

sys clk:SystemClock

<<Clock, ClockRe source>>

air bag:Air bag

<<DeviceRe source>>

belts:Seat belts

<<DeviceRe source>>

display:HUD Display

<<DeviceRe source>>

cam:Camera

<<DeviceRe source>>

img mem:Image Processor Memory

<<StorageRe source>>

img proc:Image Processor Secondar Controller

<<ComputingRe source>>

ctrl mem:Controller Memory

<<StorageRe source>>

ctrl:Controller

<<ComputingRe source>>

can:CAN

<<Comm unicationMedia>>

shared mem:Shared Memory

<<StorageRe source>>

odm:Obstacle Detection Module

<<DeviceRe source>>

radar:Radar

<<DeviceRe source>>

alarm:Alarm

<<DeviceRe source>>

add sens:Add itional Sensors

<<DeviceRe source>>

ligh-sig sys:Lightning and Signaling System

<<DeviceRe source>>

braking sys:Braking System

<<DeviceRe source>>

{The

Sys temC lock

has a rate 10

times fas ter than

the IdealC lock}

C onstraint

Figure.11: Abstract hardware specification of CCAS

4) Hardware Specification:At the hardware specification
level, we first model the abstract hardware concepts of the
execution platform in Fig.11. The abstract hardware modeling
of the execution platform of the CCAS contains primary and
secondary controllers for radar/image tracking modules, their
respective local and shared memories, system clock and addi-
tional hardware resources (radar and camera modules, braking
system, etc.); all of which communicate via a CAN bus. The
MARTE GRM package stereotypes are applied onto the dif-
ferent hardware resources: for exampleComputingResource
for the primary and secondary controllers,StorageResource
for the local and shared memories,CommunicationMedia for
the CAN bus, while DeviceResource is used for the other

hardware components. Here, the hardware specification also
contains a clocksysclk of the typeSystemClock specified
earlier in Fig.10. Here using the MARTETime package, we
add a clock constraint onto the clock, specifying that this clock
(and related clock type) runs at a rate 10 times faster than that
of the ideal clock.

The hardware specification contains different hardware
components which themselves are either further composed
of sub components, or have internal behaviors, expressed by
means of classic UML behavioral diagrams. We now describe
the internal behavior of three hardware components:

SystemClock

receivingData

Figure.12: Behavior of the radar module present in the CCAS

notifyDistanceEnd [distance < 3 meters]

notifyDistanceEnd [distance >= 3 meters]

notifyDistanceEnd [distance > 3 meters]

notifyDistanceEnd [distance < 3 meters && @warning.exit - @warning.enter < 300 ms]^breakInterrput

notifyDistanceEnd [distance < 2 meters && @criticalwarning.exit - @criticalwarning.enter < 300 ms]^breakInterrput

notifyDistanceEnd [distance < 2 meters]

notifyDistanceEnd [distance > 2 meters]

criticalwarning

noAction

warning

Figure.13: Behavior of the primary controller of the CCAS

[@emergencyBraking.exit - @emergencyBraking.enter = 100 ms]

notifyEmergencyBrakeEnd

[@normalBraking.exit - @normalBraking.enter = 10 ms]

notifyNormalBrakeEnd

emergencyBraking

normalBraking

idle

Figure.14: Internal behavior of the braking system

In Fig.12, we describe the internal behavior of the
Radar component by means of a state machine dia-
gram. TheRadarBehavior state machine is stereotyped as
TimedProcessing (not shown in the Figure). This per-
mits to bind the processing of this behavior to time by
means of a clock. Here the Radar remains in a single
receivingData state and continues to send data to the
primary controller at each tick of theSystemClock, every
100 ms. While Fig.13 illustrates the internal behavior of
the primary controller. The controller contains three states,
noAction, warning and criticalwarning. The controller
initially remains in thenoAction state when distance from
incoming objects is greater than 3 meters. If the distance
decreases to less than 3 meters, the controller switches to
eitherwarning or criticalwarning state (depending upon
the the related condition) and sends a braking command
to the Braking System. Fig.14 illustrates behavior of the
Braking System. It switches to either thenormalBraking
or theemergencyBraking state, depending upon receiving a
particular command from the primary controller.

1

brake A c tuator Task

1
c trlToImgC trlC ommunication

1

oDMC ontroll erC ommunication

1

camera Task

1
imgC ontroll erC amC ommunication

1
c trlToImgC trlC ommunication

1

alarm Task

1

sensor Task

1

light Sys tems Task

1

display Refresh Task

1

seat Belts Task

1

air Bag Task

1

controll erA larmC ommunication

1

controll erSensorC ommunication

1

controll erLightSysC ommunication

1

controll erDispC ommunication

1

controll erSeatbeltC ommunication

1

controll erA irbagC ommunication

1

controll erBrakeC ommunication

1

oDMC ontroll erC ommunication

1

radarO DMC ommunication

1

radarO DMC ommunication

sys tem Scheduler

0 ..1

Ct r l To I m g Ct r l Co mm un i ca t i o n

Co n t r o ll e r Di sp Co mm un i ca t i o n

Co n t r o ll e r Se a t b e l t Co mm un i ca t i o n

Co n t r o ll e r Li g h t Sy sCo mm un i ca t i o n

Co n t r o ll e r Se n so r Co mm un i ca t i o n

Co n t r o ll e r A l a r m Co mm un i ca t i o n

Co n t r o ll e r A i r b a g Co mm un i ca t i o n

Co n t r o ll e r Br a k e Co mm un i ca t i o n

I m g Co n t r o ll e r Ca m Co mm un i ca t i o n

Ra d a r ODMCo mm un i ca t i o n ODMCo n t r o ll e r Co mm un i ca t i o n

Sch e d u l e r T i m e r

<< Ti m e r Re so u rc e > >

Sy s t e m Sch e d u l e r

<< Sch e d u l e r > >

A l a r m Ta sk

<< Sch e d u l a b l e Re so u r ce > >

Li g h t Sy s t e m s Ta sk

<< Sch e d u l a b l e Re so u r ce > >

Se n so r Ta sk

<< Sch e d u l a b l e Re so u r ce > >

Ca m e r a Ta sk

<< Sch e d u l a b l e Re so u r ce > >

Di sp l a y Re f r e sh Ta sk

<< Sch e d u l a b l e Re so u r ce > >

Se a t Be l t s Ta sk

<< Sch e d u l a b l e Re so u r ce > >

A i r Ba g Ta sk

<< Sch e d u l a b l e Re so u r ce > >

Br a k e A c t u a t o r Ta sk

<< Sch e d u l a b l e Re so u r ce > >

ODM Ta sk

<< Sch e d u l a b l e Re so u r ce > >

I m g Co n t r o ll e r Ta sk

<< Sch e d u l a b l e Re so u r ce > >

Co n t r o ll e r Ta sk

<< Sch e d u l a b l e Re so u rc e > >

Ra d a r Ta sk

<< Sch e d u l a b l e Re so u r ce > >

send switch comm and()

send display refresh comm and()

send seat belt comm and()

send lightning system comm and()

send sensor swee p comm and()

send alarm notification comm and()

send air bag comm and()

send brake comm and()

send image comm and()

send raw data(in data : integer)
send sensor distance(in distance : integer)

Perform Scheduling()

Sound Alarm()

Notify Alarm Comm and()

Indicator Signal()

Notify Light Sys Comm and()

Perform Weather temperature sensor swee p()

Notify Sensor Task()

Take Picture()

Re fresh Display()

Notify Display Comm and()

Tighten Seat Belts()

Notify Seat Belts Comm and()

Deploy Air Bag()

Notify Air Bag Comm and()

Normal Brakes()

Emergency Brakes()

Notify Brake()

Perform Calculation()

Notify Raw Data(in raw data : integer)

SwitchtoRadar()

Notify Image()

SwitchtoImage()

Sensor Operation()

Display Update()

Alarm Operation()

Lighting Control Operation()

Seat Belt Operation()

Air Bag Operation()

Brake Operation()

Notify Distance(in distance : integer)getData(in data : integer)

Figure.15: Software specification of the CCAS

1

alarmT

1

lightT

1

brakeT

1

sbeltT

1

abagT

1

dispT

1

sensorT

1

comm71

comm51

comm91

comm41

comm8
1

comm3

1
comm6

1

camT

1

comm11

1

imgctrlT

1

comm10

1 ctrlT

1comm2

1
comm1

1comm1

comm 11:ImgControllerCamComm unication

comm 10:CtrlToImgCtrlComm unication

comm 9:ControllerBrakeComm unication

comm 8:ControllerAirbagComm unication

comm 7:ControllerAlarmComm unication

comm 6:ControllerSensorComm unication

comm 5:ControllerLightSysComm unication

comm 4:ControllerSeatbeltComm unication

comm 3:ControllerDispComm unication

comm 2:ODMControllerComm unication

schTimer:Scheduler Timer

<<TimerRe source>>

scheduler:System Scheduler

<<Scheduler>>

alarmT:Alarm Task

<<SchedulableRe source>>

lightT:Light Systems Task

<<SchedulableRe source>>

sensorT:Sensor Task

<<SchedulableRe source>>

camT:Camera Task

<<SchedulableRe source>>

dispT:Display Re fresh Task

<<SchedulableRe source>>

sbeltT:Seat Belts Task

<<SchedulableRe source>>

abagT:Air Bag Task

<<SchedulableRe source>>

brakeT:Brake Actuator Task

<<SchedulableRe source>>

odmT:ODM Task

<<SchedulableRe source>>

imgctrlT:Img Controller Task

<<SchedulableRe source>>

ctrlT:Controller Task

<<SchedulableRe source>>

comm 1:RadarODMComm unication

radarT:Radar Task

<<SchedulableRe source>>

Figure.16: Software specification of the CCAS (Instance level)

5) Software Specification:We now turn towards modeling
of the software specification of the execution platform of
the CCAS, as displayed in Fig.15. Here, schedulable tasks
related to the hardware modules are modeled along with their
communications. A scheduler is also present that manages the
overall scheduling based on a fixed priority algorithm. The
different tasks are stereotyped asSchedulableResource,
indicating that they are scheduled by means of aSystem
Scheduler, itself appropriately stereotyped as aScheduler.
Each task contains a number of operations, indicating the
functionality related to that particular task.

The software specification is also modeled at the instance
level as illustrated in Fig.16, for an eventual allocation between
the software/hardware specifications, and also for schedula-
bility analysis modeling using UML sequence diagrams, as
illustrated later on in section V-B12.

6) Allocating Software to Hardware:Once the hardware
and software specifications have been carried out, we carry out
an allocation between the two using the MADESAllocation
Diagram. Here in Fig.17, the majority of the tasks (such
as Brake Actuator Task, Air Bag Task) are allocated to
the primary controller by means of atemporal allocation.
Similarly, the Radar and ODM tasks are allocated to their
respective hardware modules by means ofspatial allocations.
While tasks related to the secondary controller such asCamera

Task are mapped on to it by means of atemporalallocation.
Finally, all the communications are allocated to theCAN bus.
It should be noted that while theAllocatedstereotype on the
software and hardware concepts has been applied similarly to
the concepts illustrated in Fig.9, they have not been displayed
here for a better visualization.

<<Allocate>>

<<Allocate>>
<<Allocate>>

<<Allocate>>

<<Allocate>> {nature (timeScheduling)}

<<Allocate>> {nature (timeScheduling)}

<<Allocate>> {nature (timeScheduling)}

<<Allocate>> {nature (timeScheduling)}

<<Allocate>> {nature (timeScheduling)}

<<Allocate>> {nature (spatialAllocation)}

<<Allocate>> {nature (spatialAllocation)}

<<Allocate>> {nature (timeScheduling)}

<<Allocate>> {nature (timeScheduling)}

<<Allocate>> {nature (timeScheduling)}

<<Allocate>> {nature (timeScheduling)}

<<Allocate>> {nature (timeScheduling)}

<<Allocate>> {nature (timeScheduling)}

<<Allocate>>

<<Allocate>>

<<Allocate>>
<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

comm 11:ImgControllerCamComm unication

comm 10:CtrlToImgCtrlComm unication

comm 9:ControllerBrakeComm unication

comm 8:ControllerAirbagComm unication

comm 7:ControllerAlarmComm unication

comm 6:ControllerSensorComm unication

comm 5:ControllerLightSysComm unication

comm 4:ControllerSeatbeltComm unication

comm 3:ControllerDispComm unication

comm 2:ODMControllerComm unication

scheduler:System Scheduler

<<Scheduler>>

alarmT:Alarm Task

<<SchedulableRe source>>

lightT:Light Systems Task

<<SchedulableRe source>>

sensorT:Sensor Task

<<SchedulableRe source>>

camT:Camera Task

<<SchedulableRe source>>

dispT:Display Re fresh Task

<<SchedulableRe source>>

sbeltT:Seat Belts Task

<<SchedulableRe source>>

abagT:Air Bag Task

<<SchedulableRe source>>

brakeT:Brake Actuator Task

<<SchedulableRe source>>

odmT:ODM Task

<<SchedulableRe source>>

imgctrlT:Img Controller Task

<<SchedulableRe source>>

ctrlT:Controller Task

<<SchedulableRe source>>

comm 1:RadarODMComm unication

radarT:Radar Task

<<SchedulableRe source>>

air bag:Air bag

<<DeviceRe source>>

belts:Seat belts

<<DeviceRe source>>

display:HUD Display

<<DeviceRe source>>

cam:Camera

<<DeviceRe source>>

img mem:Image Processor Memory

<<StorageRe source>>

img proc:Image Processor Secondar Controller

<<ComputingRe source>>

ctrl mem:Controller Memory

<<StorageRe source>>

ctrl:Controller

<<ComputingRe source>>

can:CAN

<<Comm unicationMedia>>

shared mem:Shared Memory

<<StorageRe source>>

odm:Obstacle Detection Module

<<DeviceRe source>>

radar:Radar

<<DeviceRe source>>

alarm:Alarm

<<DeviceRe source>>

add sens:Add itional Sensors

<<DeviceRe source>>

ligh-sig sys:Lightning and Signaling System

<<DeviceRe source>>

braking sys:Braking System

<<DeviceRe source>>

Figure.17: Mapping software resources to the hardware mod-
ules of CCAS

7) Detailed Hardware Specification:Once the initial ab-
stract hardware specification has been modeled, the designer
can move on to modeling of the detailed hardware specification
which corresponds more closely to the actual implementa-
tion details of the execution platform. The structure of the
detailed hardware specifications corresponds to the abstract
specifications specified in Fig.11, but have been enriched with
additional details: such as operating frequencies of the primary
and secondary controllers, for example. All these aspects have
been represented in Fig.18. Here, the modeled computing
resources are stereotyped asHwProcessor, while memories
are typed asHwRAM. The sensors, radar and display modules
as typed asHwI O, while remaining hardware concepts are
stereotyped asHwDevice. Additionally the communication
module, theHW ChannelBox has been typed as aHwMedia.
Finally, the execution platform also contains ahwclk clock of
type HardwareClock with a related clock constraint.

hwclk:HardwareClock

<<HwClock>>

hwairbag:HW_AirBag

<<HwDevice>>

hwbelts:HW_SeatBelts

<<HwDevice>>

hwdisplay:HW_Display

<<HwI_O>>

hwcam:HW_Camera

<<HwI_O>>

hwimgmem:HW_ImgMem

<<HwRAM>>

hwimgctrl:HW_ImgController

<<HwProcessor>>

hwctrlmem:HW_ControlMem

<<HwRAM>>

 ppc:PowerPC {op_Frequencies (300MHz)}

<<HwProcessor>>

hwchannelbox:HW_ChannelBox

<<HwMedia>>

hwsharedmem:HW_SharedMem

<<HwRAM>>

hwodm:HW_ODM

<<HwDevice>>

hwradar:HW_Radar

<<HwI_O>>

hwalarm:HW_Alarm

<<HwTimingRe source>>

hwsens:HW_Sensors

<<HwI_O>>

hwlss :HW_LightSys

<<HwDevice>>

hwbss :HW_BrakeSys

<<HwDevice>>

{The

HardwareC lock

has the same

rate as the

Sys temC lock}

C onstraint

Figure.18: Detailed hardware specification of the execution
platform

8) Detailed Software Specification:In parallel, a designer
can model the detailed software specification, which basically
correspond to expressing the concepts related to the underlying
operating system of the CCAS. While it is possible to carry
out detailed modeling of the operating system using MARTE
SRMconcepts, by adding relevant details such as semaphores,
deadlocks, memory brokers etc; we chose to only illustrate
some basic concepts related to a generic operating system.

Here as seen in Fig.19, the operating system has pro-
cesses, each of which contains a number of threads. The
Operating System is stereotyped according toSRM con-
cepts as aSwResource, while theProcess concept is typed as
a SwSchedulableResource and aMemoryPartition. The
latter stereotype indicates an address space which will be
shared by the different threads associated with a process. Also,
the Thread is itself typed asSwSchedulableResource.

1 ..*0..1

thread

*

0..1

process

Th r e a d

<< Sw Sch e d u l a b l e Re so u r ce > >

Pr o ce ss

<< Sw Sch e d u l a b l e Re so u r ce , Me m o r y Pa r t i t i o n > >

Op e r a t i n g Sy s t e m

<< Sw Re so u r ce > >

Figure.19: Detailed software specification of the execution
platform

9) Allocating Hardware to Detailed Hardware Specifica-
tions: Once the detailed hardware specification has been mod-
eled, we can carry out an allocation linking hardware to the
detailed hardware specifications. This allocation corresponds
to a one to one mapping between the two specifications,
and thus determines the refinement of the execution platform.
Thus, it enables to move from abstract classifications to details
corresponding closely to RTL implementation. For example a
Controller (and its related instance) is mapped to aPowerPC
processor (and its instance), as shown in Fig.20. It should
be mentioned that theAllocated stereotype applied on the
allocated source/target concepts is not illustrated in thefigure.

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>
hwclk:HardwareClock

<<HwClock>>

hwairbag:HW_AirBag

<<HwDevice>>

hwbelts:HW_SeatBelts

<<HwDevice>>

hwdisplay:HW_Display

<<HwI_O>>

hwcam:HW_Camera

<<HwI_O>>

hwimgmem:HW_ImgMem

<<HwRAM>>

hwimgctrl:HW_ImgController

<<HwProcessor>>

hwctrlmem:HW_ControlMem

<<HwRAM>>

 ppc:PowerPC

<<HwProcessor>>

hwchannelbox:HW_ChannelBox

<<HwMedia>>

hwsharedmem:HW_SharedMem

<<HwRAM>>

hwodm:HW_ODM

<<HwDevice>>

hwradar:HW_Radar

<<HwI_O>>

hwalarm:HW_Alarm

<<HwTimingRe source>>

hwsens:HW_Sensors

<<HwI_O>>

hwlss :HW_LightSys

<<HwDevice>>

hwbss :HW_BrakeSys

<<HwDevice>>

sys clk:SystemClock

<<Clock, ClockRe source>>

air bag:Air bag

<<DeviceRe source>>

belts:Seat belts

<<DeviceRe source>>

display:HUD Display

<<DeviceRe source>>

cam:Camera

<<DeviceRe source>>

img mem:Image Processor Memory

<<StorageRe source>>

img proc:Image Processor Secondar Controller

<<ComputingRe source>>

ctrl mem:Controller Memory

<<StorageRe source>>

ctrl:Controller

<<ComputingRe source>>

can:CAN

<<Comm unicationMedia>>

shared mem:Shared Memory

<<StorageRe source>>

odm:Obstacle Detection Module

<<DeviceRe source>>

radar:Radar

<<DeviceRe source>>

alarm:Alarm

<<DeviceRe source>>

add sens:Add itional Sensors

<<DeviceRe source>>

ligh-sig sys:Lightning and Signaling System

<<DeviceRe source>>

braking sys:Braking System

<<DeviceRe source>>

Figure.20: Allocating hardware/detailed hardware specifica-
tions

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>
<<Allocate>>

<<Allocate>>

<<Allocate>>

<<Allocate>>

I m g Co n t r o ll e r Ca m Co mm un i ca t i o n

Ct r l To I m g Ct r l Co mm un i ca t i o n

Co n t r o ll e r Br a k e Co mm un i ca t i o n

Co n t r o ll e r A i r b a g Co mm un i ca t i o n

Co n t r o ll e r A l a r m Co mm un i ca t i o n

Co n t r o ll e r Se n so r Co mm un i ca t i o n

Co n t r o ll e r Li g h t Sy sCo mm un i ca t i o n

Co n t r o ll e r Se a t b e l t Co mm un i ca t i o n

Co n t r o ll e r Di sp Co mm un i ca t i o n

ODMCo n t r o ll e r Co mm un i ca t i o n

Ra d a r ODMCo mm un i ca t i o n

A l a r m Ta sk

<< Sch e d u l a b l e Re so u r ce > >

Li g h t Sy s t e m s Ta sk

<< Sch e d u l a b l e Re so u r ce > >

Se n so r Ta sk

<< Sch e d u l a b l e Re so u r ce > >

Ca m e r a Ta sk

<< Sch e d u l a b l e Re so u r ce > >

Di sp l a y Re f r e sh Ta sk

<< Sch e d u l a b l e Re so u r ce > >

Se a t Be l t s Ta sk

<< Sch e d u l a b l e Re so u r ce > >

A i r Ba g Ta sk

<< Sch e d u l a b l e Re so u r ce > >

Br a k e A c t u a t o r Ta sk

<< Sch e d u l a b l e Re so u r ce > >

ODM Ta sk

<< Sch e d u l a b l e Re so u r ce > >

I m g Co n t r o ll e r Ta sk

<< Sch e d u l a b l e Re so u r ce > >
Co n t r o ll e r Ta sk

<< Sch e d u l a b l e Re so u r ce > >

Ra d a r Ta sk

<< Sch e d u l a b l e Re so u r ce > >

Op e r a t i n g Sy s t e m

<< Sw Re so u r ce > >

Sy s t e m Sch e d u l e r

<< Sch e d u l e r > >

Figure.21: Allocating software/detailed software specifications

10) Allocation Software to Detailed Software Specifica-
tions: Similarly, the software specification is allocated onto

the detailed software specification (the operating system in
this case), in Fig.21. All the tasks and communications are
allocated onto the operating system. While it is also possible
to model the detailed software modeling in a detailed manner
(different threads corresponding to the different tasks atsoft-
ware specifications) and then carry a one to one allocation,
this aspect has not been carried out in the paper.

11) Allocating Detailed Software to Detailed Hardware
Specifications: Finally, once all the detailed specifications
related to the software and hardware aspects of the execution
platform have been modeled, it is possible to carry out a final
allocation from the detailed software to the detailed hardware
specifications. Here, as seen in Fig.22, the operating system
is allocated onto the local memory of the primary controller,
by means of a spatial allocation.

<<Allocate>> {nature (spatialAllocation), kind (hybrid)}

Op e r a t i n g Sy s t e m

<< Sw Re so u r ce > >

hwctrlmem:HW_ControlMem

<<HwRAM>>

Figure.22: Allocating the detailed software and hardware spec-
ifications

12) Schedulability Analysis Specifications:Once the soft-
ware and hardware modeling have been carried out, using the
MADES language, it is possible to carry out schedulability
analysis at the high level models. Here, in the following
figures, we illustrate schedulability analysis aspects related to
some modules of the execution platform. However, it is equally
possible to analysis the whole system in question.

ctrlT:Controller Taskcomm 2:ODMControllerComm unicationodmT:ODM Taskcomm 1:RadarODMComm unicationradarT:Radar Task

<<SaComm Step>> Notify Raw Data(d) {execTime (10ms,max) , (8ms,min)}

<<SaComm Step>> send raw data(d) {execTime (10ms,max) , (8ms,min)}

<<SaStep>> Perform Calculation() {execTime (3ms,max) , (2ms,min)}

<<SaComm Step>> send sensor distance(d) {execTime (10ms,max) , (8ms,min)}

<<SaComm Step>> Notify Distance(d) {execTime (10ms,max) , (8ms,min)}

Figure.23: SequenceSendSensorDistanceToContrl for
radar/controller communication

In Fig.23, the UML sequence diagram illustrates the com-
munication flows between the different tasks of the execution
platform. TheradarT instance of theRadar Task sends data
to theodmT instance of theODM Task by means of a commu-
nication: comm1 instance ofRadarODMCommunication. The
instance of theODM Task after carrying out a noise reduction
algorithm, sends the distance to the instancectrlT of the
Controller Task by means of thecomm2 communication
instance ofODMControllerCommunication. Using appropri-
ate MARTE packages, it is possible to carry out schedulability
analysis: such as determination of average and worst case
execution times for these flows. For example, theSaStep

stereotype helps to express worst and best case execution
times, whileSaCommStep can additionally express the size of
the message transmitted or received during the communication
flow. Here, the sequenceSendSensorDistanceToContrl is
itself stereotyped as aGaScenario (not shown in the figure),
indicating it is one of the possible scenarios related to the
system.

<<GaWorkloadEvent>> ClockEvent

SendBrakeCommand

<<GaScenario>>

breakInterrput

SendSensorDistanceToContrl

<<GaScenario>>

{ResourceUsage_ModelElement_execTime(26ms)}{ResourceUsage_ModelElement_execTime(43ms)}

Figure.24: TheCCAS InteractionOverview interaction

Finally, an interaction overview diagram as shown in Fig.24,
illustrates the overall behavior related to two possible sce-
narios. The second scenarioSendBrakeCommand has not
illustrated due to space limitations. While it is possible to
include other possible scenarios related to the CCAS (such
as switching to camera based mode, applying normal brakes)
and carry out a schedulability analysis of the whole CCAS
execution platform, here only a partial analysis has been
shown for clarification purposes. Here the figure indicates
that once the CCAS system starts, it enters into a loop. It
remains in the first scenario while keeps getting clock ticks
at regular time intervals, as displayed by theClockEvent
typed asGaWorkloadEvent. It keeps executing the first se-
quence until abrakeInterrupt event occurs, causing the
system to execute the sequence related to the second scenario
concurrently. As the system does not stop its execution,
no final node has been represented in the figure. Finally
the interactionCCAS InteractionOverview is stereotyped
as aGaWorkloadBehavior (not shown in the figure). This
stereotype is used to specify a set of related system-level
operations, each associated with its respective behavior and
executed on the basis of associated (workload) events.

VI. CONCLUSIONS

This article aims to present a complete methodology in-
tegrated in the EU MADES project, for the design and
development of real-time and embedded systems using an
effective subset of UML profiles: SysML and MARTE. The
paper presents its contributions by proposing an effective
subset of the two profiles, forming the basis of MADES
language and proposes unique set of diagrams to increase
design productivity, decrease production cycles and promote
synergy between the different designers/teams working at
different domain aspects of the global system in consideration.
Our MADES methodology could inspire future revisions of
the SysML and MARTE profiles and may eventually aid in
their evolution. Finally, the different language conceptsand
associated diagrams in the methodology have been illustrated
in a case study related to a car collision avoidance system.

VII. A CKNOWLEDGEMENTS

This research presented in this paper is funded by the Euro-
pean Community’s Seventh Framework Program (FP7/2007-
2013) under grant agreement no. 248864 (MADES).

REFERENCES

[1] OMG, “Portal of the Model Driven Engineering Community,” 2007,
http://www.planetmde.org.

[2] S. Sendall and W. Kozaczynski, “Model Transformation: The Heart and
Soul of Model-Driven Software Development,”IEEE Software, vol. 20,
no. 5, pp. 42–45, 2003.

[3] A. Bagnato et al, “MADES: Embedded systems engineering approach
in the avionics domain,” inFirst Workshop on Hands-on Platforms and
tools for model-based engineering of Embedded Systems (HoPES), 2010.

[4] MADES, “EU FP7 Project,” 2011, http://www.mades-project.org/.
[5] Object Management Group Inc, “Final Adopted OMG SysML Specifi-

cation,” mai 2006, http://www.omg.org/cgi-bin/doc?ptc/06-0504.
[6] OMG, “Modeling and Analysis of Real-time and Embedded systems

(MARTE),” 2010, http://www.omg.org/spec/MARTE/1.0/PDF.
[7] A. Koudri et al, “Using MARTE in the MOPCOM SoC/SoPC Co-

Methodology,” inMARTE Workshop at DATE’08, 2008.
[8] EDIANA, “ARTEMIS project,” 2011, http://www.artemis-ediana.eu/.
[9] TOPCASED, “The Open Source Toolkit for Critical Systems,” 2010,

http://www.topcased.org/.
[10] W. Mueller et al., “The SATURN Approach to SysML-based HW/SW

Codesign,” in IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), 2010.

[11] M. Mura et al, “Model-based Design Space Exploration for RTES
with SysML and MARTE,” inForum on Specification, Verification and
Design Languages (FDL 2008), 2008, pp. 203–208.

[12] Information Society Technologies, “OMEGA: Correct Development of
Real-Time Embedded Systems ,” 2009, http://www-omega.imag.fr/.

[13] L. Ober et al., “Projet Omega : Un profil UML et un outil pourla
modelisation et la validation de systemes temps reel,” 2005, pp. 73:
33–38.

[14] INTERESTED, “EU FP7 Project,” 2011, http://www.interested-
ip.eu/index.html.

[15] H. Espinoza et al, “Challenges in Combining SysML and MARTE
for Model-Based Design of Embedded Systems,” inECMDA-FA’09.
Springer-Verlag, 2009, pp. 98–113.

[16] D.S. Kolovos et al, “Eclipse development tools for Epsilon,” in Eclipse
Summit Europe, Eclipse Modeling Symposium, 2006.

[17] N. Matragkas et al., “D4.1: Model Transformation and Code Generation
Tools Specification,” Tech. Rep., 2010, http://www.mades-project.org/.

[18] L. Baresi et al., “D3.1: Domain-specific and User-centred Verification,”
Tech. Rep., 2010, http://www.mades-project.org/.

[19] ——, “D3.3: Formal Dynamic Semantics of the Modelling Notation,”
Tech. Rep., 2010, http://www.mades-project.org/.

[20] M. Pradella et al, “The Symmetry of the Past and of the Future: Bi-
infinite Time in the Verification of Temporal Properties,” inESEC-
FSE’07. New York, NY, USA: ACM, 2007, pp. 312–320.

[21] I. Gray and N. Audsley, “Exposing non-standard architectures to em-
bedded software using compile-time virtualisation,” inInternational
conference on Compilers, architecture, and synthesis for embedded
systems (CASES’09), 2009.

[22] Ian Gray et al., “Model-based hardware generation and programming
- the MADES approach,” in14th International Symposium on Object
and Component-Oriented Real-Time Distributed Computing Workshops,
2011.

[23] Modelio, “UML Modeling tool,” 2011, www.modeliosoft.com.
[24] Papyrus, “Open source tool for UML modeling,” 2011,

http://www.papyrusuml.org/.
[25] D.D. Gajski and R. Khun, “New vlsi tools,”IEEE Computer, vol. 16,

pp. 11–14, 1983.
[26] Xilinx, “MicroBlaze Soft Processor Core ,” 2011,

http://www.xilinx.com/tools/microblaze.htm.
[27] A. Bagnato et al, “D1.3: MADES Initial Approach Guide,”Tech. Rep.,

2010, http://www.mades-project.org/.

