
HAL Id: hal-02263393
https://hal.science/hal-02263393v1

Submitted on 22 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Methodology from Requirements to Design
Models for an Automotive Application

M. Adedjouma, W Machnik, H Dubois, François Terrier

To cite this version:
M. Adedjouma, W Machnik, H Dubois, François Terrier. Efficient Methodology from Requirements
to Design Models for an Automotive Application. Embedded Real Time Software and Systems
(ERTS2012), Feb 2012, Toulouse, France. �hal-02263393�

https://hal.science/hal-02263393v1
https://hal.archives-ouvertes.fr

 Page 1/10

Efficient Methodology from Requirements to Design Models for an
Automotive Application

M. Adedjouma1, 2, W. Machnik1, H. Dubois2, F. Terrier2

1: DELPHI France, 64 avenue de la plaine de France, 95572 ROISSY CEDEX, France.
2: CEA LIST, Boîte 94, 91191 Gif-sur-Yvette Cedex, France.

Abstract: This paper presents the evaluation of a
model-based methodology for automotive products
development. The methodology intents to create a
flexible environment supporting successive phases
of the development life-cycle, from requirements
management until system design. A special effort is
made on the requirements formalism (and their
traceability) and the architecture aspects as they are
strong expectations from automotive industry. The
evaluation will be able to successfully focus on the
process aspects. An automotive case study, an
Embedded Electronic Body Controller (EEBC),
illustrates the proposed methodology. His efficiency
and the quality of the process will be measured
regarding some goals defined about time
consuming, integration of safety artefacts, tool
support, interoperability and limitation of manual
activities.

Keywords: Methodology, Process, Requirement
management, System Architecture, Model-Driven
Engineering, Safety, Automotive.

1. Introduction

Modern day systems, specifically embedded
systems in the transports domain are gaining in
overall interactive complexity and constraints
coupled with the pressures of tight schedules. These
complexities are interested in adapted
methodologies and technologies that can help to
manage them, mostly since many traditional
techniques are no more adequate. In this context,
interest in using model-driven engineering has been
steadily increasing.

It is to consider this problematic together with the
growing interest for model-driven engineering that
the CESAR project

1
 wants to meet. This European

R&D project, of 3 years duration beginning in 2009,
aims to provide a model-driven process at systems
and software level for the compositional
development of safety critical systems. Thereby, this
will enable better model-based compositional
development and qualification, supporting reasoning
about safety and provide a basis for certification of
compositionally designed systems and certification.

1 CESAR project, http://www.cesarproject.eu.

In this paper, we present current results of a work
achieved within the framework of CESAR. Our
methodology relies on a specific process between
many others offered by CESAR solutions. It includes
areas such as requirements engineering,
architecture modelling, multi-formalism modelling,
interoperability, process and tool support. In
particular, we focus on the graphical formalization of
the requirements using the graphical RSL [1]
(Requirement Specification Language), and on the
conversion of these requirements into an
architecture model. This challenge try taking into
account safety and process considerations from the
Automotive SPICE referential [2] and ISO26262
standard [3].

The document is organized as follows: section 2
presents the context of this work: the current
practices for product development are discussed and
the identified gaps; the envisaged methodology to
improve the process is then presented. Section 3
presents the application of this methodology on an
industrial use case. In section 4, an assessment of
the proposed methodology regarding the methods
and tools is evaluated. Finally, section 5 analyses
the methodology against automotive standards
before the conclusion in section 6.

2. Model-based process development

2.1 State of the practices

The embedded systems are defined according to
complex processes combining different formalisms
for the initial stages of specification to code product
and shipped. In CESAR project, the identification of
the main phases of a typical V-Model cycle [10] in
the automotive domain together with their different
associated activities have been defined. As our goal
is to provide a consistent methodology in a modelling
environment for the system engineering, we focus
only on the first phases namely the requirements
management and the architecture and design
definition. The following figure (Fig.1) shows the
workflow with the associated tools, currently used for
the product development at software level.

The requirements specifications are done in majority
through general office automation tools (like MS
Excel™ or MS Word™).

 Page 2/10

Figure 1: Initial tool and process workflow to optimize

The traceability of the requirements is assumed by
Reqtify tool [22] which gives also the coverage of the
implementation requirements. Application layer
software components are modelled using Simulink,
from which AUTOSAR compliant code is generated
with Targetlink.

Many gaps are actually detected in this process.
Mainly, the system architecture is not supported by
tools. Although Reqtify helps to ensure the
management of the traceability between
requirements from textual documents,
incompleteness is then present since this traceability
information is not ensured until design elements.
Identically for the safety, those are done manually
which is time consuming and source prone. About
functional safety, a specific approach is used but it is
not adequately integrated in the process
development and compliant with the expectations of
the future standard ISO26262.

The expectations are to deal with these several
problems, in particular through the definition of a
methodology supported by an integrated tool chain
where automation and interoperability are as efficient
as possible. The methodology must also look at
some international standard and referential like
AUTOSAR [12], HIS Automotive SPICE [13] and
ISO26262 as a centerpiece in the specification and
operation of a system. Consideration of certification
needs in this context therefore calls for a real
justification of the various phases of the modelling
process to meet expectations. For that, numerous
advanced technical innovations proposed in CESAR
project will be a base.

2.2 Process scenario

To fulfill the precedent gaps identified in the current
practices, a representative scenario was chosen,
which reflects an important subset of the whole
activity in order to assess the applicability of CESAR
solutions in term of methods and tools regarding our
objectives. The methodology relies on some model-
driven engineering methods and dedicated tools like
Papyrus MDT [4] and Simulink. We mainly focused
on the following items:

 For the requirements part, the tracking of
requirements through the conversion of textual
requirements into design models and their
traceability based on graphical formalism, under
the Papyrus MDT environment.

 For architecture part, the system architecture
description based on the graphical
representation of the requirements and the
representation of control flows attaching to the
architectural components of the system.

 In the interoperability point of view, the
automation of links between different phases of
the development process and especially, the
bridges between tools.

 The connection on these third points with three
majors automotive referential: AUTOSAR, HIS
Automotive SPICE and ISO26262.

The following figure (Fig. 2) describes the workflow
of development that is adopted.

The tracking of requirements will be implemented all
along the development process. Requirements
management and analysis is a very important
challenge in an automotive industry.

 Page 3/10

Figure 2: A CESAR process scenario

To support the designer in managing requirements
during the system development, a good
formalization helps to avoid misinterpretation.
Consistency checking forced to answer difficult
questions early, which reduces rework through
identifying issues and detail's needs earlier.

We start from a representative set of existing
requirements in natural language, which is managed
first via a requirements management tool, DOORS
[5], before being converted successively to different
requirements model: boilerplate representation using
DODT tool [11] through the DOORS tool chain and
graphical RSL models with Papyrus MDT.

DODT (Domain Ontology Design Tool) is a
requirements elicitation tool whose purpose is to
assist the requirements engineer for specifying
requirements. It allows formalizing the requirements
from natural language to semi-formal one like
boilerplate, i.e. as a template with some fixed syntax
elements and variable parts to be completed by the
engineer. With the DODT tool, the requirements
analysis with regard to completeness, consistency
and ambiguity is also possible as well as advices on
how to improve them. Further formalization and
analysis are available with the others DOORS tool
chain parts like PatternEditor [1] and functional
consistency analysis but these ones are not included
in our methodology.

Next steps define the architecture and design of the
product. Component based design is a key issue to
manage complexity and costs. The methodology
defines different models used at system abstraction

and detailed design abstraction through different
modelling environments. The goal is to have a
complete product description in a system model with
incremental architecture definition. System
architecture is tackled through Papyrus MDT tool.
We will rely on EAST-ADL2 framework [6] for its
definition whereas the control flow behaviour is
described with Simulink.

Automation of links between the requirements
management and the architecture definition phases
is mandatory to gain major benefits of the process
and limit “from scratch” and manual activities. Here,
different innovating techniques are proposed to
easily focus on engineering process in a more
integrated way. Indeed, “Link repository” [16], a
lightweight data integration layer, is used to ensure
traceability between any model entities (text, code,
model, etc…) stored in a model repository and for
which a data accessor is defined; for example
between boilerplate requirements and DOORS
requirements. This linking mechanism can be used
to define and to manage different kinds of links. The
definition of the types of these links is left open.
ModelBus [17], another tool useful for the
interoperability is a repository that stores the
different artefacts produced during the development
activities. This repository is the underlying
integration framework for the described tool chain. It
is based on SOA (Service-Oriented Architecture)
principle and, in particular, developed for model-
driven tool chains in which models are the central
artifacts. According to SOA principles, functions and
methods are provided as services (the different tools

 Page 4/10

adaptors for example) which are useful for other
stakeholders of the tool chain.

With these tools, the requirements are directly
included in a modelling process, so that
requirements can be connected to the developed
design for an easier bi-directional traceability. We
also consider the links between different
requirements formalisms [8] and the links to
behavioural models that satisfy the system
architecture model elements.

To complete the approach, an accurate automotive
standards assessment is defined at process level
[9]. The aim is to carry out each phase following the
recommendations of standards such as HIS
Automotive SPICE and ISO26262. It includes safety
consideration and software assessment at
requirement and system design levels.

All these aspects will be developed and evaluated
on a body controller application in charge of some
fog lights management. This automotive product is a
good illustration of electronic embedded systems:
multiform requirements, system architecture and
control flow behaviours, real-time and safety-related
properties.

3. Application

The scope of the pilot application is the development
of a simple body controller whose main role consists

in managing some fog lights. As the functionalities of
the selected body controller are not numerous, the
evaluation will be able to successfully focus on the
process aspects. The first activity scope concerns
the requirements management with the
reformulation of requirements from text format to
semi-formal format. The second activity deals with
the definition of an architecture design model, based
on the requirement model.

3.1 Requirements formalization

A set of requirements in natural language stored in
DOORS database has been chosen for evaluation.
The import of requirements into DOORS from
another format like Word or Excel was not in the
scope of this evaluation as it is a current and well
established practice.

Next step was to convert the requirements into a
more formalized form defined by CESAR RSL
(Requirement Specification Language) namely
boilerplate and graphical RSL.

Conversion of requirements into boilerplate
representation

Initial action for this step was to define domain
ontology under DODT environment (Fig. 3).

Figure 3: Ontology domain and requirement formalization in boilerplate

Although the definition of this ontology can be
fastidious and time consuming (Fig. 3), the
advantage is its reusability through many projects.
The effort spent here improves further steps, like
easy transformation into boilerplates-based format
(Fig. 3) and verifying quality criteria of requirements
like completeness, inconsistency, ambiguity, noise,
opacity, and redundancy (Fig. 4).

The results of this step have been stored in
ModelBus repository in CMM (CESAR MetaModel)
[19] format. The CMM provides a standardized

interface to different repositories. The benefit of
having a standardized interface is the transparency
of the underlying data storage. E.g. storing a
requirement in DOORS and storing a requirement in
the ModelBus is identical, just the library has to be
exchanged. This first stage of the process is fully
supported by the CESAR tools. The integration with
DOORS database is a huge advantage as it is a
requirement management tool widely used in the
industry.

5

 Page 5/10

Figure 4: Requirement analysis in DODT tool

Conversion of requirements into SysML
representation

The conversion process from boilerplate to SysML
graphical RSL format is not supported by any
CESAR asset. That’s the reason why only a subset
of existing formalized boilerplate was taken into
account to minimize efforts for the evaluation. In
Papyrus MDT tool, it was first necessary to create a
Requirement Diagram (from SysML) [7] from textual
inputs. Even though, the graphical RSL does not
include this diagram, it is very useful for classifying
requirements and easily allocating them to the
architecture elements.

3.2 Requirements specification and analysis

The requirement specification and analysis step is
performed with the SysML graphical RSL. The
SysML based graphical RSL is a graphical
specification language that uses elements of SysML,
a well-known UML [18] profile, to describe
requirements. Concretely, SysML Use Case
diagrams, Activity diagrams, and Sequence
diagrams are used for representing requirements
(Fig. 5):

 • Use Case diagrams are used to represent the
main intended use of the system (specifically the
top-level functions and features of a system)

• Activity or sequence diagrams are used to
describe detailed operational scenarios for each
use case.

In our evaluation, a Use Case diagram was created
to identify major operational scenarios. The main
purpose and the boundaries of system have been
defined by collecting a set of use cases as defined in
[1]. Based on these ones, a set of activity and
sequence diagrams has been created to explain in

detail the behaviour of a system and its interaction
with actors of use cases. Links between particular
elements of the Papyrus MDT model are realized in
the model internally without additional CESAR
assets.

The activity diagram is suitable for general functional
requirement. The sequence diagram is suitable for
handling timing properties like duration, time
response functions, etc. Nevertheless, after a certain
level of complexity, a requirement could not be
represented in a clear and explicit way.

The main advantage of this RSL is its graphical
representation. Indeed, the requirements in this
format extend the understanding ability of
development team compared with the textual
representations. Requirements diagram shows
groups and relations between requirements which
ordinary is not directly visible in a traditional
approach. It also eases manual reviews for
completeness and consistency.

The second advantage is the contribution to the
high-level system architecture definition. Indeed, with
the operational scenarios described through the
sequence and activity diagrams, a preliminary idea
of main different functions, system blocks and
relations between them could be identified. It
constrains to follow the formal process which
recommends the high-level system analysis, the
allocation to function components then the system
architecture definition; that is not always the case in
current processes.

A notable drawback is the lack of tutorials and
guidelines for modelling requirements and
indications on which diagrams are used for which
purpose.

 Page 6/10

Figure 5: Using CESAR graphical RSL

3.3 System architecture

For the system architecture, the evaluation has been
performed with the EAST-ADL2 profile. EAST-ADL2
is a domain-specific modelling language dedicated to
automotive system design which is implemented as
a UML profile depending on UML [14] and SysML. It

is the result of the European project ATESST2. The
objective and outcome of ATESST was the definition
of a comprehensive, standardized Architecture
Description Language (ADL) for the automotive
domain, including software and hardware
components, communication, environment, safety
(regarding ISO26262), requirements and V&V
modelling, as well as variant handling and product
families.

A primary feature of EAST-ADL2 is its capability to
structure a model into different abstraction levels. All
these levels describe the same system, but on
different levels of abstraction and from different
viewpoints. We propose to define the architecture in
two steps: an Analysis Level where we define a high
level architecture and a Design Level where we
detail the first architecture.

Architecture definition

Our proposed architecture has been defined
following two main abstraction levels (Fig. 6).

2ATESST, http://www.atesst.org/

After the requirement analysis phase performed with
the graphical RSL, we already have identified the
main functions or blocks of the system. We can then
associate them with right connectors for giving them
a unity. This corresponds to the high level
architecture at Analysis Level.

At the Design Level, two different views are
proposed to separate the competency concerns: the
Functional Design Architecture and the Hardware
Design Architecture. In the Functional Design
Architecture, the software (denoted SW) part is
detailed from the Analysis Level. The goal is to detail
the architecture into the smallest components, in
such a way that we can attach one behavioural
model (in our case a Simulink one) to one
component. Unfortunately, it only consists in giving
the path to a file. The connectors between
components and flows between functions are also
refined and perfected. The Hardware Design Level
represents the physical architecture of the system. A
global Design Level view allows affecting on each
Hardware (denoted HW) component, the SW
components (one or many) that it realizes.

An intermediate view was defined to precise the
functional interfaces between the different parts
(hardware, software, middleware, environment). We
also have defined an environment model to show the
flows/information exchanged between our modelled
system and other vehicle systems with which it
interacts (battery, extern environment for outputs).

 Page 7/10

Figure 6: Architecture definition with East-ADL2 following several abstraction levels and views

Requirements allocation to design elements

At each abstraction level, and for each component,

both functional and hardware, we associate the

requirements (one or many) which are satisfied

using the “satisfy” traceability link. This information is

automatically inquired in the requirement properties

and component properties when the traceability link

is graphically created: this allows a better visibility of

the traceability. This information is complemented

with the ability to specify the different operating

modes and system states in which the components

meet the requirements. EAST-ADL2 also proposes

to define the architecture at the implementation level

in the form of AUTOSAR software components, but

we did not perform this part in our evaluation.

3.4 Detailed design

A Simulink model (Fig. 7) representing one SW

component was a final work product for the applied

development flow. There are two possibilities to

create links between architecture model created in

Papyrus MDT and Simulink blocks: to track

requirements tags inside the model, and to establish

link by Link Repository. First option has been

skipped as there is no CESAR asset to support

requirements tag tracking. For second option, taking

into account Link Repository utilization, we were

able to establish full traceability between Simulink

models to other interested parts of our process work

products. Nevertheless, no solution exists in CESAR

to link the system architecture defined in Papyrus

MDT models and the detailed design represented by

the Simulink models and it cuts the interoperability in

the tool chain.

Figure 7: Simulink model reference in architecture

modelling

4. Assessment

To assess the CESAR solutions, the development

activities of our application have been evaluated

according to some criteria: time and effort

 Page 8/10

consuming, interoperability, tool support, task

automation. General impression is that parts of

current CESAR technical innovations do not fully

support our development process. Two major

observations are noteworthy:

 The process requires an extra effort during the

requirements management phase: formalization,

specification and analysis; that do not lead to

time reduction of development cycle.

 As far as the import of requirements into

Papyrus MDT - easy way to obtain a

requirement diagram - is not supported. It is

always manual and very time consuming when

we talk about real industrial projects. The use of

ReqIF formalism [21], [15] could be a solution.

Nevertheless, significant improvements are
appreciable regarding the understandability of the
requirements and their traceability as well as the
interoperability with both Link Repository and
ModelBus technical items. The functionality that is
lacking on this point is the ability to manage
requirements coverage.

The EAST-ADL2 profile allows defining the

architecture and facilitating its representation. The

advantages of this modeling are multiple. We could

retain that a bordered formalism helps the designer

and facilitates the identification of the architecture

elements since it prohibits architect engineers to

waste time wondering how to represent their

architecture. The documentation about the language

is short and easy to understand; also the graphics

palette offered by the profile is well organized and

offers components and properties to be used by

view: analysis, functional design, hardware design.

However its use requires specific training.

Concerning Papyrus MDT, it is a mature and
ergonomic tool. It proposes several functionalities to
custom properties on the diagrams and diagram
elements, to create your own palette, etc. which
facilitate the manipulation of the models. The
creation of Papyrus MDT models is, initially, time-
consuming, mostly concerning the classes’
definition. But since the defined classes can be
reused, this work can be limited once the initial work
has been done. We should also note that a way to
validate the architecture compared to the
requirements is strongly needed. Currently, there is
no support which confirms that the step between
requirements analysis and architecture design has
been done correctly. For example, it would useful to
validate that all requirements are satisfied, the
requirements allocation to design elements respects
their structure and hierarchy, the design is correctly

defined regarding the internal and external
interfaces, etc. A regrettable caveat in this context is
that the documentation for Eclipse development is
still very poor. For example, Papyrus MDT proposes
a functionality to validate the models (by the usage
of the EMF Validation framework), but we have no
more information about what is really validated and
which rules or constraints are followed. The Papyrus
MDT tool also offers many features that today we
are not aware or that we could not use because we
do not have sufficient information on them (e.g. the
merging of project, or merging of model) although it
would have been very beneficial for a collaborative
work. This drawback can be applied to all the
evaluated items: huge lacks of tutorials, examples,
install information and detailed guidelines is noticed
in general while it would be fundamental to have a
strong documentation on them in order to allow their
wide industrial deployment. Detailed guidelines
describing related methodology like ontology
creation with DODT for example could be valuable. It
would also be very interesting to have true
interoperability between the system architecture and
the detailed design realized by Simulink: a more
advanced functionality than a file path to fill. Some
academic research works have been conducted to
transform a system architecture defined with EAST-
ADL2 in Simulink blocks. It would be nice to dig this
track also in CESAR.

5. Methodology analysis regarding automotive
standards

We supplemented the proposed workflow
development with a specific automotive point of view
that integrates the generic methodology in an
acceptable certification perspective with AUTOSAR,
HIS Automotive SPICE and ISO26262
recommendations.

Standards brief description

AUTOSAR is a referential used to create the E/E
system architecture starting from the design-model.
The objective is to create a basis for industry
collaboration on basic functions while providing a
platform which continues to encourage competition
on innovative functions.

The Automotive SPICE, derived from the ISO/IEC
15504 standard, is an international standard used in
major worldwide automotive firms, as a "framework
for the assessment of processes". The HIS
Automotive SPICE (Fig. 8), a basic subset of
processes (named HIS Scope), has been defined on

Automotive SPICE as a selection of a standardized
assessment method which is mostly appropriated for
determining suppliers software process capability. In
the methodology presented in this paper, we rely on
the two first processes: System requirements

 Page 9/10

analysis (ENG.2) and the System architectural
design (ENG.3).

In parallel, the upcoming automotive standard,
ISO26262, focuses on the assessment of functional
safety proposing a system classification with ASIL
(Automotive Safety Integrity Levels) levels,
additional processes, activities, techniques and
methods, expected output data through an
application model and framework to illustrate the
competence for managing systems.

Figure 8: HIS Automotive SPICE scope

The analysis will be focused on the compliance with
the concept phase (ISO26262 part 3) until the
system design activity in the System Phase
(IS026262, part 4) (Fig. 9).

Figure 9: ISO26262 part 3 and part 4 structure

Compliance standards analysis

The methodology is AUTOSAR compliant. As we
can see, our application layer software components
are modelled using Simulink. Indeed, part of the
software coding consists in setting parameters of
reused basic software components. From that, an
AUTOSAR compliant code is generated with
Targetlink.

Concerning HIS Automotive SPICE, the purpose of
the System requirements analysis process is “to
transform the customer requirements into a set of
desired system technical requirements that will guide
the design of the system” [13]. The standard defines
the architectural design as a “process of defining a
collection of hardware and software components and
their interfaces to establish the framework for the
development of the system” [13]. It must also identify
which system requirements are to be allocated to
which elements of the system. Both points are
effectively in the topic of our methodology (without

capability level consideration): the requirements
formalization using boilerplate and CESAR graphical
RSL allow meeting the expectative of the standard
regarding ENG.2; ENG.3 part is completely covered
if we consider the different views defined through our
modelling with EAST-ADL2.

The ISO26262 requires the application of the
functional safety approach. The main tasks related
to our focus are:

 To identify and to describe the item under safety
analysis.

 To perform a Hazard Analysis and a Risk
Assessment.

 To define the functional safety requirements and
concepts.

 To define technical safety requirements and
concepts derived from the precedents.

It also advises a system design definition that
complies with and implements the elicited
requirements. This last advisement converges
partially with SPICE's ENG.3 step. The item
definition is also taken into account in the
methodology. But we cover very poorly the others
points. Indeed, although CESAR assets provide
support for safety analysis in term of techniques and
tools, it is only a small part of the whole safety
process. Outside the recency of normative
considerations in relation to safety in the automotive
domain, the lack in our methodology also arises
because safety aspects are not seen in general as
part of a process development but as a subsidiary
activity done separately.

An organization’s process definitions must address
multiple standards at the same time. If a SPICE
assessment is performed, then this SPICE
assessment and a functional safety audit can be
simultaneously performed. There is sufficient
commonality in content that can help to avoid
duplication of work or process between ISO26262
and HIS Automotive SPICE and to allow
synchronization of the planning. For having these
coordinated processes, we want to provide specific
process cross references to ISO26262 requirements
and HIS Automotive SPICE. Specifically, it will
update ENG.2 and ENG.3 processes according to
some ISO26262 processes that are already partially
covered. In addition, it will add, at the appropriate
level, processes purely safety as the identification of
hazards, the safety case creation, the classification
of safety requirements and so on.

6. Conclusion

The CESAR solutions are a promising asset for
embedded systems development in the field of
intelligent transportation systems, where there is a
huge margin for improvement of development

 Page 10/10

processes. It aims to provide a better systems and
software level environment for the development,
validation, and verification of requirements and
architectures embodied meta-models, methods, and
sufficiently mature tools for safety-critical hard-real-
time system development while making them
interoperable. Our methodology is based on a
subset of the innovated solutions that are proposed.
At the end of the evaluation, we can say that the
tools related to the CESAR solutions seem fitting
major of our pilot application needs. Indeed, tracking
of requirements and system architecture design are
covered although the methodology or tools to
validate them are missing. Only the automation of
links between different phases of the process of
development mainly fails. This is denoted by two
particular aspects:

 The conversion from textual requirements into
graphical models is always manual.

 The link between Papyrus MDT and Simulink
models is almost inexistent and it affects the
connection between the system architecture and
detailed design phases.

Our focus in the future for the PA Body Controller
evaluation will be these different issues mentioned
above together with the integration of safety aspects
in the process regarding the ISO26262 standard.

ACKNOWLEDGEMENT

This work has been performed in CESAR project
(“Cost efficient methods and processes for safety
relevant embedded systems”) context, a European
funded project from ARTEMIS JOINT
UNDERTAKING (JU) under grant agreement
number 100016.

7. References

[1]. CESAR project- Definition and exemplification of RSL
and RMM (D_SP2_R2.2_M2, Version 1.0).
http://www.cesarproject.eu (2010).

[2]. Automotive SIG: Automotive SPICE, Process
Assessment Model. Version 2.4, Status: Released
2008-08-01 (2008).

[3]. International Organization for Standardization: ISO
Working Draft international standard IS0/DIS 26262.
Baseline 12 (2009).

[4]. Papyrus MDT (Model Development Tools),
http://www.eclipse.org/modeling/mdt/downloads/?proj
ect=papyrus

[5]. DOORS, http://www-01.ibm.com/ software/awdtools/
doors

[6]. EU Project ATESST- EAST-ADL2 profile
Specification, the ATESST Architecture Description
Language. Version 2.1 (2010).

[7]. OMG: OMG System Modeling Language (OMG
SysML). Version 1.2, OMG document number: formal/
2010-06-01 (2010).

[8]. Adedjouma, A., Dubois, H., Terrier, F.: Requirements
Exchange: from Specification Documents to Models.
In: 6th IEEE International workshop UML and AADL,
USA (2011).

[9]. Adedjouma, M., Dubois, H., Maaziz, K., Terrier, F.: A
Model-Driven Requirement Engineering Process
Compliant with Automotive Domain Standards. In: 3rd
MDTPI Workshop on Model-Driven Tool & Process
Integration (2010).

[10]. International Council On Systems Engineering
(INCOSE): Systems Engineering Handbook Version
3.1, August (2007).

[11]. Farfeleder, Moser, Krall, Stålhane, Zojer and Panis:
DODT: Increasing Requirements Formalism using
Domain Ontologies for Improved Embedded Systems
Development. In: 14th IEEE Symposium DDCES on
Design and Diagnostics of Electronic Circuits and
Systems (2011).

[12]. Sandmann G., Thompson R: Development of
AUTOSAR Software Components within Model-Based
Design. In: SAE World Congress 2008, Detroit,
Michigan (2008).

[13]. HIS automotive SPICE, http://www.automotive-
his.de/

[14]. OMG: OMG Unified Modeling LanguageTM (OMG
UML), Superstructure, version 2.3, OMG document
number: formal/2010-05-05 (2010).

[15]. OMG: Requirements Interchange Format (ReqIF).
Version Beta 1.0, OMG document number: dtc/2010-
07-01 (2010).

[16]. CESAR Link repository – Quick start guide,
http://www.cesarproject.eu (2011).

[17]. Aldazabal, A., Baily, T., Nanclares, F., Sadovykh, A.,
Hein, C., Esser, M., Ritter, T.: Automated Model
Driven Development Processes. In: Proceedings of
the ECMDA workshop on Model Driven Tool and
Process Integration, Fraunhofer IRB Verlag, Stuttgart
(2008).

[18]. OMG: Unified Modeling LanguageTM (OMG UML),
Infrastructure. Version 2.3, OMG document number:
formal/2010-05-03 (2010).

[19]. CESAR CMM Specification (D_SP1_R3.2_A_M2),
http://www.cesarproject.eu (2010).

[20]. ATESST Report: Refined EAST-ADL2 Tool Support,
deliverable 3.2. Version number 1.0 (2010).

[21]. OMG: Requirements Interchange Format
(ReqIF).Version Beta 1.0, OMG document number:
dtc/2010-07-01 (2010).

[22]. Reqtify, http://www.geensoft.com/en/article/reqtify/

http://www.eclipse.org/modeling/mdt/downloads/?project=papyrus
http://www.eclipse.org/modeling/mdt/downloads/?project=papyrus
http://www.geensoft.com/en/article/reqtify/

