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GEVREY INDEX THEOREM FOR SOME INHOMOGENEOUS

SEMILINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH

VARIABLE COEFFICIENTS

PASCAL REMY

Abstract. In this article, we are interested in the Gevrey properties of the
formal power series solution in time of some partial differential equations with

a power-law nonlinearity and with analytic coefficients at the origin of C2. We

prove in particular that the inhomogeneity of the equation and the formal so-
lution are together s-Gevrey for any s ě sc, where sc is a nonnegative rational

number fully determined by the Newton polygon of the associated linear PDE.

In the opposite case s ă sc, we show that the solution is generically sc-Gevrey
while the inhomogeneity is s-Gevrey, and we give an explicit example in which

the solution is s1-Gevrey for no s1 ă sc.
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1. Setting the problem

For several years, various works have been done on the divergent solutions of some
classes of linear partial differential equations or integro-differential equations in two
variables or more, allowing thus to formulate many results on Gevrey properties,
summability or multisummability (e.g. [1, 3–6, 9, 11, 12, 14, 20, 22, 24, 25, 28–36, 42,
43,49–51,59,61]).

In the case of the nonlinear partial differential equations, the situation is much
more complicated. The existing results concern mainly Gevrey properties, espe-
cially the convergence (e.g. [10, 16, 18, 19, 21, 26, 37–39, 48, 52–58]), and there are
very few results about the summation (see [17,23,27,41,44]).

2000 Mathematics Subject Classification. 35C10, 35G20.
Key words and phrases. Gevrey order, Inhomogeneous partial differential equation, Nonlinear

partial differential equation, Newton polygon, Formal power series, Divergent power series.
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2 PASCAL REMY

In this article, we propose to investigate the Gevrey properties of the inhomoge-
neous semilinear partial differential equation

(1.1)

"

Bκt u´ t
vapt, xqBpxu´ bpt, xqu

m “ rfpt, xq

B
j
tupt, xq|t“0 “ ϕjpxq, j “ 0, ..., κ´ 1

in two variables pt, xq P C2, where

‚ κ and p are two positive integers;
‚ v is a nonnegative integer;
‚ the coefficients apt, xq and bpt, xq are analytic on a polydisc Dρ0 ˆ Dρ1

centered at the origin p0, 0q of C2 (Dρ denotes the disc with center 0 P C
and radius ρ ą 0) and ap0, xq ı 0;

‚ the degree of the power-law nonlinearity is an integer ě 2;

‚ the inhomogeneity rfpt, xq is a formal power series in t with analytic coef-

ficients in Dρ1 (we denote by rfpt, xq P OpDρ1qrrtss) which may be smooth,
or not1;

‚ the initial conditions ϕjpxq are analytic on Dρ1 for all j “ 0, ..., κ´ 1.

Equation (1.1) is fundamental in many physical, chemical, biological, and ecological
problems. For example: for pκ, pq “ p1, 2q, eq. (1.1) arises in problems involving
diffusion and nonlinear growth such as heat and mass transfer, combustion the-
ory, and spread theory of animal or plant populations (nonlinear heat equation);
for pκ, pq “ p2, 2q, eq. (1.1) describes the propagation of nonlinear waves in an in-
homogeneous medium (nonlinear Klein-Gordon equation); and, for pκ, pq “ p2, 4q,
eq. (1.1) describes the relationship between the beam’s deflection and an applied
lateral nonlinear force (nonlinear Bernoulli-Euler equation).

Notation 1.1. In the sequel, we write any formal series rgpt, xq P OpDρ1qrrtss on
the form

rgpt, xq “
ÿ

jě0

gj,˚pxq
tj

j!
with gj,˚pxq P OpDρ1q for all j.

Then, it is easy to check that eq. (1.1) admits a unique formal series solution

rupt, xq
ÿ

jě0

uj,˚pxq
tj

j!
P OpDρ1qrrtss,

where the coefficients uj,˚pxq P OpDρ1q are recursively determined by the initial
conditions uj,˚pxq “ ϕjpxq (j “ 0, ..., κ´ 1q and, for all j ě 0, by the relations

(1.2) uj`κ,˚pxq “ fj,˚pxq `
j´v
ÿ

`“0

j!

`!pj ´ v ´ `q!
a`,˚pxqB

p
xuj´v´`,˚pxq`

j
ÿ

`“0

ÿ

`1`...``m
“j´`

j!

`!`1!...`m!
b`,˚pxqu`1,˚pxq...u`m,˚pxq

with the classical convention that the first sum is zero as soon as j ´ v ă 0.
Doing that, a natural question arises:

“What relationship exists between the Gevrey order of the solution rupt, xq

and the Gevrey order of the inhomogeneity rfpt, xq?”

1We denote rf with a tilde to emphasize the possible divergence of the series rf .
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Indeed, according to the algebraic structure of the s-Gevrey spaces OpDρ1qrrtsss
(see section 2 for the exact definition of theses spaces), it is classical one has

rupt, xq P OpDρ1qrrtsss ñ rfpt, xq P OpDρ1qrrtsss.

But, what can we say about the converse?
A precise answer was given by the author in the special case of the semilinear

heat equation

(1.3)

"

Btu´ αpxqB
2
xu´ βpxqu

m “ rfpt, xq
up0, xq “ ϕpxq

Proposition 1.2 ([48]). Let rupt, xq be the formal solution in OpDρ1qrrtss of eq. (1.3).
Then,

(1) rupt, xq and rfpt, xq are together s-Gevrey for any s ě 1;

(2) rupt, xq is generically 1-Gevrey while rfpt, xq is s-Gevrey with s ă 1.

In particular, we observe that this result highlights the special value sc “ 1,
which is defined as the (inverse of the) positive slope of the Newton polygon at
t “ 0 of the homogeneous linear heat equation Btu ´ αpxqB2xu “ 0. We call this
value the critical value of eq. (1.3).

On the other hand, in the linear case

(1.4)

"

Bκt u´ apt, xqB
p
xu “

rfpt, xq

B
j
tupt, xq|t“0 “ ϕjpxq, j “ 0, ..., κ´ 1

the author has also proved in [49] that the solution rupt, xq and the inhomogeneity
rfpt, xq are together convergent when p ď κ and 1{k-Gevrey otherwise, where k
denotes the positive slope of the Newton polygon at t “ 0 of the homogeneous
associated equation.

The aim of this article is to extend these two results to the very general eq. (1.1).
To do this, the organization of the paper is as follows. In section 2, we biefly recall
the definition and some basic properties about the s-Gevrey formal power series in
OpDρ1qrrtss which are needed in the sequel. Section 3 is devoted to the main result
of the article (theorem 3.1), which states, on one hand, that the solution rupt, xq and

the inhomogeneity rfpt, xq are together s-Gevrey for any s greater than a convenient
critical value sc ě 0 which is fully determined by the Newton polygon at t “ 0 of
the linear part Lκ,p :“ Bκt ´ tvapt, xqBpx of eq. (1.1), and, on the other hand, that

rupt, xq is generically sc-Gevrey while rfpt, xq is s-Gevrey with s ă sc. A detailed
proof of this result is developed in section 4.

2. Gevrey formal series

Before stating our main result (see theorem 3.1 below), let us first recall for the
convenience of the reader some definitions and basic properties about the Gevrey
formal series in OpDρ1qrrtss, which are needed in the sequel.

All along the article, we consider t as the variable and x as a parameter. Thereby,
to define the notion of Gevrey classes of formal power series in OpDρ1qrrtss, one
extends the classical notion of Gevrey classes of elements in Crrtss to families
parametrized by x in requiring similar conditions, the estimates being however
uniform with respect to x. Doing that, any formal power series of OpDρ1qrrtss can
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be seen as a formal power series in t with coefficients in a convenient Banach space
defined as the space of functions that are holomorphic on a disc Dρ (0 ă ρ ă ρ1)
and continuous up to its boundary, equipped with the usual supremum norm. For
a general study of series with coefficients in a Banach space, we refer for instance
to [2].

Definition 2.1. Let s ě 0 be. A formal series

rupt, xq “
ÿ

jě0

uj,˚pxq
tj

j!
P OpDρ1qrrtss

is said to be Gevrey of order s (in short, s-Gevrey) if there exist three positive
constants 0 ă ρ ă ρ1, C ą 0 and K ą 0 such that the inequalities

sup
|x|ďρ

|uj,˚pxq| ď CKjΓp1` ps` 1qjq

hold for all j ě 0.

In other words, definition 2.1 means that rupt, xq is s-Gevrey in t, uniformly in x
on a neighborhood of x “ 0 P C.

We denote by OpDρ1qrrtsss the set of all the formal series in OpDρ1qrrtss which
are s-Gevrey. Observe that the set Ctt, xu of germs of analytic functions at the
origin of C2 coincides with the union

Ť

ρ1ą0 OpDρ1qrrtss0; in particular, any element

of OpDρ1qrrtss0 is convergent and Ctt, xu X OpDρ1qrrtss “ OpDρ1qrrtss0. Observe
also that the sets OpDρ1qrrtsss are filtered as follows:

OpDρ1qrrtss0 Ă OpDρ1qrrtsss Ă OpDρ1qrrtsss1 Ă OpDρ1qrrtss

for all s and s1 satisfying 0 ă s ă s1 ă `8.

Following proposition 2.2 specifies the algebraic structure of OpDρ1qrrtsss.

Proposition 2.2 ([2, 49]). Let s ě 0. Then, the set pOpDρ1qrrtsss, Bt, Bxq is a
C-differential algebra.

We are now turn to the study of the Gevrey properties of eq. (1.1).

3. Gevrey index theorem

As we said in section 1, the aim of this article is to generalize the results obtained
in [48, 49] by making explicit the relationship between the Gevrey order of the

solution rupt, xq and the Gevrey order of the inhomogeneity rfpt, xq.
As in [48], this relationship is fully determined by a critical value that depends

solely on the Newton polygon NtpLκ,pq at t “ 0 of the linear part Lκ,p :“ Bκt ´

tvapt, xqBpx of eq. (1.1)2.
Before stating our main result (see theorem 3.1 below), let us begin with a brief

study of NtpLκ,pq.

2Observe that this fact is well-known in the case of the ODEs: the Gevrey order of the formal
solutions of any semilinear meromorphic ordinary differential equations is given by the Newton

polygon of its linear part –see [7, 47] for instance.
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Ÿ Newton polygon NtpLκ,pq. As definition of the Newton polygon, we choose the
definition of M. Miyake [34] (see also A. Yonemura [61] or S. Ouchi [42]) which
is an analogue to the one given by J.-P. Ramis [46] for linear ordinary differential
equations. Recall that, H. Tahara and H. Yamazawa use in [59] a slightly different
one.

The Newton polygon NtpLκ,pq is then defined as the convex hull of Cpκ,´κq Y
Cpp, vq, where Cpa, bq denotes for any pa, bq P R2 the domain

Cpa, bq “ tpx, yq P R2;x ď a and y ě bu.

Hence, the following two cases.

‚ First case: p ď κ. NtpLκ,pq has no side with a positive slope (see fig. 1a).
‚ Second case: p ą κ. NtpLκ,pq has just one side with a positive slope and

this slope is k “
κ` v

p´ κ
(see fig. 1b).

-
´κ

-

κ

‚

-

p

-v ‚

(a) Case p ď κ

-
´κ

-

κ

‚

-

p

-v ‚

(b) Case p ą κ

Figure 1. The Newton polygon NtpLκ,pq

Ÿ Main result. We are now able to state the result in view in this article.

Theorem 3.1 (Gevrey index theorem). Let sc be the rational number defined by

sc :“

$

&

%

0 if p ď κ
1

k
“
p´ κ

κ` v
if p ą κ

Then,

(1) rupt, xq and rfpt, xq are together s-Gevrey for any s ě sc;

(2) rupt, xq is generically sc-Gevrey while rfpt, xq is s-Gevrey with s ă sc.

Definition 3.2. The number sc defined in theorem 3.1 is called the critical value
of eq. (1.1).

Observe, in the case of eq. (1.3), that theorem 3.1 coincides with proposition 1.2.
We have indeed κ “ 1, p “ 2 and v “ 0; hence, sc “ 1.

Observe also that, since no condition is made on the coefficient bpt, xq except it
is analytic at the origin p0, 0q P C2, theorem 3.1 applies as well to the linear case
bpt, xq ” 0 and generalizes thereby the result already obtained in [49].

The proof of theorem 3.1 is detailed in section 4 below. The first point is the
most technical and the most complicated. Its proof is based on the Nagumo norms,
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a technique of majorant series and a fixed point procedure (see section 4.1). As for
the second point, it stems both from the first one and from proposition 4.11 that

gives an explicit example for which rupt, xq is s1-Gevrey for no s1 ă sc while rfpt, xq
is s-Gevrey with s ă sc (see section 4.2).

4. Proof of theorem 3.1

4.1. Proof of the first point. According to proposition 2.2, it is clear that

rupt, xq P OpDρ1qrrtsss ñ rfpt, xq P OpDρ1qrrtsss.

Reciprocally, let us fix s ě sc and let us suppose that the inhomogeneity rfpt, xq
is s-Gevrey. By assumption, its coefficients fj,˚pxq P OpDρ1q satisfy the following
condition (see definition 2.1): there exist three positive constants 0 ă ρ ă ρ1, C ą 0
and K ą 0 such that the inequalities

(4.1) |fj,˚pxq| ď CKjΓp1` ps` 1qjq

hold for all j ě 0 and all |x| ď ρ.
We must prove that the coefficients uj,˚pxq P OpDρ1q of rupt, xq satisfy similar

inequalities. The approach we present below is analoguous to the ones already
developed in [4, 49–51] in the framework of linear partial and integro-differential
equations, and in [48] in the case of the semilinear heat equation. It is based on
the Nagumo norms [8, 40, 60] and on a technique of majorant series. However, as
we shall see, our calculations appear to be much more technical and complicated,
especially because the coefficients apt, xq and bpt, xq are not constant in the variable
t, but also because the valuation v of apt, xq with respect to t is not necessarily
zero. Furthermore, the nonlinear term um generates several technical combinatorial
situations.

Before starting the calculations, let us first recall for the convenience of the
reader the definition of the Nagumo norms and some of their properties which are
needed in the sequel.

4.1.1. Nagumo norms.

Definition 4.1. Let f P OpDρ1q, q ě 0 and 0 ă r ă ρ1 be. Then, the Nagumo
norm }f}q,r with indices pq, rq of f is defined by

}f}q,r :“ sup
|x|ďr

|fpxqdrpxq
q| ,

where drpxq denotes the Euclidian distance drpxq :“ r ´ |x|.

Following proposition 4.2 gives us some properties of the Nagumo norms.

Proposition 4.2. Let f, g P OpDρ1q, q, q1 ě 0 and 0 ă r ă ρ1 be. Then,

(1) }¨}q,r is a norm on OpDρ1q.
(2) |fpxq| ď }f}q,r drpxq

´q for all |x| ă r .

(3) }f}0,r “ sup
|x|ďr

|fpxq| is the usual sup-norm on the disc Dr.

(4) }fg}q`q1,r ď }f}q,r }g}q1,r.

(5) }Bxf}q`1,r ď epq ` 1q }f}q,r.
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Inequalities 4–5 of proposition 4.2 are the most important properties of the
Nagumo norms. Observe besides that the same index r occurs on their both sides,
allowing thus to get estimates for the product fg in terms of f and g and for the
derivatives Bxf in terms of f without having to shrink the disc Dr.

Let us now turn to the proof of the first point theorem 3.1.

4.1.2. Some inequalities. From recurrence relations (1.2), we first get the following
identities for all j ě 0:

(4.2)
uj`κ,˚pxq

Γp1` ps` 1qpj ` κqq
“

fj,˚pxq

Γp1` ps` 1qpj ` κqq
`

j´v
ÿ

`“0

j!

`!pj ´ v ´ `q!

a`,˚pxqB
p
xuj´v´`,˚pxq

Γp1` ps` 1qpj ` κqq
`

j
ÿ

`“0

ÿ

`1`...``m
“j´`

j!

`!`1!...`m!

b`,˚pxqu`1,˚pxq...u`m,˚pxq

Γp1` ps` 1qpj ` κqq

with the initial conditions uj,˚pxq “ ϕjpxq for all j “ 0, ..., κ´ 1.
Let us now define the positive constants σs :“ ps` 1qpκ` vq and

(4.3) Aj :“
}uj,˚}jσs,ρ

Γp1` ps` 1qjq
“

}ϕj}jσs,ρ

Γp1` ps` 1qjq

for all j “ 0, ..., κ´ 1.

Remark 4.3. Observe that the condition s ě sc implies

σs ě σsc “

#

κ` v if p ď κ

p` v if p ą κ
,

and, therefore,

(4.4) σs ě p` v.

By applying the Nagumo norm of indices ppj ` κqσs, ρq to relations (4.2), we
derive from property 1 of proposition 4.2 the relations:

}uj`κ,˚}pj`κqσs,ρ

Γp1` ps` 1qpj ` κqq
ď

}fj,˚}pj`κqσs,ρ

Γp1` ps` 1qpj ` κqq
`

j´v
ÿ

`“0

j!

`!pj ´ v ´ `q!

}a`,˚B
p
xuj´v´`,˚}pj`κqσs,ρ

Γp1` ps` 1qpj ` κqq
`

j
ÿ

`“0

ÿ

`1`...``m
“j´`

j!

`!`1!...`m!

}b`,˚u`1,˚...u`m,˚}pj`κqσs,ρ

Γp1` ps` 1qpj ` κqq
.
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Next, properties 4-5 of proposition 4.2 bring us to the following inequalities:

(4.5)
}uj`κ,˚}pj`κqσs,ρ

Γp1` ps` 1qpj ` κqq
ď

}fj,˚}pj`κqσs,ρ

Γp1` ps` 1qpj ` κqq
`

j´v
ÿ

`“0

Aj,`,s
}a`,˚}pκ`v``qσs´p,ρ

`!

}uj´v´`,˚}pj´v´`qσs,ρ

Γp1` ps` 1qpj ´ v ´ `qq
`

j
ÿ

`“0

ÿ

`1`...``m
“j´`

Bj,`,`1,...`m,s
}b`,˚}p``κqσs,ρ

}u`1,˚}`1σs,ρ
... }u`m,˚}`mσs,ρ

`!Γp1` ps` 1q`1q...Γp1` ps` 1q`mq
,

where the constants Aj,`,s and Bj,`,`1,...`m,s are positive and defined by

Aj,`,s :“

j!ep

˜

p´1
ź

`1“0

ppj ´ v ´ `qσs ` p´ `
1q

¸

Γp1` ps` 1qpj ´ v ´ `qq

pj ´ v ´ `q!Γp1` ps` 1qpj ` κqq

Bj,`,`1,...`m,s :“
j!

`1!...`m!

Γp1` ps` 1q`1q...Γp1` ps` 1q`mq

Γp1` ps` 1qpj ` κqq
.

Remark 4.4. Of course, all the norms, especially the norm }a`,˚}pκ`v``qσs´p,ρ
,

are well-defined. Indeed, due to inequality (4.4), we have

pκ` v ` `qσs ´ p ě pκ` vqpp` vq ´ p “ ppκ` v ´ 1q ` vpκ` vq

and, consequently, pκ` v ` `qσs ´ p ě 0 since v ě 0 and p, κ ě 1.

Following propositions 4.5 and 4.8 allows to bound the constants Aj,`,s and
Bj,`,`1,...`m,s.

Proposition 4.5. Let j ě v and ` P t0, ..., j ´ vu be. Then,

Aj,`,s ď pepκ` vqq
p.

Proof. Proposition 4.5 stems from the two following lemmas 4.6 and 4.7. �

Lemma 4.6. Let j ě 0 and ` P t0, ..., j ´ vu be. Then,

j!

pj ´ v ´ `q!Γp1` ps` 1qpj ` κqq
ď

1

Γp1` ps` 1qpj ` κ´ `q ´ vq
.

Proof. Lemma 4.6 is clear for ` ` v “ 0. Let us now assume ` ` v ě 1 and let us
write the quotient j!{pj ´ v ´ `q! on the form

(4.6)
j!

pj ´ v ´ `q!
“

``v´1
ź

`1“0

pj ´ `1q.

On the other hand, applying ` ` v times the recurrence relation Γp1 ` zq “ zΓpzq
to Γp1` ps` 1qpj ` κqq, we get:

(4.7) Γp1`ps` 1qpj`κqq “ Γp1`ps` 1qpj`κq´ `´ vq
``v´1
ź

`1“0

pps` 1qpj`κq´ `1q.



GEVREY INDEX THEOREM FOR SOME INHOMOGENEOUS SEMILINEAR PDES 9

Combinating then (4.6) and (4.7), we obtain

j!

pj ´ v ´ `q!Γp1` ps` 1qpj ` κqq
“

``v´1
ź

`1“0

j ´ `1

ps` 1qpj ` κq ´ `1

Γp1` ps` 1qpj ` κqq

ď
1

Γp1` ps` 1qpj ` κq ´ `´ vq

and lemma 4.6 follows from the inequalities

1` ps` 1qpj ` κq ´ `´ v ě 1` ps` 1qpj ` κ´ `q ´ v

ě 1` σs ´ v

ě 1` p (relation (4.4))

ě 2

and from the increase of the Gamma function on r2,`8r. �

Lemma 4.7. Let j ě 0 and ` P t0, ..., j ´ vu be. Then,

p´1
ź

`1“0

ppj ´ v ´ `qσs ` p´ `
1q

Γp1` ps` 1qpj ` κ´ `q ´ vq
ď

pκ` vqp

Γp1` ps` 1qpj ´ v ´ `qq
.

Proof. Ÿ Let us first assume ` “ j ´ v. We must prove the inequality

p´1
ź

`1“0

pp´ `1q

Γp1` ps` 1qpκ` vq ´ vq
ď pκ` vqp.

Using the relation (4.4), we have

1` ps` 1qpκ` vq ´ v “ 1` σs ´ v “ 1` p ě 2;

hence,

Γp1` ps` 1qpκ` vq ´ vq ě Γp1` pq “ p! “
p´1
ź

`1“0

pp´ `1q

since the Gamma function is increasing on r2,`8r. Lemma 4.7 follows then from
the inequality κ` v ě 1.
Ÿ Let us now assume ` ă j ´ v. Due to the definition of σs, we first have

(4.8)
p´1
ź

`1“0

ppj ´ v ´ `qσs ` p´ `
1q “ pκ` vqp

p´1
ź

`1“0

ˆ

ps` 1qpj ´ v ´ `q `
p´ `1

κ` v

˙

.

On the other hand, applying p times the recurrence relation Γp1 ` zq “ zΓpzq to
Γp1` ps` 1qpj ` κ´ `q ´ vq, we besides have

(4.9) Γp1` ps` 1qpj ` κ´ `q ´ vq “

Γp1` ps` 1qpj ` κ´ `q ´ v ´ pq
p´1
ź

`1“0

pps` 1qpj ` κ´ `q ´ v ´ `1q.

Observe that this identity makes since the relation (4.4) implies

ps` 1qpj ` κ´ `q ´ v ´ p ą σs ´ v ´ p ě 0.



10 PASCAL REMY

Observe also that we have the inequality

ps` 1qpj ´ v ´ `q `
p´ `1

κ` v
ď ps` 1qpj ` κ´ `q ´ v ´ `1

for all `1 P t0, ..., p ´ 1u. Indeed, the relation (4.4) and the inequality κ ` v ě 1
imply

ps` 1qpj ´ v ´ `q `
p´ `1

κ` v
´ ps` 1qpj ` κ´ `q ` v ` `1

“
p´ `1

κ` v
´ σs ` v ` `

1 ď pp´ `1q

ˆ

1

κ` v
´ 1

˙

ď 0.

Consequently, identities (4.8) and (4.9) provide the following inequality

p´1
ź

`1“0

ppj ´ v ´ `qσs ` p´ `
1q

Γp1` ps` 1qpj ` κ´ `q ´ vq
ď

pκ` vqp

Γp1` ps` 1qpj ´ `` κq ´ v ´ pq
,

and lemma 4.7 follows then from the relations

1` ps` 1qpj ´ `` κq ´ v ´ p ě 1` ps` 1qpj ´ `` κq ´ σs

“ 1` ps` 1qpj ´ v ´ `q ě 2

and from the increase of the Gamma function on r2,`8r. Observe that the first
inequality stems again from the inequality (4.4). Observe also that, without the
condition j ă `´ v, the second inequality is no longer valid.

This ends the proof of lemma 4.7. �

Proposition 4.8. Let j ě 0 and ` P t0, ..., ju. Then, for all `1, ..., `m P N such
that `1 ` ...` `m “ j ´ `:

Bj,`,`1,...`m,s ď 1.

Proof. First of all, let us write Bj,`,`1,...`m,s on the form

Bj,`,`1,...`m,s “ B1j,`,`1,...`m,s ˆB
2
j,`,`1,...`m,s

with

B1j,`,`1,...`m,s :“
j!

pj ´ `q!

Γp1` ps` 1qpj ´ `qq

Γp1` ps` 1qpj ` κqq

B2j,`,`1,...`m,s :“
pj ´ `q!

`1!...`m!

Γp1` ps` 1q`1q...Γp1` ps` 1q`mq

Γp1` ps` 1qpj ´ `qq
.

Since B2j,`,`1,...`m,s ď 1 (see the proof of [48, Prop. 4.5]), it is sufficient to prove

that B1j,`,`1,...`m,s ď 1.

When j “ 0, this is clear due to the increase of the Gamma function on r2,`8r
and the condition κ ě 1.
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Let us now assume j ě 1. From the recurrence relation Γp1`zq “ zΓpzq applied
` times, we first derive the following relations:

j!

pj ´ `q!
Γp1` ps` 1qpj ´ `qq “ Γp1` ps` 1qpj ´ `qq

ź̀

`1“1

pj ´ `` `1q

ď Γp1` ps` 1qpj ´ `qq
ź̀

`1“1

pps` 1qpj ´ `q ` `1q

“ Γp1` ps` 1qpj ´ `q ` `q

with the classical convention that the product is 1 as soon as ` “ 0. Next, since
the condition j ě 1 implies

1` ps` 1qpj ` κq ě 1` ps` 1qj ě 1` ps` 1qpj ´ `q ` ` ě 2,

we deduce from the increase of the Gamma function on r2,`8r the inequalities

(4.10) Γp1` ps` 1qpj ´ `q ` `q ď Γp1` ps` 1qjq ď Γp1` ps` 1qpj ` κqq

and, consequently, B1j,`,`1,...`m,s ď 1.
This ends the proof of proposition 4.8. �

Apply propositions 4.5 and 4.8 to inequalities (4.5). We get:

(4.11)
}uj`κ,˚}pj`κqσs,ρ

Γp1` ps` 1qpj ` κqq
ď

}fj,˚}pj`κqσs,ρ

Γp1` ps` 1qpj ` κqq
`

j´v
ÿ

`“0

α`,s
}uj´v´`,˚}pj´v´`qσs,ρ

Γp1` ps` 1qpj ´ v ´ `qq
`

j
ÿ

`“0

ÿ

`1`...``m
“j´`

β`,s
}u`1,˚}`1σs,ρ

... }u`m,˚}`mσs,ρ

Γp1` ps` 1q`1q...Γp1` ps` 1q`mq

for all j ě 0, where the constants α`,s and β`,s are positive and defined by

α`,s :“ pepκ` vqqp
}a`,˚}pκ`v``qσs´p,ρ

`!
and β`,s :“

}b`,˚}p``κqσs,ρ

`!
.

We shall now bound the Nagumo norms }uj,˚}jσs,ρ
for any j ě 0. To do that,

we shall proceed similarly as in [4, 48–51] by using a technique of majorant series.
However, as we shall see, the calculations are much more complicated.

4.1.3. A Majorant Series. Let us consider the formal series vpXq “
ÿ

jě0

vjX
j , where

the coefficients vj are recursively determined by the initial conditions vj “ Aj
(j “ 0, ..., κ´ 1; see relations (4.3)) and, for all j ě 0, by the relations

(4.12) vj`κ “ gj `
j´v
ÿ

`“0

α`,svj´v´` `
j
ÿ

`“0

ÿ

`1`...``m
“j´`

β`,sv`1 ...v`m

with

gj :“
}fj,˚}pj`κqσs,ρ

Γp1` ps` 1qpj ` κqq
.
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By construction, we have

(4.13) 0 ď
}uj,˚}jσs,ρ

Γp1` ps` 1qjq
ď vj

for all j ě 0 (proceed by induction on j). Following proposition 4.9 allows us to
bound the vj ’s.

Proposition 4.9. The formal series vpXq is convergent. In particular, there exist
two positive constants C 1,K 1 ą 0 such that vj ď C 1K 1j for all j ě 0.

Proof. It is sufficient to prove the convergence of vpXq.
First of all, let us observe that vpXq is the unique formal power series in X

solution of the functional equation

(4.14) p1´Xκ`vαpXqqvpXq “ XκβpXqpvpXqqm ` hpXq,

where αpXq :“
ÿ

jě0

αj,sX
j , βpXq :“

ÿ

jě0

βj,sX
j and

hpXq :“ A0 `A1X ` ...`Aκ´1X
κ´1 `Xκ

ÿ

jě0

gjX
j

are three convergent power series with nonnegative coefficients. Indeed, according
to the inequalities (4.1) and (4.10), and the analyticity of apt, xq and bpt, xq at the
origin p0, 0q P C2, we have

‚ 0 ď gj ď
CKjΓp1` ps` 1qjqρpj`κqσs

Γp1` ps` 1qpj ` κqq
ď CρκσspKρσsqj ,

‚ 0 ď αj,s ď
pepκ` vqqpC1K

j
1j!ρ

pκ`v`jqσs´p

j!
“ C 11K

1j
1 ,

‚ 0 ď βj,s ď
C1K

j
1j!ρ

pj`κqσs

j!
“ C21K

2j
1

with convenient positive constants C1, K1, C 11, K 11, C21 and K21 . We denote in the
sequel by rα ą 0 (resp. rβ ą 0, rh ą 0) the radius of convergence of the series
αpXq (resp. βpXq, hpXq). We also denote by r1α ą 0 the radius of convergence of
the series 1{p1´Xκ`vαpXqq.

Next, we proceed through a fixed point method as follows. Let us set

V pXq “
ÿ

iě0

VipXq

and let us choose the solution of eq. (4.14) given by the system
$

’

&

’

%

p1´Xκ`vαpXqqV0pXq “ hpXq

p1´Xκ`vαpXqqVi`1pXq “ XκβpXq
ÿ

`1`...``m
“i

V`1pXq...V`mpXq for i ě 0.

By induction on i ě 0, we easily check that

(4.15) VipXq “
Ci,mX

κipβpXqqiphpXqqipm´1q`1

p1´Xκ`vαpXqqim`1
,

where the Ci,m’s are the positive constants recursively determined from C0,m :“ 1
by the relations

Ci`1,m “
ÿ

k1`...`km“i

Ck1,m...Ckm,m.
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Thereby, all the Vi’s are analytic functions on the disc with center 0 P C and radius
minpr1α, rβ , rhq at least. Moreover, identities (4.15) show us that VipXq is of order
Xκi for all i ě 0. Consequently, the series V pXq makes sense as a formal power
series in X and we get V pXq “ vpXq by unicity.

We are left to prove the convergence of V pXq. To do that, let us choose 0 ă r ă
minpr1α, rα, rβ , rhq. By definition, the constants Ci,m’s are the generalized Catalan
numbers of order m and we have3

Ci,m “
1

pm´ 1qi` 1

ˆ

im

i

˙

ď 2im

for all i ě 0 (see [13,15,45] for instance). On the other hand, the convergent series
αpXq, βpXq and hpXq define increasing functions on r0, rs. Therefore, identities
(4.15) imply the inequalities

|VipXq| ď
hprq

1´ rκ`vαprq

ˆ

2mβprqphprqqm´1

p1´ rκ`vαprqqm
|X|

κ

˙i

for all i ě 0 and all |X| ď r. Consequently, the series V pXq is normally convergent
on any disc with center 0 P C and radius

0 ă r1 ă min

˜

r,

ˆ

p1´ rκ`vαprqqm

2mβprqphprqqm´1

˙1{κ
¸

.

This proves the analyticity of V pXq at 0 and achieves then the proof of proposi-
tion 4.9. �

According to relations (4.13), proposition 4.9 allows us to also bound the Nagumo
norms }uj,˚}jσs,ρ

.

Corollary 4.10. Let C 1,K 1 ą 0 be as in proposition 4.9. Then, the inequalities

}uj,˚}jσs,ρ
ď C 1K 1jΓp1` ps` 1qjq

hold for all j ě 0.

We are now able to conclude the proof of theorem 3.1.

4.1.4. Conclusion. We must prove on the sup-norm of the uj,˚pxq estimates similar
to the ones on the norms }uj,˚}jσs,ρ

(see corollary 4.10). To this end, we proceed

by shrinking the closed disc |x| ď ρ. Let 0 ă ρ1 ă ρ. Then, for all j ě 0 and all
|x| ď ρ1, we have

|uj,˚pxq| “

ˇ

ˇ

ˇ

ˇ

uj,˚pxqdρpxq
jσs

1

dρpxqjσs

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇuj,˚pxqdρpxq
jσs

ˇ

ˇ

pρ´ ρ1qjσs
ď
}uj,˚}jσs,ρ

pρ´ ρ1qjσs

and, consequently,

sup
|x|ďρ1

|uj,˚pxq| ď C 1
ˆ

K 1

pρ´ ρ1qσs

˙j

Γp1` ps` 1qjq

3These numbers were named in honor of the mathematician Eugène Charles Catalan (1814-

1894). They appear in many probabilist, graphs and combinatorial problems. For example, they
can be seen as the number of m-ary trees with i source-nodes, or as the number of ways of

associating i applications of a given m-ary operation, or as the number of ways of subdividing a

convex polygon into i disjoint (m ` 1)-gons by means of non-intersecting diagonals. They also
appear in theoretical computers through the generalized Dyck words. See for instance [13] and

the references inside.
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by applying corollary 4.10. This ends the proof of the first point of theorem 3.1.

4.2. Proof of the second point. Let us fix s ă sc
4. According to the filtration of

the s-Gevrey spaces OpDρ1qrrtsss (see section 2) and the first point of theorem 3.1,
it is clear that we have the following implications:

rfpt, xq P OpDρ1qrrtsss ñ rfpt, xq P OpDρ1qrrtsssc ñ rupt, xq P OpDρ1qrrtsssc .

To conclude that we can not say better about the Gevrey order of rupt, xq, that is
rupt, xq is generically sc-Gevrey, we need to find an example for which the solution
rupt, xq of eq. (1.1) is s1-Gevrey for no s1 ă sc. Proposition 4.11 below provides such
an example.

Proposition 4.11. Let us consider the equation

(4.16)

#

Bκt u´ at
vBpxu´ bu

m “ rfpt, xq, a ą 0, b ě 0

B
j
tupt, xq|t“0 “ ϕpxq, j “ 0, ..., κ´ 1

where ϕpxq is the analytic function on D1 defined by

ϕpxq “
1

1´ x
.

Suppose that the inhomogeneity rfpt, xq satisfies the following conditions:

‚ rfpt, xq is s-Gevrey;
‚ B`xfj,˚p0q ě 0 for all `, j ě 0.

Then, the formal solution rupt, xq of eq. (4.16) is exactly sc-Gevrey.

Proof. Due to the calculations above, it is sufficient to prove that rupt, xq is s1-Gevrey
for no s1 ă sc.

First of all, we derive from the general relations (1.2) that the coefficients uj,˚pxq
of rupt, xq are recursively determined by the initial conditions uj,˚pxq “ ϕpxq (j “
0, ..., κ´ 1) and, for all j ě 0 by the relations

uj`κ,˚pxq “ fj,˚pxq `
aj!

pj ´ vq!
Bpxuj´v,˚pxq ` b

ÿ

`1`...`m
“j

j!

`1!...`m!
u`1 ...u`m .

In particular, we easily check that the coefficients ujpκ`vq,˚pxq read for all j ě 1 on
the form

ujpκ`vq,˚pxq “ ajBjpx ϕpxq
j
ź

`“1

p`v ` p`´ 1qκq!

pp`´ 1qv ` p`´ 1qκq!
` remjpκ`vqpxq,

where remjpκ`vqpxq is a linear combination with nonnegative coefficients of terms
of the form

ź

`Pt0,...,jv`pj´1qκu
d1,d2ě0

p1,p2,p3,p4ě0

ap1bp2
`

Bd1x f`,˚pxq
˘p3 `

Bd2x ϕpxq
˘p4

.

4Of course, this case only occurs when p ą κ.
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Using then our assumptions on the coefficients a and b and on the inhomogeneity
rfpt, xq, and applying technical lemmas 4.12 and 4.13 below, we finally get the
following inequalities:

(4.17) ujpκ`vq,˚p0q ě ajpjpq!
j
ź

`“1

p`v ` p`´ 1qκq!

pp`´ 1qv ` p`´ 1qκq!
ě

´ a

2p`v

¯j

pjpp` vqq!.

Let us now suppose that rupt, xq is s1-Gevrey for some s1 ă sc. Then, definition 2.1
and inequality (4.17) imply

1 ď C

ˆ

2p`vK

a

˙j
Γp1` jps1 ` 1qpκ` vqq

Γp1` jpp` vqq

for all j ě 0 and some convenient positive constants C and K independent of
j. Proposition 4.11 follows since such inequalities are impossible: applying the
Stirling’s Formula, we get

(4.18) C

ˆ

2p`vK

a

˙j
Γp1` jps1 ` 1qpκ` vqq

Γp1` jpp` vqq
„

jÑ`8
C 1

ˆ

K 1

jσ

˙j

with

‚ C 1 :“ C

d

ps1 ` 1qpκ` vq

p` v
;

‚ K 1 :“
2p`vK

a

pps1 ` 1qpκ` vqqps
1
`1qpκ`vq

pp` vqp`v
ep`v´ps

1
`1qpκ`vq;

‚ σ :“ p` v ´ ps1 ` 1qpκ` vq.

and the right hand-side of (4.18) goes to 0 when j tends to infinity. Indeed, the
condition s1 ă sc implies

σ ą p` v ´ psc ` 1qpκ` vq “ 0.

This ends the proof. �

Lemma 4.12. Let j ě 1 be. Then,

(4.19)
j
ź

`“1

p`v ` p`´ 1qκq!

pp`´ 1qv ` p`´ 1qκq!
ě pjvq!.

Proof. Lemma 4.12 is clear for j “ 1. Let us now suppose that inequality (4.19)
holds for a certain j ě 1. Then,

j`1
ź

`“1

p`v ` p`´ 1qκq!

pp`´ 1qv ` p`´ 1qκq!
ě
ppj ` 1qv ` jκq!

pjv ` jκq!
pjvq!

and we conclude due to the inequality

ˆ

pj ` 1qv ` jκ

jκ

˙

ě

ˆ

jv ` jκ

jκ

˙

. �

Lemma 4.13. Let j ě 1 be. Then,

pjpq!pjvq! ě
pjpp` vqq!

2jpp`vq
.

Proof. Lemma 4.13 is direct from the inequality

ˆ

jpp` vq

jp

˙

ď 2jpp`vq. �
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This ends the proof of the second point of theorem 3.1; hence, completes the
proof of the Gevrey index theorem

References

[1] W. Balser. Divergent solutions of the heat equation: on an article of Lutz, Miyake and
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