Pascal Remy 
  
Pascal Remy Gevrey 
  
GEVREY INDEX THEOREM FOR SOME INHOMOGENEOUS SEMILINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS

Keywords: . 35C10, 35G20 . Gevrey order, Inhomogeneous partial differential equation, Nonlinear partial differential equation, Newton polygon, Formal power series, Divergent power series

published or not. The documents may come  

Setting the problem

For several years, various works have been done on the divergent solutions of some classes of linear partial differential equations or integro-differential equations in two variables or more, allowing thus to formulate many results on Gevrey properties, summability or multisummability (e.g. [1, 3-6, 9, 11, 12, 14, 20, 22, 24, 25, 28-36, 42, 43, 49-51, 59, 61]).

In the case of the nonlinear partial differential equations, the situation is much more complicated. The existing results concern mainly Gevrey properties, especially the convergence (e.g. [10, 16, 18, 19, 21, 26, 37-39, 48, 52-58]), and there are very few results about the summation (see [START_REF] Lastra | On parametric multisummable formal solutions to some nonlinear initial value Cauchy problems[END_REF][START_REF] Malek | On the summability of formal solutions of nonlinear partial differential equations with shrinkings[END_REF][START_REF] Malek | On the summability of formal solutions for doubly singular nonlinear partial differential equations[END_REF][START_REF] Ouchi | Genuine solutions and formal solutions with Gevrey type estimates of nonlinear partial differential equations[END_REF][START_REF] Pliś | Borel resummation of formal solutions to nonlinear Laplace equations in 2 variables[END_REF]).

In this article, we propose to investigate the Gevrey properties of the inhomogeneous semilinear partial differential equation (1.1)

"

B κ t u ´tv apt, xqB p x u ´bpt, xqu m " r f pt, xq B j t upt, xq |t"0 " ϕ j pxq, j " 0, ..., κ ´1

in two variables pt, xq P C 2 , where ' κ and p are two positive integers; ' v is a nonnegative integer; ' the coefficients apt, xq and bpt, xq are analytic on a polydisc D ρ0 ˆDρ1 centered at the origin p0, 0q of C 2 (D ρ denotes the disc with center 0 P C and radius ρ ą 0) and ap0, xq ı 0; ' the degree of the power-law nonlinearity is an integer ě 2; ' the inhomogeneity r f pt, xq is a formal power series in t with analytic coefficients in D ρ1 (we denote by r f pt, xq P OpD ρ1 qrrtss) which may be smooth, or not 1 ; ' the initial conditions ϕ j pxq are analytic on D ρ1 for all j " 0, ..., κ ´1. Equation (1.1) is fundamental in many physical, chemical, biological, and ecological problems. For example: for pκ, pq " p1, 2q, eq. (1.1) arises in problems involving diffusion and nonlinear growth such as heat and mass transfer, combustion theory, and spread theory of animal or plant populations (nonlinear heat equation); for pκ, pq " p2, 2q, eq. (1.1) describes the propagation of nonlinear waves in an inhomogeneous medium (nonlinear Klein-Gordon equation); and, for pκ, pq " p2, 4q, eq. (1.1) describes the relationship between the beam's deflection and an applied lateral nonlinear force (nonlinear Bernoulli-Euler equation).

Notation 1.1. In the sequel, we write any formal series r gpt, xq P OpD ρ1 qrrtss on the form r gpt, xq " ÿ jě0 g j,˚p xq t j j! with g j,˚p xq P OpD ρ1 q for all j.

Then, it is easy to check that eq. (1.1) admits a unique formal series solution r upt, xq

ÿ jě0 u j,˚p xq t j j! P OpD ρ1 qrrtss,
where the coefficients u j,˚p xq P OpD ρ1 q are recursively determined by the initial conditions u j,˚p xq " ϕ j pxq (j " 0, ..., κ ´1q and, for all j ě 0, by the relations

(1.2) u j`κ,˚p xq " f j,˚p xq `j´v ÿ "0 j! !pj ´v ´ q! a ,˚p xqB p x u j´v´ ,˚p xqj ÿ "0 ÿ 1`...` m "j´ j! ! 1 !... m ! b ,˚p xqu 1,˚p xq...u m,˚p xq
with the classical convention that the first sum is zero as soon as j ´v ă 0. Doing that, a natural question arises: "What relationship exists between the Gevrey order of the solution r upt, xq and the Gevrey order of the inhomogeneity r f pt, xq?" 1 We denote r f with a tilde to emphasize the possible divergence of the series r f .

Indeed, according to the algebraic structure of the s-Gevrey spaces OpD ρ1 qrrtss s (see section 2 for the exact definition of theses spaces), it is classical one has r upt, xq P OpD ρ1 qrrtss s ñ r f pt, xq P OpD ρ1 qrrtss s .

But, what can we say about the converse? A precise answer was given by the author in the special case of the semilinear heat equation In particular, we observe that this result highlights the special value s c " 1, which is defined as the (inverse of the) positive slope of the Newton polygon at t " 0 of the homogeneous linear heat equation B t u ´αpxqB 2

(1.3) " B t u ´αpxqB 2 x u ´βpxqu m " r f pt,
x u " 0. We call this value the critical value of eq. (1.3).

On the other hand, in the linear case

(1.4) " B κ t u ´apt, xqB p x u " r f pt, xq B j t upt, xq |t"0 " ϕ j pxq, j " 0, ..., κ ´1 
the author has also proved in [START_REF] Remy | Gevrey order and summability of formal series solutions of some classes of inhomogeneous linear partial differential equations with variable coefficients[END_REF] that the solution r upt, xq and the inhomogeneity r f pt, xq are together convergent when p ď κ and 1{k-Gevrey otherwise, where k denotes the positive slope of the Newton polygon at t " 0 of the homogeneous associated equation.

The aim of this article is to extend these two results to the very general eq. (1.1). To do this, the organization of the paper is as follows. In section 2, we biefly recall the definition and some basic properties about the s-Gevrey formal power series in OpD ρ1 qrrtss which are needed in the sequel. Section 3 is devoted to the main result of the article (theorem 3.1), which states, on one hand, that the solution r upt, xq and the inhomogeneity r f pt, xq are together s-Gevrey for any s greater than a convenient critical value s c ě 0 which is fully determined by the Newton polygon at t " 0 of the linear part L κ,p :" B κ t ´tv apt, xqB p x of eq. (1.1), and, on the other hand, that r upt, xq is generically s c -Gevrey while r f pt, xq is s-Gevrey with s ă s c . A detailed proof of this result is developed in section 4.

Gevrey formal series

Before stating our main result (see theorem 3.1 below), let us first recall for the convenience of the reader some definitions and basic properties about the Gevrey formal series in OpD ρ1 qrrtss, which are needed in the sequel.

All along the article, we consider t as the variable and x as a parameter. Thereby, to define the notion of Gevrey classes of formal power series in OpD ρ1 qrrtss, one extends the classical notion of Gevrey classes of elements in Crrtss to families parametrized by x in requiring similar conditions, the estimates being however uniform with respect to x. Doing that, any formal power series of OpD ρ1 qrrtss can be seen as a formal power series in t with coefficients in a convenient Banach space defined as the space of functions that are holomorphic on a disc D ρ (0 ă ρ ă ρ 1 ) and continuous up to its boundary, equipped with the usual supremum norm. For a general study of series with coefficients in a Banach space, we refer for instance to [START_REF] Balser | Formal power series and linear systems of meromorphic ordinary differential equations[END_REF]. hold for all j ě 0.

In other words, definition 2.1 means that r upt, xq is s-Gevrey in t, uniformly in x on a neighborhood of x " 0 P C.

We denote by OpD ρ1 qrrtss s the set of all the formal series in OpD ρ1 qrrtss which are s-Gevrey. Observe that the set Ctt, xu of germs of analytic functions at the origin of C 2 coincides with the union Ť ρ1ą0 OpD ρ1 qrrtss 0 ; in particular, any element of OpD ρ1 qrrtss 0 is convergent and Ctt, xu X OpD ρ1 qrrtss " OpD ρ1 qrrtss 0 . Observe also that the sets OpD ρ1 qrrtss s are filtered as follows:

OpD ρ1 qrrtss 0 Ă OpD ρ1 qrrtss s Ă OpD ρ1 qrrtss s 1 Ă OpD ρ1 qrrtss for all s and s 1 satisfying 0 ă s ă s 1 ă `8.

Following proposition 2.2 specifies the algebraic structure of OpD ρ1 qrrtss s . Proposition 2.2 ([2, 49]). Let s ě 0. Then, the set pOpD ρ1 qrrtss s , B t , B x q is a C-differential algebra.

We are now turn to the study of the Gevrey properties of eq. (1.1).

Gevrey index theorem

As we said in section 1, the aim of this article is to generalize the results obtained in [START_REF] Remy | Gevrey index theorem for the inhomogeneous n-dimensional heat equation with a power-law nonlinearity and variable coefficients[END_REF][START_REF] Remy | Gevrey order and summability of formal series solutions of some classes of inhomogeneous linear partial differential equations with variable coefficients[END_REF] by making explicit the relationship between the Gevrey order of the solution r upt, xq and the Gevrey order of the inhomogeneity r f pt, xq. As in [START_REF] Remy | Gevrey index theorem for the inhomogeneous n-dimensional heat equation with a power-law nonlinearity and variable coefficients[END_REF], this relationship is fully determined by a critical value that depends solely on the Newton polygon N t pL κ,p q at t " 0 of the linear part L κ,p :" B κ t tv apt, xqB p x of eq. (1.1) 2 . Before stating our main result (see theorem 3.1 below), let us begin with a brief study of N t pL κ,p q.

2 Observe that this fact is well-known in the case of the ODEs: the Gevrey order of the formal solutions of any semilinear meromorphic ordinary differential equations is given by the Newton polygon of its linear part -see [START_REF] Braaksma | Multisummability of formal power series solutions of nonlinear meromorphic differential equations[END_REF][START_REF] Ramis | Hukuhara domains and fundamental existence and uniqueness theorems for asymptotic solutions of Gevrey type[END_REF] for instance.

Ÿ Newton polygon N t pL κ,p q. As definition of the Newton polygon, we choose the definition of M. Miyake [START_REF] Miyake | Newton polygons and formal Gevrey indices in the Cauchy-Goursat-Fuchs type equations[END_REF] (see also A. Yonemura [START_REF] Yonemura | Newton polygons and formal Gevrey classes[END_REF] or S. Ouchi [START_REF] Ouchi | Multisummability of formal solutions of some linear partial differential equations[END_REF]) which is an analogue to the one given by J.-P. Ramis [START_REF] Ramis | Théorèmes d'indices Gevrey pour les équations différentielles ordinaires[END_REF] for linear ordinary differential equations. Recall that, H. Tahara and H. Yamazawa use in [START_REF] Tahara | Multisummability of formal solutions to the Cauchy problem for some linear partial differential equations[END_REF] a slightly different one.

The Newton polygon N t pL κ,p q is then defined as the convex hull of Cpκ, ´κq Y Cpp, vq, where Cpa, bq denotes for any pa, bq P R 2 the domain Cpa, bq " tpx, yq P R 2 ; x ď a and y ě bu.

Hence, the following two cases.

' First case: p ď κ. N t pL κ,p q has no side with a positive slope (see fig. 1a). ' Second case: p ą κ. N t pL κ,p q has just one side with a positive slope and this slope is k " κ `v p ´κ (see fig. 1b).
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- κ ' - p - v ' (a) Case p ď κ - ´κ - κ ' - p - v ' (b) Case p ą κ Figure 1.
The Newton polygon N t pL κ,p q Ÿ Main result. We are now able to state the result in view in this article.

Theorem 3.1 (Gevrey index theorem). Let s c be the rational number defined by Observe, in the case of eq. (1.3), that theorem 3.1 coincides with proposition 1.2. We have indeed κ " 1, p " 2 and v " 0; hence, s c " 1.

s c :" $ & % 0 if p ď κ 1 k " p ´κ κ `v if p ą κ Then, ( 
Observe also that, since no condition is made on the coefficient bpt, xq except it is analytic at the origin p0, 0q P C 2 , theorem 3.1 applies as well to the linear case bpt, xq " 0 and generalizes thereby the result already obtained in [START_REF] Remy | Gevrey order and summability of formal series solutions of some classes of inhomogeneous linear partial differential equations with variable coefficients[END_REF].

The proof of theorem 3.1 is detailed in section 4 below. The first point is the most technical and the most complicated. Its proof is based on the Nagumo norms, a technique of majorant series and a fixed point procedure (see section 4.1). As for the second point, it stems both from the first one and from proposition 4.11 that gives an explicit example for which r upt, xq is s 1 -Gevrey for no s 1 ă s c while r f pt, xq is s-Gevrey with s ă s c (see section 4.2). Reciprocally, let us fix s ě s c and let us suppose that the inhomogeneity r f pt, xq is s-Gevrey. By assumption, its coefficients f j,˚p xq P OpD ρ1 q satisfy the following condition (see definition 2.1): there exist three positive constants 0 ă ρ ă ρ 1 , C ą 0 and K ą 0 such that the inequalities (4.1)

|f j,˚p xq| ď CK j Γp1 `ps `1qjq hold for all j ě 0 and all |x| ď ρ.

We must prove that the coefficients u j,˚p xq P OpD ρ1 q of r upt, xq satisfy similar inequalities. The approach we present below is analoguous to the ones already developed in [START_REF] Balser | Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables[END_REF][START_REF] Remy | Gevrey order and summability of formal series solutions of some classes of inhomogeneous linear partial differential equations with variable coefficients[END_REF][START_REF] Remy | Gevrey order and summability of formal series solutions of certain classes of inhomogeneous linear integro-differential equations with variable coefficients[END_REF][START_REF] Remy | Gevrey properties and summability of formal power series solutions of some inhomogeneous linear Cauchy-Goursat problems[END_REF] in the framework of linear partial and integro-differential equations, and in [START_REF] Remy | Gevrey index theorem for the inhomogeneous n-dimensional heat equation with a power-law nonlinearity and variable coefficients[END_REF] in the case of the semilinear heat equation. It is based on the Nagumo norms [START_REF] Canalis-Durand | Gevrey solutions of singularly perturbed differential equations[END_REF][START_REF] Nagumo | Über das Anfangswertproblem partieller Differentialgleichungen[END_REF][START_REF] Walter | An elementary proof of the Cauchy-Kowalevsky theorem[END_REF] and on a technique of majorant series. However, as we shall see, our calculations appear to be much more technical and complicated, especially because the coefficients apt, xq and bpt, xq are not constant in the variable t, but also because the valuation v of apt, xq with respect to t is not necessarily zero. Furthermore, the nonlinear term u m generates several technical combinatorial situations.

Before starting the calculations, let us first recall for the convenience of the reader the definition of the Nagumo norms and some of their properties which are needed in the sequel. 4.1.1. Nagumo norms. Definition 4.1. Let f P OpD ρ1 q, q ě 0 and 0 ă r ă ρ 1 be. Then, the Nagumo norm }f } q,r with indices pq, rq of f is defined by }f } q,r :" sup |x|ďr |f pxqd r pxq q | , where d r pxq denotes the Euclidian distance d r pxq :" r ´|x|.

Following proposition 4.2 gives us some properties of the Nagumo norms. Proposition 4.2. Let f, g P OpD ρ1 q, q, q 1 ě 0 and 0 ă r ă ρ 1 be. Then,

(1) }¨} q,r is a norm on OpD ρ1 q.

(2) |f pxq| ď }f } q,r d r pxq ´q for all |x| ă r .

(3) }f } 0,r " sup |x|ďr |f pxq| is the usual sup-norm on the disc D r .

(4) }f g} q`q 1 ,r ď }f } q,r }g} q 1 ,r .

(5) }B x f } q`1,r ď epq `1q }f } q,r .

Inequalities 4-5 of proposition 4.2 are the most important properties of the Nagumo norms. Observe besides that the same index r occurs on their both sides, allowing thus to get estimates for the product f g in terms of f and g and for the derivatives B x f in terms of f without having to shrink the disc D r .

Let us now turn to the proof of the first point theorem 3.1.

4.1.2. Some inequalities. From recurrence relations (1.2), we first get the following identities for all j ě 0:

(4.2) u j`κ,˚p xq Γp1 `ps `1qpj `κqq " f j,˚p xq Γp1 `ps `1qpj `κqq j´v ÿ "0 j! !pj ´v ´ q! a ,˚p xqB p x u j´v´ ,˚p xq Γp1 `ps `1qpj `κqq j ÿ "0 ÿ 1 `...` m "j´ j! ! 1 !... m ! b ,˚p xqu 1,˚p xq...u m ,˚p xq
Γp1 `ps `1qpj `κqq with the initial conditions u j,˚p xq " ϕ j pxq for all j " 0, ..., κ ´1.

Let us now define the positive constants σ s :" ps `1qpκ `vq and (4.3) A j :" }u j,˚} jσs,ρ Γp1 `ps `1qjq " }ϕ j } jσs,ρ Γp1 `ps `1qjq for all j " 0, ..., κ ´1. Remark 4.3. Observe that the condition s ě s c implies

σ s ě σ sc " # κ `v if p ď κ p `v if p ą κ ,
and, therefore,

(4.4) σ s ě p `v.
By applying the Nagumo norm of indices ppj `κqσ s , ρq to relations (4.2), we derive from property 1 of proposition 4.2 the relations: }u j`κ,˚} pj`κqσs,ρ Γp1 `ps `1qpj `κqq ď }f j,˚} pj`κqσs,ρ Γp1 `ps `1qpj `κqq j´v where the constants A j, ,s and B j, , 1 ,... m,s are positive and defined by A j, ,s :" j!e p ˜p´1 ź

ÿ "0 j! !pj ´v ´ q! }a ,˚B p x u j´v´ ,˚} pj`κqσs,ρ Γp1 `ps `1qpj `κqq j ÿ "0 ÿ 1`...` m "j´ j! ! 1 !... m ! }b ,˚u
1 "0 ppj ´v ´ qσ s `p ´ 1 q ¸Γp1 `ps `1qpj ´v ´ qq pj ´v ´ q!Γp1 `ps `1qpj `κqq

B j, , 1,... m ,s :" j! 1 !... m !
Γp1 `ps `1q 1 q...Γp1 `ps `1q m q Γp1 `ps `1qpj `κqq .

Remark 4.4. Of course, all the norms, especially the norm }a ,˚} pκ`v` qσs´p,ρ , are well-defined. Indeed, due to inequality (4.4), we have pκ `v ` qσ s ´p ě pκ `vqpp `vq ´p " ppκ `v ´1q `vpκ `vq and, consequently, pκ `v ` qσ s ´p ě 0 since v ě 0 and p, κ ě 1.

Following propositions 4.5 and 4.8 allows to bound the constants A j, ,s and B j, , 1,... m,s . Proposition 4.5. Let j ě v and P t0, ..., j ´vu be. Then, A j, ,s ď pepκ `vqq p .

Proof. Proposition 4.5 stems from the two following lemmas 4.6 and 4.7.

Lemma 4.6. Let j ě 0 and P t0, ..., j ´vu be. Then, j! pj ´v ´ q!Γp1 `ps `1qpj `κqq ď 1 Γp1 `ps `1qpj `κ ´ q ´vq .

Proof. Lemma 4.6 is clear for `v " 0. Let us now assume `v ě 1 and let us write the quotient j!{pj ´v ´ q! on the form

(4.6) j! pj ´v ´ q! " `v´1 ź 1 "0 pj ´ 1 q.
On the other hand, applying `v times the recurrence relation Γp1 `zq " zΓpzq to Γp1 `ps `1qpj `κqq, we get:

(4.7) Γp1 `ps `1qpj `κqq " Γp1 `ps `1qpj `κq ´ ´vq `v´1 ź 1 "0 pps `1qpj `κq ´ 1 q.

Combinating then (4.6) and (4.7), we obtain j! pj ´v ´ q!Γp1 `ps `1qpj `κqq "

`v´1 ź 1 "0 j ´ 1 ps `1qpj `κq ´ 1
Γp1 `ps `1qpj `κqq ď 1 Γp1 `ps `1qpj `κq ´ ´vq and lemma 4.6 follows from the inequalities 1 `ps `1qpj `κq ´ ´v ě 1 `ps `1qpj `κ ´ q ´v ě 1 `σs ´v ě 1 `p (relation (4.4))

ě 2
and from the increase of the Gamma function on r2, `8r.

Lemma 4.7. Let j ě 0 and P t0, ..., j ´vu be. Then,

p´1 ź 1 "0 ppj ´v ´ qσ s `p ´ 1 q
Γp1 `ps `1qpj `κ ´ q ´vq ď pκ `vq p Γp1 `ps `1qpj ´v ´ qq .

Proof. Ÿ Let us first assume " j ´v. We must prove the inequality

p´1 ź 1 "0 pp ´ 1 q
Γp1 `ps `1qpκ `vq ´vq ď pκ `vq p .

Using the relation (4.4), we have 1 `ps `1qpκ `vq ´v " 1 `σs ´v " 1 `p ě 2;

hence, Γp1 `ps `1qpκ `vq ´vq ě Γp1 `pq " p! "

p´1 ź 1 "0 pp ´ 1 q
since the Gamma function is increasing on r2, `8r. Lemma 4.7 follows then from the inequality κ `v ě 1. Ÿ Let us now assume ă j ´v. Due to the definition of σ s , we first have

(4.8) p´1 ź 1 "0 ppj ´v ´ qσ s `p ´ 1 q " pκ `vq p p´1 ź 1 "0 ˆps `1qpj ´v ´ q `p ´ 1 κ `v ˙.
On the other hand, applying p times the recurrence relation Γp1 `zq " zΓpzq to Γp1 `ps `1qpj `κ ´ q ´vq, we besides have (4.9) Γp1 `ps `1qpj `κ ´ q ´vq " Γp1 `ps `1qpj `κ ´ q ´v ´pq p´1 ź

1 "0 pps `1qpj `κ ´ q ´v ´ 1 q.

Observe that this identity makes since the relation (4.4) implies ps `1qpj `κ ´ q ´v ´p ą σ s ´v ´p ě 0.

Observe also that we have the inequality ps `1qpj ´v ´ q `p ´ 1 κ `v ď ps `1qpj `κ ´ q ´v ´ 1 for all 1 P t0, ..., p ´1u. Indeed, the relation (4.4) and the inequality κ `v ě 1 imply

ps `1qpj ´v ´ q `p ´ 1 κ `v ´ps `1qpj `κ ´ q `v ` 1 " p ´ 1 κ `v ´σs `v ` 1 ď pp ´ 1 q ˆ1 κ `v ´1˙ď 0.
Consequently, identities (4.8) and (4.9) provide the following inequality

p´1 ź 1 "0 ppj ´v ´ qσ s `p ´ 1 q
Γp1 `ps `1qpj `κ ´ q ´vq ď pκ `vq p Γp1 `ps `1qpj ´ `κq ´v ´pq , and lemma 4.7 follows then from the relations 1 `ps `1qpj ´ `κq ´v ´p ě 1 `ps `1qpj ´ `κq ´σs " 1 `ps `1qpj ´v ´ q ě 2 and from the increase of the Gamma function on r2, `8r. Observe that the first inequality stems again from the inequality (4.4). Observe also that, without the condition j ă ´v, the second inequality is no longer valid. This ends the proof of lemma 4.7.

Proposition 4.8. Let j ě 0 and P t0, ..., ju. Then, for all 1 , ..., m P N such that 1 `... ` m " j ´ :

B j, , 1,... m,s ď 1.
Proof. First of all, let us write B j, , 1 ,... m,s on the form

B j, , 1,... m,s " B 1 j, , 1,... m,s ˆB2 j, , 1,... m ,s with B 1 j, , 1,... m ,s :" j! pj ´ q! Γp1 `ps `1qpj ´ qq Γp1 `ps `1qpj `κqq B 2 j, , 1,... m ,s :" pj ´ q! 1 !... m !
Γp1 `ps `1q 1 q...Γp1 `ps `1q m q Γp1 `ps `1qpj ´ qq .

Since B 2 j, , 1,... m ,s ď 1 (see the proof of [START_REF] Remy | Gevrey index theorem for the inhomogeneous n-dimensional heat equation with a power-law nonlinearity and variable coefficients[END_REF]Prop. 4.5]), it is sufficient to prove that B 1 j, , 1 ,... m,s ď 1. When j " 0, this is clear due to the increase of the Gamma function on r2, `8r and the condition κ ě 1.

Let us now assume j ě 1. From the recurrence relation Γp1 `zq " zΓpzq applied times, we first derive the following relations:

j! pj ´ q! Γp1 `ps `1qpj ´ qq " Γp1 `ps `1qpj ´ qq ź 1 "1 pj ´ ` 1 q ď Γp1 `ps `1qpj ´ qq ź 1 "1
pps `1qpj ´ q ` 1 q " Γp1 `ps `1qpj ´ q ` q with the classical convention that the product is 1 as soon as " 0. Next, since the condition j ě 1 implies 1 `ps `1qpj `κq ě 1 `ps `1qj ě 1 `ps `1qpj ´ q ` ě 2, we deduce from the increase of the Gamma function on r2, `8r the inequalities (4.10) Γp1 `ps `1qpj ´ q ` q ď Γp1 `ps `1qjq ď Γp1 `ps `1qpj `κqq and, consequently, B 1 j, , 1 ,... m,s ď 1. This ends the proof of proposition 4.8. Apply propositions 4.5 and 4.8 to inequalities (4.5). We get: (4.11) }u j`κ,˚} pj`κqσs,ρ Γp1 `ps `1qpj `κqq ď }f j,˚} pj`κqσs,ρ Γp1 `ps `1qpj `κqq j´v ÿ "0 α ,s }u j´v´ ,˚} pj´v´ qσs,ρ Γp1 `ps `1qpj ´v ´ qq j

ÿ "0 ÿ 1`...` m "j´ β ,s
}u 1,˚} 1σs,ρ ... }u m,˚} mσs,ρ Γp1 `ps `1q 1 q...Γp1 `ps `1q m q for all j ě 0, where the constants α ,s and β ,s are positive and defined by α ,s :" pepκ `vqq p }a ,˚} pκ`v` qσs´p,ρ ! and β ,s :" }b ,˚} p `κqσs,ρ ! .

We shall now bound the Nagumo norms }u j,˚} jσs,ρ for any j ě 0. To do that, we shall proceed similarly as in [START_REF] Balser | Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables[END_REF][START_REF] Remy | Gevrey index theorem for the inhomogeneous n-dimensional heat equation with a power-law nonlinearity and variable coefficients[END_REF][START_REF] Remy | Gevrey order and summability of formal series solutions of some classes of inhomogeneous linear partial differential equations with variable coefficients[END_REF][START_REF] Remy | Gevrey order and summability of formal series solutions of certain classes of inhomogeneous linear integro-differential equations with variable coefficients[END_REF][START_REF] Remy | Gevrey properties and summability of formal power series solutions of some inhomogeneous linear Cauchy-Goursat problems[END_REF] by using a technique of majorant series. However, as we shall see, the calculations are much more complicated.

4.1.3. A Majorant Series. Let us consider the formal series vpXq " ÿ jě0 v j X j , where the coefficients v j are recursively determined by the initial conditions v j " A j (j " 0, ..., κ ´1; see relations (4.3)) and, for all j ě 0, by the relations (4.12)

v j`κ " g j `j´v ÿ "0 α ,s v j´v´ `j ÿ "0 ÿ 1`...` m "j´ β ,s v 1 ...v m
with g j :" }f j,˚} pj`κqσs,ρ Γp1 `ps `1qpj `κqq .

Thereby, all the V i 's are analytic functions on the disc with center 0 P C and radius minpr 1 α , r β , r h q at least. Moreover, identities (4.15) show us that V i pXq is of order X κi for all i ě 0. Consequently, the series V pXq makes sense as a formal power series in X and we get V pXq " vpXq by unicity.

We are left to prove the convergence of V pXq. To do that, let us choose 0 ă r ă minpr 1 α , r α , r β , r h q. By definition, the constants C i,m 's are the generalized Catalan numbers of order m and we have 3

C i,m " 1 pm ´1qi `1 ˆim i ˙ď 2 im
for all i ě 0 (see [START_REF] Hilton | Catalan numbers, their generalization, and their uses[END_REF][START_REF] Klarner | Correspondences between plane trees and binary sequences[END_REF][START_REF] Pólya | Aufgaben und Lehrsätze aus der Analysis[END_REF] for instance). On the other hand, the convergent series αpXq, βpXq and hpXq define increasing functions on r0, rs. Therefore, identities (4.15) imply the inequalities This proves the analyticity of V pXq at 0 and achieves then the proof of proposition 4.9.

|V i pXq| ď hprq 1 ´rκ`v αprq
According to relations (4.13), proposition 4.9 allows us to also bound the Nagumo norms }u j,˚} jσs,ρ .

Corollary 4.10. Let C 1 , K 1 ą 0 be as in proposition 4.9. Then, the inequalities }u j,˚} jσs,ρ ď C 1 K 1j Γp1 `ps `1qjq hold for all j ě 0.

We are now able to conclude the proof of theorem 3.1.

Conclusion.

We must prove on the sup-norm of the u j,˚p xq estimates similar to the ones on the norms }u j,˚} jσs,ρ (see corollary 4.10). To this end, we proceed by shrinking the closed disc |x| ď ρ. Let 0 ă ρ 1 ă ρ. Then, for all j ě 0 and all |x| ď ρ 1 , we have |u j,˚p xq| " ˇˇˇu j,˚p xqd ρ pxq jσs 1 d ρ pxq jσs ˇˇˇď ˇˇu j,˚p xqd ρ pxq jσs ˇpρ ´ρ1 q jσs ď }u j,˚} jσs,ρ pρ ´ρ1 q jσs and, consequently, sup |x|ďρ 1 |u j,˚p xq| ď C 1 ˆK1 pρ ´ρ1 q σs ˙j Γp1 `ps `1qjq 3 These numbers were named in honor of the mathematician Eugène Charles Catalan (1814-1894). They appear in many probabilist, graphs and combinatorial problems. For example, they can be seen as the number of m-ary trees with i source-nodes, or as the number of ways of associating i applications of a given m-ary operation, or as the number of ways of subdividing a convex polygon into i disjoint (m `1)-gons by means of non-intersecting diagonals. They also appear in theoretical computers through the generalized Dyck words. See for instance [START_REF] Hilton | Catalan numbers, their generalization, and their uses[END_REF] and the references inside. To conclude that we can not say better about the Gevrey order of r upt, xq, that is r upt, xq is generically s c -Gevrey, we need to find an example for which the solution 

# B κ t u ´at v B p x u ´bu m " r f pt, xq, a ą 0, b ě 0 B j t upt, xq |t"0 " ϕpxq, j " 0, ..., κ ´1 
where ϕpxq is the analytic function on D 1 defined by ϕpxq " 1 1 ´x .

Suppose that the inhomogeneity r f pt, xq satisfies the following conditions:

' r f pt, xq is s-Gevrey; ' B x f j,˚p 0q ě 0 for all , j ě 0. Then, the formal solution r upt, xq of eq. (4.16) is exactly s c -Gevrey.

Proof. Due to the calculations above, it is sufficient to prove that r upt, xq is s 1 -Gevrey for no s 1 ă s c .

First of all, we derive from the general relations (1.2) that the coefficients u j,˚p xq of r upt, xq are recursively determined by the initial conditions u j,˚p xq " ϕpxq (j " 0, ..., κ ´1) and, for all j ě 0 by the relations In particular, we easily check that the coefficients u jpκ`vq,˚p xq read for all j ě 1 on the form ' K 1 :" 2 p`v K a pps 1 `1qpκ `vqq ps 1 `1qpκ`vq pp `vq p`v e p`v´ps 1 `1qpκ`vq ; ' σ :" p `v ´ps 1 `1qpκ `vq. and the right hand-side of (4.18) goes to 0 when j tends to infinity. Indeed, the condition s 1 ă s c implies σ ą p `v ´ps c `1qpκ `vq " 0. This ends the proof. Lemma 4.12. Let j ě 1 be. Then, This ends the proof of the second point of theorem 3.1; hence, completes the proof of the Gevrey index theorem

u
(

Definition 2 . 1 .

 21 Let s ě 0 be. A formal series r upt, xq " ÿ jě0 u j,˚p xq t j j! P OpD ρ1 qrrtss is said to be Gevrey of order s (in short, s-Gevrey) if there exist three positive constants 0 ă ρ ă ρ 1 , C ą 0 and K ą 0 such that the inequalities sup |x|ďρ |u j,˚p xq| ď CK j Γp1 `ps `1qjq

  1) r upt, xq and r f pt, xq are together s-Gevrey for any s ě s c ; (2) r upt, xq is generically s c -Gevrey while r f pt, xq is s-Gevrey with s ă s c . Definition 3.2. The number s c defined in theorem 3.1 is called the critical value of eq. (1.1).

4 . 1 4. 1 .

 411 Proof of theorem 3.Proof of the first point. According to proposition 2.2, it is clear that r upt, xq P OpD ρ1 qrrtss s ñ r f pt, xq P OpD ρ1 qrrtss s .

  ˆ2m βprqphprqq m´1 p1 ´rκ`v αprqq m |X| κ ˙i for all i ě 0 and all |X| ď r. Consequently, the series V pXq is normally convergent on any disc with center 0 P C and radius 0 ă r 1 ă min ˜r, ˆp1 ´rκ`v αprqq m 2 m βprqphprqq m´1 ˙1{κ ¸.

by applying corollary 4 . 10 . 4 . 2 . 4 .

 410424 This ends the proof of the first point of theorem 3.1. Proof of the second point. Let us fix s ă s c According to the filtration of the s-Gevrey spaces OpD ρ1 qrrtss s (see section 2) and the first point of theorem 3.1, it is clear that we have the following implications: r f pt, xq P OpD ρ1 qrrtss s ñ r f pt, xq P OpD ρ1 qrrtss sc ñ r upt, xq P OpD ρ1 qrrtss sc .

rProposition 4 . 11 .

 411 upt, xq of eq. (1.1) is s 1 -Gevrey for no s 1 ă s c . Proposition 4.11 below provides such an example. Let us consider the equation (4.16)

  u j`κ,˚p xq " f j,˚p xq `aj! pj ´vq! B p x u j´v,˚p xq `b ÿ 1 `... m "j j! 1 !... m ! u 1 ...u m .

  xq up0, xq " ϕpxq Proposition 1.2 ([48]). Let r upt, xq be the formal solution in OpD ρ1 qrrtss of eq. (1.3).

	Then,

(1) r upt, xq and r f pt, xq are together s-Gevrey for any s ě 1;

(2) r upt, xq is generically 1-Gevrey while r f pt, xq is s-Gevrey with s ă 1.

  jpκ`vq,˚p xq " a j B jp x ϕpxq Using then our assumptions on the coefficients a and b and on the inhomogeneity r f pt, xq, and applying technical lemmas 4.12 and 4.13 below, we finally get the following inequalities: (4.17) u jpκ`vq,˚p 0q ě a j pjpq! Let us now suppose that r upt, xq is s 1 -Gevrey for some s 1 ă s c . Then, definition 2.1 and inequality (4.17) imply1 ď C ˆ2p`v K a ˙j Γp1 `jps 1 `1qpκ `vqq Γp1 `jpp `vqqfor all j ě 0 and some convenient positive constants C and K independent of j. Proposition 4.11 follows since such inequalities are impossible: applying the Stirling's Formula, we get

				j ź "1	p v `p ´1qκq! pp ´1qv `p ´1qκq!	ě	´a 2 p`v ¯j pjpp `vqq!.
	(4.18)	C	ˆ2p`v K a	Γp1 `jpp `vqq ˙j Γp1 `jps 1 `1qpκ `vqq	" jÑ`8	C 1	j σ ˆK1	˙j
	with							
			d					
	' C 1 :" C	ps 1 `1qpκ `vq p `v	;		
						j ź "1	p v `p ´1qκq! pp ´1qv `p ´1qκq!	`rem jpκ`vq pxq,
	where rem jpκ`vq pxq is a linear combination with nonnegative coefficients of terms
	of the form							
			ź	a p1 b p2 `Bd1 x f ,˚p xq	˘p3 `Bd2 x ϕpxq	˘p4 .
			Pt0,...,jv`pj´1qκu				
			d1,d2ě0				
			p1,p2,p3,p4ě0				

  4.19)Proof. Lemma 4.12 is clear for j " 1. Let us now suppose that inequality (4.19) holds for a certain j ě 1. Then,

		j ź "1	p v `p ´1qκq! pp ´1qv `p ´1qκq!	ě pjvq!.
	j`1 ź "1	p v `p ´1qκq! pp ´1qv `p ´1qκq!	ě	ppj `1qv `jκq! pjv `jκq!	pjvq!
	and we conclude due to the inequality	jκ ˆpj `1qv `jκ	jκ ˙ě ˆjv `jκ	˙.
	Lemma 4.13. Let j ě 1 be. Then,		
			pjpq!pjvq! ě	pjpp `vqq! 2 jpp`vq .

Proof. Lemma 4.13 is direct from the inequality ˆjpp `vq jp ˙ď 2 jpp`vq .

Of course, this case only occurs when p ą κ.

By construction, we have (4.13) 0 ď }u j,˚} jσs,ρ Γp1 `ps `1qjq ď v j for all j ě 0 (proceed by induction on j). Following proposition 4.9 allows us to bound the v j 's.

Proposition 4.9. The formal series vpXq is convergent. In particular, there exist two positive constants C 1 , K 1 ą 0 such that v j ď C 1 K 1j for all j ě 0.

Proof. It is sufficient to prove the convergence of vpXq.

First of all, let us observe that vpXq is the unique formal power series in X solution of the functional equation

where αpXq :"

are three convergent power series with nonnegative coefficients. Indeed, according to the inequalities (4.1) and (4.10), and the analyticity of apt, xq and bpt, xq at the origin p0, 0q P C 2 , we have

We denote in the sequel by r α ą 0 (resp. r β ą 0, r h ą 0) the radius of convergence of the series αpXq (resp. βpXq, hpXq). We also denote by r 1 α ą 0 the radius of convergence of the series 1{p1 ´Xκ`v αpXqq.

Next, we proceed through a fixed point method as follows. Let us set

and let us choose the solution of eq. (4.14) given by the system

By induction on i ě 0, we easily check that (4.15)

where the C i,m 's are the positive constants recursively determined from C 0,m :" 1 by the relations C i`1,m " ÿ k1`...`km"i C k1,m ...C km,m .