
HAL Id: hal-02263344
https://hal.science/hal-02263344v1

Preprint submitted on 24 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How to use Software Heritage for archiving and
referencing your source code: guidelines and

walkthrough
Roberto Di Cosmo

To cite this version:
Roberto Di Cosmo. How to use Software Heritage for archiving and referencing your source code:
guidelines and walkthrough. 2019. �hal-02263344�

https://hal.science/hal-02263344v1
https://hal.archives-ouvertes.fr

How to use Software Heritage for archiving and referencing
your source code: guidelines and walkthrough

Roberto Di Cosmo
Inria, Software Heritage, University of Paris, France

roberto@dicosmo.org

September 2019

Software source code is an essential research output, and there is a growing general awareness of
its importance for supporting the research process [4, 14, 11]. Many research communities strongly
encourage making the source code of the artefact available by archiving it in publicly-accessible
long-term archives. Some have even put in place mechanisms to assess research software, like the
Artefact Evaluation process introduced in 2011 and now widely adopted by many computer science
conferences [5], and the Artifact Review and Badging program of the ACM [3].

Software Heritage [9, 1] is a non pro�t, long term universal archive speci�cally designed for
software source code, and able to store not only a software artifact, but also its full development
history. It provides the ideal place to preserve research software artifacts, and o�ers powerful mech-
anisms to enhance research articles with precise references to relevant fragments of your source code.

Using Software Heritage for your research software artifacts is straightforward and involves
three simple steps, described in the picture below:

In this document we will go through each of these three steps, providing guidelines for mak-
ing the most out of Software Heritage for your research: Section 1 describes the best practices for
preparing your source code for archival; Section 2 shows how to archive your code in Software
Heritage; Section 3 shows the rich functionalities you can use for referencing in your article source

1

code archived in Software Heritage; �nally, in the Appendix you will �nd a formal description of the
di�erent kinds of identi�ers available for adressing the content archived in Software Heritage.

1 Prepare your repository

We assume that your source code is hosted on a repository publicly accessible (Github, Bitbucket,
a GitLab instance, an institutional software forge, etc.) using one of the version control systems
supported by Software Heritage, currently Subversion, Mercurial and Git 1.

It is highly recommended that you provide, in your source code repository, appropriate infor-
mation on your research artifact: it will make it more appealing and useful to future users (which
might actually be you in a few months).

Well established best practice is to include, at the toplevel of your source code tree, three key
�les, README, AUTHORS and LICENSE, with the information described below.

README : A description of the software.
This �le should contain at least

• the name of the software/project
• a brief description of the project.

It is also highly recommended to add the following information

• pointers to the project website and documentation,
• pointer to the project development platform,
• license for the project (if not in a separate LICENSE �le),
• contact and support information,
• build/installation instructions or a pointer to a �le containing them (usually INSTALL)

In could be useful to provide here also some information for the users, like a list of features or
informations on how to use the source code

AUTHORS : The list of all authors that need to be credited for the current version.
If you want to specify the role of each contributor in this list, we suggest to use the taxonomy
of contributors presented in [2], which distinguishes the following roles: Design, Architecture,
Coding, Testing, Debugging, Documentation, Maintenance, Support, Management.

LICENSE : The project license terms.
For Open Source Licenses, it is strongly recommended to use the standard names that can be
found on the https://spdx.org/licenses/ website.

Future users that �nd your artifact useful might want to give you credit by citing it. To this end,
you might want to provide instructions on how you prefer your artifact to be cited. There are many
possibilities for doing that, and you might want to also provide structured citation information in
speci�c formats, like CodeMeta (usually in a �le named Codemeta.json2) or CFF (usually in a �le
named CITATION.c�3).

1For up to date information, see https://archive.softwareheritage.org/browse/
origin/save/

2

https://spdx.org/licenses/
https://archive.softwareheritage.org/browse/origin/save/
https://archive.softwareheritage.org/browse/origin/save/

1.1 Learning more

The seminal article Software Release Practice HOWTO by E. S. Raymond [13] documents best prac-
tices and conventions for releasing software that have been well established for decades, and form
the basis of most current recommendations. Interesting more recent resources include the REUSE
website [10], which provides detailed guidance and tools to verify compliance with the guidelines,
as well as [12], which focuses more on research software.

2 Save your code

Once your code repository has been properly prepared, you only need to:

• go to https://archive.softwareheritage.org/browse/origin/save/,

• pick your version control system in the drop-down list, enter the code repository url 2,

• click on the Submit button (see Figure 1).

Figure 1: The Save Code Now form

That’s it, it’s all done! No need to create an account or to provide personal information of any
kind. If the url you provided is correct, Software Heritage will archive your repository, with its full
development history, shortly after. If your repository is hosted on one of the major forges we already
know, this process will take just a few hours; if you point to a location we never saw before, it can
take longer, as we will need to manually approve it.

For hackers: you can also request archival programmatically, using the Software Heritage API 3;
this can be quite handy to integrate, for example, into a Make�le.

3 Reference your work

Once your source code has been archived, there are many ways to reference it in your article. We
present here three common use cases:

• link to the full repository archived in Software Heritage,

• link to a precise version of the software project,

• link to a precise version of a source code �le, down to the level of the line of code.
2Make sure to use the clone/checkout url as given by the development platform hosting your code. It can easily be

found in the web interface of the development platform.
3For details, see https://archive.softwareheritage.org/api/1/origin/save/

3

https://archive.softwareheritage.org/browse/origin/save/
https://archive.softwareheritage.org/api/1/origin/save/

To make this concrete, in what follows we use as a running example the article A “minimal dis-
ruption” skeleton experiment: seamless map and reduce embedding in OCaml by Marco Danelutto and
Roberto Di Cosmo [6] published in 2012. This article introduced a nifty library for multicore parallel
programming that was distributed via the gitorious.org collaborative development platform,
at gitorious.org/parmap. Since Gitorious has been shut down a few years ago, like Google
Code and CodePlex, this example is particularly �t to show why pointing to an archive that has your
code is better than pointing to the collaborative development platform where you developed it.

3.1 Full repository

In Software Heritage, we keep track of all the origins from which source code has been retrieved,
and �nding a given origin is as easy as adding in front of it the pre�x https://archive.
softwareheritage.org/browse/origin

These origins are the exact URLs of the version control system that a developer would use to clone
a working repository, and are the same urls that you pass to the Save Code Now form described in
Section 2.

In our running example, for the Parmap code on gitorious.org, this origin ishttps://gitorious.
org/parmap/parmap.git, so the URL of the persistently archived full repository is the following:

https://archive.softwareheritage.org/browse/origin/https://gitorious.
org/parmap/parmap.git

Just add this link to your article, and your readers will be able to get hold of the archived copy
of your repository even if/when the original development platform goes away (as it has actually
happened for gitorious.org that has been shut down in 2015).

Your readers can then browse the contents of your repository extensively, delving into its devel-
opment history, and/or directory structure, down to each single source code �le 4.

N.B.: if you are unsure about what is the actual origin URL of your repository, you can look
it up using the search box that is available at https://archive.softwareheritage.org/
browse/search/

3.2 Speci�c version

Pointing to the full archived repository is nice, but a version controlled repository usually contains
all the history of development of the source code, whiche records di�erent states of the project,
usually called revisions.

In order to support reproducibility of scienti�c results, we need to be able to pinpoint precisely
the state(s) of the source code used in the article. Software Heritage provides a very easy means
of pointing to a precise revision, via a standard identi�er schema, called SWH-ID, which is fully
documented online and is discussed in the article [8].

In our running example, the Parmap article, the exact revision of the source code of the library
used therein has the following SWH-ID:

swh:1:rev:0064fbd0ad69de205ea6ec6999f3d3895e9442c2;
origin=https://gitorious.org/parmap/parmap.git;

4For a guided tour see https://www.softwareheritage.org/2018/09/22/
browsing-the-software-heritage-archive-a-guided-tour/

4

gitorious.org
gitorious.org/parmap
https://archive.softwareheritage.org/browse/origin
https://archive.softwareheritage.org/browse/origin
https://gitorious.org/parmap/parmap.git
https://gitorious.org/parmap/parmap.git
https://archive.softwareheritage.org/browse/origin/https://gitorious.org/parmap/parmap.git
https://archive.softwareheritage.org/browse/origin/https://gitorious.org/parmap/parmap.git
https://archive.softwareheritage.org/browse/search/
https://archive.softwareheritage.org/browse/search/
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://www.softwareheritage.org/2018/09/22/browsing-the-software-heritage-archive-a-guided-tour/
https://www.softwareheritage.org/2018/09/22/browsing-the-software-heritage-archive-a-guided-tour/

And you can turn this identi�er into a clickable URL by prepending to it the pre�x https:
//archive.softwareheritage.org/: you can try it live right now by clicking on this link.

3.2.1 Getting your SWH-ID

A very simple way of getting the right SWH-ID is to browse your archived code in Software Heritage,
and to navigate to the revision you are interested in. Click then on the permalinks vertical red tab that
is present on all pages of the archive, and in the tab that opens up you select the revision identi�er:
an example is shown in Figure 2.

Figure 2: Obtaining a Software Heritage identi�er using the permalink box on the archive Web user
interface

The two convenient buttons on the botton right allow you to copy the identi�ers or the full
permalink in the clipboard, to insert in your article as you see �t.

3.2.2 Generating and verifying SWH-IDs (for the geeks)

Version 1 of the SWH-IDs uses git-compatible hashes, so if you are using git as a version control
system, you can create the right SWH-ID by just prepending swh:1:rev: to your commit hash.
This might come pretty handy if you plan to automate the generation of the identi�ers to be included
in your article: you will always have your code and your article in sync!

Software Heritage identi�ers can also be generated and veri�ed independently by anyone using
swh-identify, an open source tool developed by Software Heritage, and distributed via PyPI as
swh.model (stable version at swh:1:rev:6cab1cc81118877e2105c32b08653509475f3eaa;
origin=https://pypi.org/project/swh.model/).

3.3 Code fragment

A particularly nifty feature of the SWH-IDs supported by Software Heritage is the ability to pinpoint
a fragment of code inside a speci�c version of a �le, by using the lines= quali�er available for
identi�ers that point to �les.

Let’s see this feature at work in our running example, which shows clearly how an article can
be greatly enhanced by providing pointers to code fragments.

5

https://archive.softwareheritage.org/
https://archive.softwareheritage.org/
https://archive.softwareheritage.org/swh:1:rev:0064fbd0ad69de205ea6ec6999f3d3895e9442c2;origin=https://gitorious.org/parmap/parmap.git
https://archive.softwareheritage.org/swh:1:rev:6cab1cc81118877e2105c32b08653509475f3eaa;\ origin=https://pypi.org/project/swh.model/
https://archive.softwareheritage.org/swh:1:rev:6cab1cc81118877e2105c32b08653509475f3eaa;\ origin=https://pypi.org/project/swh.model/

(a) as presented in the article [6] (b) as archived in Software Heritage

Figure 3: Code fragment from the published article compared to the content in the Software Heritage
archive

In Figure 1 of [6], which is shown here as Figure 3a, the authors want to present the core part
of the code implementing the parallel functionality that constitutes the main contribution of their
article. The usual approach is to typeset in the article itself an excerpt of the source code, and let
the reader try to �nd it by delving into the code repository, which may have evolved in the mean
time. Finding the exact matching code can be quite di�cult, as the code excerpt is often edited a bit
with respect to the original, sometimes to drop details that are not relevant for the discussion, and
sometimes due to space limitations.

In our case, the article presented 29 lines of code, slightly edited from the 43 actual lines of code
in the Parmap library: looking at 3a, one can easily see that some lines have been dropped (102-103,
118-121), one line has been split (117) and several lines simpli�ed (127, 132-133, 137-142).

Using Software Heritage, the authors can do a much better job, because the original code frag-
ment can now be precisely identi�ed by the following Software Heritage identi�er:

swh:1:cnt:d5214�9562a1fe78db51944506ba48c20de3379;
origin=https://gitorious.org/parmap/parmap.git;
lines=101-143

This identi�er can also be easily obtained using the permalink box shown in Section 3.2.1 above,
and it will always point to the code fragment shown in Figure 3b.

6

The caption of the original article shown in Figure 3a can then be signi�cantly enhanced by
incorporating all the clickable links needed to point to the exact source code fragment that has been
edited for inclusion in the article, as shown in Figure 4.

Simple implementation of the distribution, fork, and recollection phases in Parmap (slightly
simpli�ed from the actual code present in the version of Parmap used for this article)

Figure 4: A caption text with links to code fragment and revision

When clicking on the hyperlinked text in the caption shown above, the reader is brought seam-
lessly to the Software Heritage archive on a page showing the corresponding source code archived
in Software Heritage, with the relevant lines highlighted (see Figure 3b).

For LATEX users, the caption of 4 can be written using a few convenient auxiliary macros, as
shown in Figure 5.

\newcommand{\swhurl}[1]{https://archive.softwareheritage.org/#1}
\newcommand{\swhref}[2]{\href{\swhurl{#1}}{#2}}

...

\caption{Simple implementation of the distribution,
fork, and recollection phases in \texttt{Parmap}
(slightly simplified from the
\swhref{swh:1:cnt:d5214ff9562a1fe78db51944506ba48c20de3379;

origin=https://gitorious.org/parmap/parmap.git;
lines=101-143}

{actual code})
presented in
\swhref{swh:1:rev:0064fbd0ad69de205ea6ec6999f3d3895e9442c2;

origin=https://gitorious.org/parmap/parmap.git}
{the version of Parmap used in this article}

Figure 5: Adding clickable hyperlinks to Software Heritage in LATEX

4 Acknowledgements

These guidelines result from extensive discussions that took place over several years. Special thanks
to Alain Girault, Morane Gruenpeter, Julia Lawall, Arnaud Legrand and Nicolas Rougier for their
precious feedback on earlier versions of this document.

7

https://archive.softwareheritage.org/swh:1:cnt:d5214ff9562a1fe78db51944506ba48c20de3379;origin=https://gitorious.org/parmap/parmap.git;lines=101-143
https://archive.softwareheritage.org/swh:1:rev:0064fbd0ad69de205ea6ec6999f3d3895e9442c2;origin=https://gitorious.org/parmap/parmap.git

References

[1] J.-F. Abramatic, R. Di Cosmo, and S. Zacchiroli. Building the universal archive of source code.
Commun. ACM, 61(10):29–31, Sept. 2018.

[2] P. Alliez, R. Di Cosmo, B. Guedj, A. Girault, M.-S. Hacid, A. Legrand, and N. P. Rougier. At-
tributing and Referencing (Research) Software: Best Practices and Outlook from Inria. https:
//hal.archives-ouvertes.fr/hal-02135891, May 2019. submitted.

[3] Association for Computing Machinery. Artifact review and badging. https://www.acm.
org/publications/policies/artifact-review-badging, Apr 2018. Retrieved
April 27th 2019.

[4] C. L. Borgman, J. C. Wallis, and M. S. Mayernik. Who’s got the data? interdependencies in
science and technology collaborations. Computer Supported Cooperative Work, 21(6):485–523,
2012.

[5] B. R. Childers, G. Fursin, S. Krishnamurthi, and A. Zeller. Artifact Evaluation for Publications
(Dagstuhl Perspectives Workshop 15452). Dagstuhl Reports, 5(11):29–35, 2016.

[6] M. Danelutto and R. Di Cosmo. A "Minimal Disruption" skeleton experiment: Seamless map &
reduce embedding in OCaml. Procedia CS, 9:1837–1846, 2012.

[7] Q. Dang. Changes in federal information processing standard (�ps) 180-4, secure hash standard.
Cryptologia, 37(1):69–73, 2013.

[8] R. Di Cosmo, M. Gruenpeter, and S. Zacchiroli. Identi�ers for digital objects: the case of
software source code preservation. In Proceedings of the 15th International Conference on
Digital Preservation, iPRES 2018, Boston, USA, Sept. 2018. Available from https://hal.
archives-ouvertes.fr/hal-01865790.

[9] R. Di Cosmo and S. Zacchiroli. Software heritage: Why and how to preserve software source
code. In Proceedings of the 14th International Conference on Digital Preservation, iPRES 2017,
Sept. 2017.

[10] F. S. F. Europe. Reuse software. https://reuse.software, Sept. 2019. Accessed on 2019-
09-24.

[11] K. Hinsen. Software development for reproducible research. Computing in Science and Engi-
neering, 15(4):60–63, 2013.

[12] M. Jackson (ed). Software deposit: What to deposit (version 1.0). https://
softwaresaved.github.io/software-deposit-guidance/WhatToDeposit.
html, Aug 2018. doi:10.5281/zenodo.1327325.

[13] E. S. Raymond. Software release practice howto. https://www.tldp.org/HOWTO/html_
single/Software-Release-Practice-HOWTO/, Jan 2013. Accessed on 2019-06-05.

[14] V. Stodden, R. J. LeVeque, and I. Mitchell. Reproducible research for scienti�c computing: Tools
and strategies for changing the culture. Computing in Science and Engineering, 14(4):13–17,
2012.

8

https://hal.archives-ouvertes.fr/hal-02135891
https://hal.archives-ouvertes.fr/hal-02135891
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://hal.archives-ouvertes.fr/hal-01865790
https://hal.archives-ouvertes.fr/hal-01865790
https://reuse.software
https://softwaresaved.github.io/software-deposit-guidance/WhatToDeposit.html
https://softwaresaved.github.io/software-deposit-guidance/WhatToDeposit.html
https://softwaresaved.github.io/software-deposit-guidance/WhatToDeposit.html
https://www.tldp.org/HOWTO/html_single/Software-Release-Practice-HOWTO/
https://www.tldp.org/HOWTO/html_single/Software-Release-Practice-HOWTO/

Table 1: EBNF grammar of Software Heritage persistent identi�ers

<identifier> ::= "swh" ":" <scheme_version> ":" <obj_type> ":" <obj_id> ;
<scheme_version> ::= "1" ;
<obj_type> ::=

"snp" (* snapshot *)
| "rel" (* release *)
| "rev" (* revision *)
| "dir" (* directory *)
| "cnt" (* content *)
;

<obj_id> ::= 40 * <hex_digit> ;
(* intrinsic object id, as hex-encoded SHA1 *)

<hex_digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
| "a" | "b" | "c" | "d" | "e" | "f" ;

A Appendix: Reference for SWH-ID identi�ers

The SWH-ID identi�er schema is fully documented online and is discussed in the article [8], but we
reproduce here for completeness an excerpt of the documentation.

A.1 Syntax

Syntactically, persistent identi�ers are generated by the <identifier> entry point of the EBNF
grammar given in Table 1.

A.2 Semantics

The swh pre�x makes explicit that these identi�ers are related to Software Heritage, and the colon
(:) is used as separator between the logical parts of identi�ers. The scheme version (currently 1) is
the current version of this identi�er scheme.

A persistent identi�er points to a single object, whose type is explicitly captured by<object_type>:

snp identi�ers points to snapshots,

rel to releases,

rev to revisions,

dir to directories,

cnt to contents.

The actual object pointed to is identi�ed by the intrinsic identi�er <object_id>, which is a
hex-encoded (using lowercase ASCII characters) SHA1 [7] computed on the content and metadata
of the object itself.5

5See https://docs.softwareheritage.org/devel/swh-model/
persistent-identifiers.html for more details.

9

https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html

A.3 Git compatibility

Intrinsic object identi�ers for contents, directories, revisions, and releases are, at present, compatible
with the Git way of computing identi�ers for its objects. A Software Heritage content identi�er will
be identical to a Git blob identi�er of any �le with the same content, a Software Heritage revision
identi�er will be identical to the corresponding Git commit identi�er, etc. This is not the case for
snapshot identi�ers as Git doesn’t have a corresponding object type. Git compatibility is incidental
and is not guaranteed to be maintained in future versions of this scheme (or Git), but is a convenient
feature for developers, for the time being.

A.4 Examples

The identi�ers below are all interesting examples of what the Software Heritage identi�ers look like.

They are resolved by the Software Heritage browsing pages available at:
https://archive.softwareheritage.org/<identifier>

swh:1:cnt:94a9ed024d3859793618152ea559a168bbcbb5e2

points to the content of a �le containing the full text of the GPL3 license

swh:1:dir:d198bc9d7a6bcf6db04f476d29314f157507d505

points to a directory containing the source code of the Darktable photography application as it
was at some point on 4 May 2017

swh:1:rev:309cf2674ee7a0749978cf8265ab91a60aea0f7d

points to a commit in the development history of Darktable, dated 16 January 2017, that added
undo/redo supports for masks

swh:1:rel:22ece559cc7cc2364edc5e5593d63ae8bd229f9f

points to Darktable release 2.3.0, dated 24 December 2016

swh:1:snp:c7c108084bc0bf3d81436bf980b46e98bd338453

points to a snapshot of the entire Darktable Git repository taken on 4 May 2017 from GitHub.

A.5 Contextual information

It is often useful to complement persistent identi�ers with contextual information about the object’s
setting. Currently it is possible to extend the identi�er with the optional elements below using the
dedicated syntax presented in Table 2:

• the software origin where an object has been found/observed

10

https://archive.softwareheritage.org/swh:1:cnt:94a9ed024d3859793618152ea559a168bbcbb5e2
https://archive.softwareheritage.org/swh:1:dir:d198bc9d7a6bcf6db04f476d29314f157507d505
https://archive.softwareheritage.org/swh:1:rev:309cf2674ee7a0749978cf8265ab91a60aea0f7d
https://archive.softwareheritage.org/swh:1:rel:22ece559cc7cc2364edc5e5593d63ae8bd229f9f
https://archive.softwareheritage.org/swh:1:snp:c7c108084bc0bf3d81436bf980b46e98bd338453

Table 2: EBNF grammar of complementary contextual information

<identifier_with_context> ::= <identifier> [<lines_ctxt>] [<origin_ctxt>] ;
<lines_ctxt> ::= ";" "lines" "=" <line_number> ["-" <line_number>] ;
<origin_ctxt> ::= ";" "origin" "=" <url> ;
<line_number> ::= <dec_digit> + ;
<url> ::= (* RFC 3986 compliant URLs *) ;

• the line number(s) of interest, usually within a content object

The semi-colon (;) is used as a separator between the object identi�er and other contextual
information. Each piece of contextual information is speci�ed as a key/value pair, using the equal
sign (=) as a separator. The extended contextual elements should be added in the following manner:

software origin a URL where a given object has been found or observed in the wild and used by
Software Heritage to ingest the object into the archive.

line numbers a single line number or a line range, two numbers separated with the hyphen (-).
Note that line numbers are purely indicative and are not meant to be stable, as in some de-
generate cases (e.g., text �les which mix di�erent types of line terminators) it is impossible to
resolve them unambiguously.

For example, the following identi�er

swh:1:dir:c6f07c2173a458d098de45d4c459a8f1916d900f; origin=https://github.com/id-
Software/Quake-III-Arena

points to the source code root directory of the computer game Quake III Arena6 with the origin
URL where it was found; while

swh:1:cnt:41ddb23118f92d7218099a5e7a990cf58f1d07fa; lines=64-72

points to a comment segment with the warning "NOLI SE TANGERE" in a �le in the Apollo-11
source code.

6See https://en.wikipedia.org/wiki/Quake_III_Arena

11

https://archive.softwareheritage.org/swh:1:dir:c6f07c2173a458d098de45d4c459a8f1916d900f;origin=https://github.com/id-Software/Quake-III-Arena/
https://archive.softwareheritage.org/swh:1:dir:c6f07c2173a458d098de45d4c459a8f1916d900f;origin=https://github.com/id-Software/Quake-III-Arena/
https://archive.softwareheritage.org/swh:1:cnt:41ddb23118f92d7218099a5e7a990cf58f1d07fa;origin=https://github.com/chrislgarry/Apollo-11;lines=64-72/
https://en.wikipedia.org/wiki/Quake_III_Arena

	Prepare your repository
	Learning more

	Save your code
	Reference your work
	Full repository
	Specific version
	Getting your SWH-ID
	Generating and verifying SWH-IDs (for the geeks)

	Code fragment

	Acknowledgements
	Appendix: Reference for SWH-ID identifiers
	Syntax
	Semantics
	Git compatibility
	Examples
	Contextual information

