Roberto Di Cosmo
email: roberto@dicosmo.org

How to use Software Heritage for archiving and referencing your source code: guidelines and walkthrough

, and the Artifact Review and Badging program of the ACM [3].

Software Heritage [START_REF] Cosmo | Software heritage: Why and how to preserve software source code[END_REF][START_REF] Abramatic | Building the universal archive of source code[END_REF] is a non pro t, long term universal archive speci cally designed for software source code, and able to store not only a software artifact, but also its full development history. It provides the ideal place to preserve research software artifacts, and o ers powerful mechanisms to enhance research articles with precise references to relevant fragments of your source code.

Using Software Heritage for your research software artifacts is straightforward and involves three simple steps, described in the picture below:

In this document we will go through each of these three steps, providing guidelines for making the most out of Software Heritage for your research: Section 1 describes the best practices for preparing your source code for archival; Section 2 shows how to archive your code in Software Heritage; Section 3 shows the rich functionalities you can use for referencing in your article source code archived in Software Heritage; nally, in the Appendix you will nd a formal description of the di erent kinds of identi ers available for adressing the content archived in Software Heritage.

Prepare your repository

We assume that your source code is hosted on a repository publicly accessible (Github, Bitbucket, a GitLab instance, an institutional software forge, etc.) using one of the version control systems supported by Software Heritage, currently Subversion, Mercurial and Git1 .

It is highly recommended that you provide, in your source code repository, appropriate information on your research artifact: it will make it more appealing and useful to future users (which might actually be you in a few months).

Well established best practice is to include, at the toplevel of your source code tree, three key les, README, AUTHORS and LICENSE, with the information described below.

README : A description of the software.

This le should contain at least

• the name of the software/project

• a brief description of the project.

It is also highly recommended to add the following information

• pointers to the project website and documentation,

• pointer to the project development platform,

• license for the project (if not in a separate LICENSE le),

• contact and support information,

• build/installation instructions or a pointer to a le containing them (usually INSTALL)

In could be useful to provide here also some information for the users, like a list of features or informations on how to use the source code AUTHORS : The list of all authors that need to be credited for the current version.

If you want to specify the role of each contributor in this list, we suggest to use the taxonomy of contributors presented in [START_REF] Alliez | Attributing and Referencing (Research) Software: Best Practices and Outlook from Inria[END_REF], which distinguishes the following roles: Design, Architecture, Coding, Testing, Debugging, Documentation, Maintenance, Support, Management.

LICENSE : The project license terms. For Open Source Licenses, it is strongly recommended to use the standard names that can be found on the https://spdx.org/licenses/ website.

Future users that nd your artifact useful might want to give you credit by citing it. To this end, you might want to provide instructions on how you prefer your artifact to be cited. There are many possibilities for doing that, and you might want to also provide structured citation information in speci c formats, like CodeMeta (usually in a le named Codemeta.json2) or CFF (usually in a le named CITATION.c 3).

Learning more

The seminal article Software Release Practice HOWTO by E. S. Raymond [START_REF] Raymond | Software release practice howto[END_REF] documents best practices and conventions for releasing software that have been well established for decades, and form the basis of most current recommendations. Interesting more recent resources include the REUSE website [START_REF] Europe | Reuse software[END_REF], which provides detailed guidance and tools to verify compliance with the guidelines, as well as [START_REF] Jackson | Software deposit: What to deposit (version 1.0[END_REF], which focuses more on research software.

Save your code

Once your code repository has been properly prepared, you only need to:

• go to https://archive.softwareheritage.org/browse/origin/save/,

• pick your version control system in the drop-down list, enter the code repository url2 ,

• click on the Submit button (see Figure 1).

Figure 1: The Save Code Now form

That's it, it's all done! No need to create an account or to provide personal information of any kind. If the url you provided is correct, Software Heritage will archive your repository, with its full development history, shortly after. If your repository is hosted on one of the major forges we already know, this process will take just a few hours; if you point to a location we never saw before, it can take longer, as we will need to manually approve it.

For hackers: you can also request archival programmatically, using the Software Heritage API3 ; this can be quite handy to integrate, for example, into a Make le.

Reference your work

Once your source code has been archived, there are many ways to reference it in your article. We present here three common use cases:

• link to the full repository archived in Software Heritage,

• link to a precise version of the software project,

• link to a precise version of a source code le, down to the level of the line of code.

To make this concrete, in what follows we use as a running example the article A "minimal disruption" skeleton experiment: seamless map and reduce embedding in OCaml by Marco Danelutto and Roberto Di Cosmo [START_REF] Danelutto | A "Minimal Disruption" skeleton experiment: Seamless map & reduce embedding in OCaml[END_REF] published in 2012. This article introduced a nifty library for multicore parallel programming that was distributed via the gitorious.org collaborative development platform, at gitorious.org/parmap. Since Gitorious has been shut down a few years ago, like Google Code and CodePlex, this example is particularly t to show why pointing to an archive that has your code is better than pointing to the collaborative development platform where you developed it.

Full repository

In Software Heritage, we keep track of all the origins from which source code has been retrieved, and nding a given origin is as easy as adding in front of it the pre x https://archive.

softwareheritage.org/browse/origin

These origins are the exact URLs of the version control system that a developer would use to clone a working repository, and are the same urls that you pass to the Save Code Now form described in Section 2.

In our running example, for the Parmap code on gitorious.org, this origin is https://gitorious. org/parmap/parmap.git, so the URL of the persistently archived full repository is the following: Just add this link to your article, and your readers will be able to get hold of the archived copy of your repository even if/when the original development platform goes away (as it has actually happened for gitorious.org that has been shut down in 2015).

Your readers can then browse the contents of your repository extensively, delving into its development history, and/or directory structure, down to each single source code le 4 .

N.B.: if you are unsure about what is the actual origin URL of your repository, you can look it up using the search box that is available at https://archive.softwareheritage.org/ browse/search/

Speci c version

Pointing to the full archived repository is nice, but a version controlled repository usually contains all the history of development of the source code, whiche records di erent states of the project, usually called revisions.

In order to support reproducibility of scienti c results, we need to be able to pinpoint precisely the state(s) of the source code used in the article. Software Heritage provides a very easy means of pointing to a precise revision, via a standard identi er schema, called SWH-ID, which is fully documented online and is discussed in the article [START_REF] Di Cosmo | Identi ers for digital objects: the case of software source code preservation[END_REF].

In our running example, the Parmap article, the exact revision of the source code of the library used therein has the following SWH-ID: swh:1:rev:0064fbd0ad69de205ea6ec6999f3d3895e9442c2; origin=https://gitorious.org/parmap/parmap.git; 4 For a guided tour see https://www.softwareheritage.org/2018/09/22/ browsing-the-software-heritage-archive-a-guided-tour/ And you can turn this identi er into a clickable URL by prepending to it the pre x https: //archive.softwareheritage.org/: you can try it live right now by clicking on this link.

Getting your SWH-ID

A very simple way of getting the right SWH-ID is to browse your archived code in Software Heritage, and to navigate to the revision you are interested in. Click then on the permalinks vertical red tab that is present on all pages of the archive, and in the tab that opens up you select the revision identi er: an example is shown in Figure 2. The two convenient buttons on the botton right allow you to copy the identi ers or the full permalink in the clipboard, to insert in your article as you see t.

Generating and verifying SWH-IDs (for the geeks)

Version 1 of the SWH-IDs uses git-compatible hashes, so if you are using git as a version control system, you can create the right SWH-ID by just prepending swh:1:rev: to your commit hash. This might come pretty handy if you plan to automate the generation of the identi ers to be included in your article: you will always have your code and your article in sync! Software Heritage identi ers can also be generated and veri ed independently by anyone using swh-identify, an open source tool developed by Software Heritage, and distributed via PyPI as swh.model (stable version at swh:1:rev:6cab1cc81118877e2105c32b08653509475f3eaa; origin=https://pypi.org/project/swh.model/).

Code fragment

A particularly nifty feature of the SWH-IDs supported by Software Heritage is the ability to pinpoint a fragment of code inside a speci c version of a le, by using the lines= quali er available for identi ers that point to les.

Let's see this feature at work in our running example, which shows clearly how an article can be greatly enhanced by providing pointers to code fragments. In Figure 1 of [START_REF] Danelutto | A "Minimal Disruption" skeleton experiment: Seamless map & reduce embedding in OCaml[END_REF], which is shown here as Figure 3a, the authors want to present the core part of the code implementing the parallel functionality that constitutes the main contribution of their article. The usual approach is to typeset in the article itself an excerpt of the source code, and let the reader try to nd it by delving into the code repository, which may have evolved in the mean time. Finding the exact matching code can be quite di cult, as the code excerpt is often edited a bit with respect to the original, sometimes to drop details that are not relevant for the discussion, and sometimes due to space limitations.

In our case, the article presented 29 lines of code, slightly edited from the 43 actual lines of code in the Parmap library: looking at 3a, one can easily see that some lines have been dropped (102-103, 118-121), one line has been split (117) and several lines simpli ed (127, 132-133, 137-142).

Using Software Heritage, the authors can do a much better job, because the original code fragment can now be precisely identi ed by the following Software Heritage identi er: swh:1:cnt:d5214 9562a1fe78db51944506ba48c20de3379; origin=https://gitorious.org/parmap/parmap.git; lines=101-143 This identi er can also be easily obtained using the permalink box shown in Section 3.2.1 above, and it will always point to the code fragment shown in Figure 3b.

The caption of the original article shown in Figure 3a can then be signi cantly enhanced by incorporating all the clickable links needed to point to the exact source code fragment that has been edited for inclusion in the article, as shown in Figure 4.

Simple implementation of the distribution, fork, and recollection phases in Parmap (slightly simpli ed from the actual code present in the version of Parmap used for this article) Figure 4: A caption text with links to code fragment and revision When clicking on the hyperlinked text in the caption shown above, the reader is brought seamlessly to the Software Heritage archive on a page showing the corresponding source code archived in Software Heritage, with the relevant lines highlighted (see Figure 3b).

For L A T E X users, the caption of 4 can be written using a few convenient auxiliary macros, as shown in Figure 5.

\newcommand{\swhurl} [START_REF] Abramatic | Building the universal archive of source code[END_REF]{https://archive.softwareheritage.org/#1} \newcommand{\swhref} [START_REF] Alliez | Attributing and Referencing (Research) Software: Best Practices and Outlook from Inria[END_REF]

Acknowledgements

These guidelines result from extensive discussions that took place over several years. Special thanks to Alain Girault, Morane Gruenpeter, Julia Lawall, Arnaud Legrand and Nicolas Rougier for their precious feedback on earlier versions of this document.

Table 1: EBNF grammar of Software Heritage persistent identi ers <identifier> ::= "swh" ":" <scheme_version> ":" <obj_type> ":" <obj_id> ; A Appendix: Reference for SWH-ID identi ers

The SWH-ID identi er schema is fully documented online and is discussed in the article [START_REF] Di Cosmo | Identi ers for digital objects: the case of software source code preservation[END_REF], but we reproduce here for completeness an excerpt of the documentation.

A.1 Syntax

Syntactically, persistent identi ers are generated by the <identifier> entry point of the EBNF grammar given in Table 1.

A.2 Semantics

The swh pre x makes explicit that these identi ers are related to Software Heritage, and the colon (:) is used as separator between the logical parts of identi ers. The scheme version (currently 1) is the current version of this identi er scheme.

A persistent identi er points to a single object, whose type is explicitly captured by <object_type>:

snp identi ers points to snapshots, rel to releases, rev to revisions, dir to directories, cnt to contents.

The actual object pointed to is identi ed by the intrinsic identi er <object_id>, which is a hex-encoded (using lowercase ASCII characters) SHA1 [START_REF] Dang | Changes in federal information processing standard (ps) 180-4, secure hash standard[END_REF] computed on the content and metadata of the object itself. 5Table 2: EBNF grammar of complementary contextual information <identifier_with_context> ::= <identifier> [<lines_ctxt>] [<origin_ctxt>] ; <lines_ctxt> ::= ";" "lines" "=" <line_number> ["-" <line_number>] ; <origin_ctxt> ::= ";" "origin" "=" <url> ; <line_number> ::= <dec_digit> + ; <url> ::= (* RFC 3986 compliant URLs *) ;

• the line number(s) of interest, usually within a content object The semi-colon (;) is used as a separator between the object identi er and other contextual information. Each piece of contextual information is speci ed as a key/value pair, using the equal sign (=) as a separator. The extended contextual elements should be added in the following manner: software origin a URL where a given object has been found or observed in the wild and used by Software Heritage to ingest the object into the archive.

line numbers a single line number or a line range, two numbers separated with the hyphen (-). Note that line numbers are purely indicative and are not meant to be stable, as in some degenerate cases (e.g., text les which mix di erent types of line terminators) it is impossible to resolve them unambiguously.

For example, the following identi er swh:1:dir:c6f07c2173a458d098de45d4c459a8f1916d900f; origin=https://github.com/id-Software/Quake-III-Arena points to the source code root directory of the computer game Quake III Arena6 with the origin URL where it was found; while swh:1:cnt:41ddb23118f92d7218099a5e7a990cf58f1d07fa; lines=64-72 points to a comment segment with the warning "NOLI SE TANGERE" in a le in the Apollo-11 source code.

Figure 2 :

 2 Figure 2: Obtaining a Software Heritage identi er using the permalink box on the archive Web user interface

 (a) as presented in the article[START_REF] Danelutto | A "Minimal Disruption" skeleton experiment: Seamless map & reduce embedding in OCaml[END_REF] (b) as archived in Software Heritage

Figure 3 :

 3 Figure 3: Code fragment from the published article compared to the content in the Software Heritage archive

Figure 5 :

 5 Figure 5: Adding clickable hyperlinks to Software Heritage in L A T E X

 <scheme_version> ::= "1" ; <obj_type> ::= "snp" (* snapshot *) | "rel" (* release *) | "rev" (* revision *) | "dir" (* directory *) | "cnt" (* content *) ; <obj_id> ::= 40 * <hex_digit> ; (* intrinsic object id, as hex-encoded SHA1 *) <hex_digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" | "a" | "b" | "c" | "d" | "e" | "f" ;

For up to date information, see https://archive.softwareheritage.org/browse/ origin/save/

Make sure to use the clone/checkout url as given by the development platform hosting your code. It can easily be found in the web interface of the development platform.

For details, see https://archive.softwareheritage.org/api/1/origin/save/

https://archive.softwareheritage.org/browse/origin/https://gitorious. org/parmap/parmap.git

Seehttps://docs.softwareheritage.org/devel/swh-model/ persistent-identifiers.html for more details.

See https://en.wikipedia.org/wiki/Quake_III_Arena

A.3 Git compatibility

Intrinsic object identi ers for contents, directories, revisions, and releases are, at present, compatible with the Git way of computing identi ers for its objects. A Software Heritage content identi er will be identical to a Git blob identi er of any le with the same content, a Software Heritage revision identi er will be identical to the corresponding Git commit identi er, etc. This is not the case for snapshot identi ers as Git doesn't have a corresponding object type. Git compatibility is incidental and is not guaranteed to be maintained in future versions of this scheme (or Git), but is a convenient feature for developers, for the time being.

A.4 Examples

A.5 Contextual information

It is often useful to complement persistent identi ers with contextual information about the object's setting. Currently it is possible to extend the identi er with the optional elements below using the dedicated syntax presented in Table 2: • the software origin where an object has been found/observed