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Abstract. The true difficulty of the twin paradox does not reside in the algebra that shows that the
traveling twin ages less than the twin who stays at home. The truly startling part of the paradox resides
in the much more difficult question why the argument cannot be reversed by symmetry, because there
is no such thing as a preferred reference frame, and motion ought to be relative. Can the traveling twin
not claim with equal rights to have stayed at home while the other twin has made the journey? Most of
the time text books invoke the accelerations intervening in the trip to explain the asymmetry. We will
show that one can formulate and solve the paradox without making any reference to accelerations. There
is actually something very simple that has been overlooked. In drafting the protocol which defines the
journey, we unwittingly pick a preferred reference frame, because we define the protocol with respect to a
given frame, which thereby becomes special. It is this selection of a special reference frame which introduces
the asymmetry. Hence, it is the reference frame wherein we define the protocol that will act like an absolute
frame and whose unavoidable introduction breaks the symmetry between the twins. There is an infinity
of protocols that can be selected to define a trip and each of these trips leads to its own corresponding
twin paradox, with its own outcome as to which twin will age less. Whereas the individual trips of the two
twins with respect to this protocol are asymmetrical, the set of all possible trips is symmetrical, such that
the symmetry of the Lorentz group is indeed respected.

PACS. 03.30.+p Special relativity

1 Introduction

The twin paradox [1] can be assumed to be sufficiently popularized to be even well known to the layman audience. A
nice historical overview with many references was given by Benguigui [2]. Let us call our twins Sarah and Théo. Sarah
will be the twin who travels from P to Q and then backwards from () to P at a uniform velocity v. Her brother Théo
will be the twin who stays at home in P. The true difficulty of the twin paradox is not the trivial calculation which
shows that according to the theory of special relativity Sarah will turn out to have aged less than her twin brother
Théo. That argument only scratches the surface of the paradox. The true paradox resides in the much more difficult
question why Sarah cannot claim with equal rights that she stayed at home and that it is her brother Théo who did
all the travelling and therefore should be younger than her according to the very same theory of special relativity.
This is a serious, fundamental question because it addresses the self-consistency of the mathematical framework. In
many text books, the asymmetry is explained on the basis of the accelerations that inevitably must intervene at the
beacons which are defining the trip. Even Einstein has claimed this. This seems to make a lot of sense. It meets our
physical intuition. What else is there we could get our hands on? What else is there in the form of a telltale difference
that could constitute an objective cause for the asymmetry?

Most people will feel intimidated by the turn the problem is taking this way, because there are far less physicists
who are fully acquainted with general relativity than there are with special relativity. To the ones who do not master
general relativity this will be felt as a curse. The task - of getting fluent in general relavity first - looks so overwhelming
and time-consuming that they may feel like abandoning their desire of further inquiring into the paradox all together.
We want to break some good news for those people: Within a properly selected setting, the arguments based on
accelerations are irrelevant! In fact, in that setting the accelerations are merely a self-inflicted smoke screen. We can
happily ignore them as the whole argument can be developed without any reference to them.
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2 Geometry versus physics

The issue of the accelerations can be removed completely from the considerations by removing all physical objects from
the description and treating the problem as a “purely geometrical” one. The geometry in question is just Minkowki
space-time and the Poincaré transformations of special relativity are a set of isometries of this geometry. All other
issues (like accelerations and forces) are exterior to this “geometry” and added on. The paradox addresses then a
purely mathematical issue, viz. that of the self-consistency of this geometrical framework which becomes the stage
for relativistic kinetics and dynamics just like Euclidean geometry and the Galileo transformations are the stage for
Newtonian kinetics and dynamics. People have presented this problem in terms of twins to render the presentation
more vivid. However, this way they have also introduced the accelerations because physical objects cannot change
speeds without accelerations. After introducing these accelerations, the resulting problem is then no longer equivalent
to the initial, purely mathematical problem of the self-consistency of the space-time geometry, because we have now
introduced also elements of physics (viz. forces and accelerations). It cannot be right to solve a purely mathematical
problem by using arguments that come from physics.

There are thus two intrinsically different formulations of the twin paradox: a “geometrical” one and a physical
one. We think that by returning to the clinical essentials of the purely geometrical formulation, our presentation can
gain a lot in didactical clarity. We have claimed here that special relativity is “geometry” because mathematicians
have shown that it is a form of hyperbolic geometry. We do not really need to know or understand this and it does
not really imply that special relativity would not be physics. It remains physics in the sense that nature tells us that
it has chosen hyperbolic geometry instead of Euclidean geometry as the basic setting for its formulation. We only
use the opposition geometry/physics to make it easy to discern that we should not solve a problem by introducing
elements that are exterior to the framework of its formulation. We can equally appreciate in more familiar terms that
the twin paradox can be formulated within the context of special relativity and that introducing accelerations changes
the framework from special to general relativity, whereby we end up with a different type of twin paradox.

In many approaches based on accelerations it is argued that the traveling twin must undergo accelerations, that he
must feel these accelerations and that this clearly shows the asymmetry. We want to point out that this is a leading
argument. A space craft in circular orbit around the Earth is in an accelerated motion and the people inside do not feel
anything of this motion: They are “weightless”. This is so symmetrical that in the analogous problem of the motion of
the Earth around the Sun we have believed for millenia that the Earth was standing still with the rest of the Universe
revolving around us. If we replaced the Sun by a black hole and we kept far enough away from it in order not to feel
tidal effects at the scale of our bodies, we could circle around that black hole at relativistic velocities and think we
are standing still because we do not feel any acceleration: In the language of general relativity we would be travelling
on a geodesic. One can thus not tell always to Sarah that she should admit that she has felt accelerations to convince
her of the fact that she is not allowed to turn the tables by claiming that from her viewpoint it was Théo who made
the travel. Of course, felt or otherwise, all accelerations will introduce additional effects of time dilatation in addition
to those of special relativity.

3 Squeezing out the accelerations

In our approach we will severely limit the use we make of the full homogeneous Lorentz group SO(3,1), which is
non-abelian and contains the group SO(3) of the rotations of R3. We will only use the abelian subgroup SO(1,1) of all
boosts along the z-axis. This implies that we only consider linear paths and ban curved paths from the considerations
all together. All this is motivated by our concern to keep things as simple as possible and to avoid introducing
accelerations. In the further developments, we will need to use the extension of this group to a Poincaré-type group
that allows also for translations in space and in time.

Let us consider a trip from P to Q at a velocity v = ve,, followed by a trip from @ to P at a velocity —v = —ve,.
Of course, following standard physical thinking, there must be some short-time accelerations at P and . For the
rest of the time, the motion could then be uniform. But we can try to think out of the box. We will consider for this
purpose a Lorentz frame F} that does never accelerate and always travels at speed v with respect to Théo. Sarah’s
travel is considered to start when the origin of this frame F} passes in front of Théo who is situated at P. There is
one frame Fj in the whole set of frames that are always travelling with uniform velocity v with respect to Théo in
the Poincaré-type extension of SO(1,1) that is of interest to us. The only difference between F; and the other frames
is the moment at which it passes in P in front of Théo. We can set the clock in F} equal to zero at the moment it
passes Théo. Now we consider also the whole set of frames that always travel with uniform velocity —v with respect
to Théo. We select the frame F5 that passes in ) at the very moment F3 passes in (). And at that moment we set
the reading of the clock in F5 equal to the reading of the clock in F}. When Fj will pass in P in front of Théo, we
can register its reading and this will define mathematically the total traveling time for Sarah. In this scheme, which is
purely mathematical and cannot really be carried out by a physical being like Sarah, there are no accelerations. Our
formulation and definition are obviously exempt of any reference to accelerations. Admittedly, in this abstraction we
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no longer discuss real physical trips with real physical twins, but we can still discuss the basic issues of time dilatation
in special relativity. In fact, this alternative Gedanken experiment could also be carried out in principle. It would only
require even more siblings. It is for the abstract problem formulated this way that we will solve the paradox.

The time dilatation exists already as a purely “geometrical” effect within special relativity. What we have done
in searching for our approach is finding out under which conditions we can formulate the problem under its pure
mathematical form, such that it reveals the intrinsic truth within the mathematical theory beyond discussion. The
discussion without the accelerations is so to say an idealized mathematical theory. It takes the form of a Gedanken
experiment from which we have banned any pollution of the purely mathematical argument by what we consider as
physical limitations of the experimental set-up for the measurement of the ideal result. We relegate the accelerations
to the status of imperfections in the design of the experimental set-up. Classical theories are always idealized in the
sense that the imperfections of the measuring device do not enter the theory. This way of presenting things is of course
a purely mental view. But it permits to exclude the accelerations from the idealized theory by considering them as
imperfections of our experimental set-up. The set-up must be designed such as to make the relative influence of the
imperfections as small as possible.

The following argument shows how we can render the relative contribution of the accelerations to the age difference
negligible in a physical experiment with real twins. We can make the accelerations take place over short distances PP,
Q1Q, QQ, and Py P. The motions over P;@Q1 and @1 P; are then uniform. Whatever the effect of the accelerations may
be, we can choose the distance P;@Q; and make it so long that the effect of the accelerations becomes negligible with
respect to the age difference that builds up during the uniform motions over P, (1 and ()1 P;. This is is because the age
difference builds up linearly along the distance P;@Q7. Due to the homogeneity of space, increasing the distance P; Q1
will not change the effect of the accelerations over PPy, Q1Q, Q@1 and P; P. We can thus make the age difference as
large as we like by increasing the distance P; @1, a fact that must condemn any quantitative attempt to account for the
assymetry between the two twins on the sole basis of the accelerations. This shows conclusively that attributing the
asymmetry uniquely to the accelerations is logically flawed and raises the question of the true origin of the asymmetry
within a pure context of special relativity.

4 Purely geometrical solution

We consider frames F} and F] that are passing in P and in ) when the time ¢ on Théo’s clock is zero. In the whole
set of frames FYy with velocity v the distance P(Q is Lorentz contracted, which explains why Sarah ages less. This is
due to the fact that the whole trip is defined by points P and @ in Théo’s frame. As a matter of fact, the end points
P and Q of Sarah’s trip are at rest in his frame. The whole trip is defined in Théo’s frame. It is the definition of
the trip which introduces the asymmetry. To reverse the argument to make it symmetrically valid for Sarah, we must
define the trip differently. We must define the trip by beacons in space-time that are not defined in Théo’s frame but
in Sarah’s frame. They should be at rest in Sarah’s frame. At first sight this may look like a puzzling statment due to
the fact that Sarah’s trip corresponds to two frames within the formulation as it stands now. But we will explain in
a while how this can be done in an even more general formulation. There are no physical objects available to us that
could play the role of the beacons required. All the physical objects we have at our disposal and that could play the
role of beacons belong to Théo’s frame. We must therefore introduce purely mathematical beacons rather than true
physical objects in order to define the “symmetrical trip” of Théo with respect to Sarah.

The beacons must also be traveling frames. We would have to launch rockets from remote positions in space at
well chosen times to obtain objects that could serve as physical objects embodying the beacons which Sarah needs to
define Théo’s symmetrical trip. As this is not very practical, we consider the beacons as mathematical objects. With
the appropiate mathematically defined beacons, it will be Théo who turns out to be the younger twin at the end of
the trip.

Let us point out in a first step that we can even define the end points of the trip in a frame that travels at such a
speed that Théo seems to travel at a speed —w and Sarah at a speed w with respect to it. Following Galilean logic this
frame would have velocity w = v/2, but relativistically the value of w is different, due the addition rule for velocities
in the Lorentz group, such that w is rather defined by the second-degree equation v = 2w/(1 + w?/c?). This equation
2
v=(1-2v2/ 02)*1/ 2 as usual. The solution with the plus sign must be discarded because it would lead to superluminal
velocities w > ¢. One can easily convince oneself that the other solution always implies w < c. If we defined the trip
appropriately with beacons at rest in a frame with this velocity w, then both Théo and Sarah would have to travel
and they would end up with the same age.

To make an in-depth study of the asymmetry (see Fig. 1), we can thus choose first a reference frame wherein the
two beacons one will use to define the trip are at rest. All calculations can be made by formulating the trips with
respect to this reference frame. They can be translated by Lorentz transformations to any other frames. But we will
not present any of these calculations because they are tedious and well known. All time dilatations can be calculated

applies both to the to and fro parts of the relative trip. The equation has two algebraic solutions w = where
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Fig. 1. The generalized scheme for the trips of Théo and Sarah in the reference frame wherein we define the protocol. In this
protocol frame the beacons at Qr and Qs are fixed. In the first part, the twins move out. In the second part they join one
other again. Both trips have the same duration within the protocol frame. The classical twin paradox is obtained in the limit
wr — 0. The point Q7 coincides then with P. The symmetrical journey, where Théo ages less, is obtained in the limit ws — 0.
Qs coincides then with P. But this symmetrical journey does not correspond to Théo’s relative motion with respect to Sarah
in the journey that corresponds to the limit wr — 0. We can consider a whole continuum whereby the relative motion occurs
with velocity v = (ws +wr)/(1 +wswr/c?), and the ratio wr/ws € [0, 00[. One can even extend this to wr/ws €] — oo, oo, if
we allow the twins to move out in the same direction.

from the relative velocities with respect to the protocol frame and are of some form ¢’ = t/7, where v can take the
values vy or vg. Towards this frame Sarah can have a speed wg and Theo a speed wy, while the relative speed of
Sarah to Theo is v = (wg + wr)/(1 + wswr/c?). We must then adjust the lengths of the trips of Sarah and Theo in
such a way that we prevent that also the relative velocity v = (wg — wr)/(1 —wswr/c?) enters the scene. Having two
relative velocities within the protocol is actually not forbidden, but we want to keep things as simple as possible. This
way the two twins will travel the same amount of time in the protocol frame. In the more specific cases wpr = 0 and
wr = wg mentioned above these constraints on the lengths are implicit, because one length is zero, or both lengths are
equal. In the traditional twin paradox we are thus identifying the protocol frame with Théo’s frame. In the generalized
formulation this ambiguity is lifted. We can also define the problem in the reverse way, by imposing v and a ratio
wg/wy. After having fixed this problem we can then have wg > wy such that Sarah ages less, wg = wy such that
both twins age at the same rate, or wg < wr such Theo ages less. Each of these cases entails a different twin paradox.
This will make it much more obvious that we are bound to pick a biased set of beacons to define a trip, and that this
surreptitiously introduces a priviliged frame that seems to define some absolute rest. The bias we have fallen prey to
in the standard presentation of the twin paradox is due to the contents of the set of physical objects that are available
to us. With the mathematical beacons we can define trips at will. (One could even define a trip by two beacons that
are not at rest in a same frame, but we will not consider this complication). For each paradox one can eliminate the
accelerations by replacing both Sarah and Theo by two frames whose origins pass the beacons at the right times in
the protocol frame. In the limits wg — 0 or wp — 0 one of the sets of two frames coalesces into a single frame. In the
general formulation, the situation is entirely symmetrical with each twin requiring two frames. The description in the
protocol frame can be translated to any other Lorentz frame. We can define an infinity of trip protocols, leading to an
infinity of twin paradoxes. There is thus not just one twin paradox, but an infinity of them. Allowing for accelerations
in the calculations is certainly possible but we then switch from the geometrical to the physical problem, from special
relativity to general relativity, only adding further algebraic and conceptual complexity.

5 The difference between relativistic and Galilean symmetry of relative motion

Some confusion can be created by our classical intuition based on Newtonian mechanics, where the relative motions
conceptually just take the mathematical expressions r(¢) (for Sarah’s motion with respect to Théo) and —r(¢) (for
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Théo’s motion with respect to Sarah). We may embark that intuition unwittingly with us at the back of our mind in
our quest for understanding. This is a red flag! Because in relativity this is plain wrong, as the two twins have different
schemes of simultaneity. For the problem at hand, we must rule out any such inconscious appeal to our classical
intuition right from the start by a conscious act of rejection. The symmetry between the journeys the two twins are
carrying out is not of the Newtonian or Galilean type. The symmetry that prevails in relativity is of a different type.
In relativity, the set S of all possible journeys is symmetrical just like in Galilean logic such that it contains both r(¢)
and —r(t). But in relativity the symmetry does not follow the Galilean logic all the way, because for a given trip,
—r(t) is no longer the journey of Théo with respect to Sarah if the journey of Sarah with respect to Théo is r(¢).
It is rather of a type r'(¢'), where r’ and ¢’ must be carefully detailed, and certainly is not equal to —r(¢). In other
words, the expected relativistic symmetry duly exists but it applies to the complete set S of possible trips, while the
detailed Galilean symmetry r(t) <> —r(t) between two travelers in a single trip does no longer prevail. Very obviously,
we should never have doubted about all this because SO(1,1) and SO(3,1) are groups and therefore automatically
symmetrical. After introducing a prefered frame, the group will still remain symmetrical with respect to this frame.

6 Conclusion

In conclusion, we have just been victims of a bias that exists within the set of the physical objects available to us in
the physical world that surrounds us and which could serve as possible beacons for trips. But the correct full set of
all possible beacons must be unbiased and very obviously reflect the full symmetry of the Lorentz group. A slightly
different version of this paper was submitted on the 9th of August 2019 to the American Journal of Physics. The
editor, Richard H. Price, rejected the paper justifying this decision by stating: “You seem to be denying the fact that
time dilation is physically real. It has, in fact, been confirmed by many experiments”. The very fact that I try to explain
the asymmetry of time dilatation, shows that I cannot possibly deny its existence, such that his statement can only
be considered as gaslighting. Pass my paper on, dear reader. Perhaps what goes around will then come around.

References

1. E.F. Taylor and J.A. Wheeler, in Spacetime Physics, Freeman, New York (1963).
2. L. Benguigui, “The tale of two twins”, arXiv:1212.4414 (2012).



