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Abstract. The true difficulty of the twin paradox does not reside in the algebra that shows that the
traveling twin ages less than the twin who stays at home. The truly startling part of the paradox resides in
the much more difficult question why the argument cannot be reversed by symmetry, because there is no
such thing as a preferred reference frame, and relative motion ought to be symmetrical. Can the traveling
twin not claim with equal rights to have stayed at home while the other twin has made the journey? Most
of the time text books invoke the accelerations intervening in the trip to explain the asymmetry. We will
show that one can formulate and solve the paradox without making any reference to accelerations. There
is actually something very simple that has been overlooked. In drafting the protocol which defines the
journey, we unwittingly pick a preferred refrence frame, because we define the protocl with respect to a
given frame, which thereby becomes special. It this selection of a special reference frame which introduces
the asymmetry. Hence, it is the reference frame wherein we define the protocol that will act like an absolute
frame and whose unavoidable introduction breaks the symmetry between the twins. There is an infinity
of protocols that can be selected to define a trip and each of these trips leads to its own corresponding
twin paradox, with its own outcome as to which twin will age less. Whereas the individual trips of the two
twins with respect to this protocol are asymmetrical, the set of all possible trips is symmetrical, such that
the symmetry of the Lorentz group is indeed respected.

PACS. 03.30.+p Special relativity

The twin paradox [1] can be assumed to be sufficiently popularized to be even well known to the layman audience.
Let us call our twins Sarah and Théo. Sarah will be the twin who travels from P to Q and then backwards from Q to
P at a uniform velocity v. Her brother Théo will be the twin who stays at home in P . The true difficulty of the twin
paradox is not the trivial calculation which shows that according to the theory of special relativity Sarah will turn
out to have aged less than her twin brother Théo. That argument only scratches the surface of the paradox. The true
paradox resides in the much more difficult question why Sarah cannot claim with equal rights that she stayed at home
and that it is her brother Théo who did all the travelling and therefore should be younger than her according to the
very same theory of special relativity. This is a serious, fundamental question because it addresses the self-consistency
of the mathematical framework. In many text books, the asymmetry is explained on the basis of the accelerations that
inevitably must intervene at the beakons which are defining the trip. Even Einstein has claimed this. This seems to
make a lot of sense. It meets our physical intuition. What else is there we could get our hands on? What else is there
in the form of a telltale difference that could constitute an objective cause for the asymmetry?

Most people will feel intimidated by the turn the problem is taking this way, because there are far less physicists
who are fully acquainted with general relativity than there are with special relativity. To the ones who do not master
general relativity this will be felt as a curse. The task - of getting fluent in general relavity first - looks so overwhelming
and time-consuming that they may feel like abandoning their desire of further inquiring into the paradox all together.
We want to break some good news for those people: The arguments based on accelerations are irrelevant! In fact,
the accelerations are merely a self-inflicted smoke screen. We can happily ignore them as the whole argument can be
developed without any reference to them.

The issue of the accelerations can be removed completely from the considerations by removing all physical objects
from the description and treating the problem as a purely mathematical consequence of the Lorentz transformations
of special relativity. After all, the paradox addresses a purely mathematical issue, viz. that of the self-consistency of
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the mathematical framework. People have presented this problem in terms of twins to render the presentation more
palatable. However, this way they have also introduced the accelerations because physical objects cannot change speeds
without accelerations. The resulting physical problem is then no longer equivalent to the initial, purely mathematical
problem of the self-consistency of the space-time geometry. We think that by returning to the initial mathematical
problem, our presentation can gain a lot in clarity.

In our approach we will severely limit the use we make of the full homogeneous Lorentz group SO(3,1), which is
non-abelian and contains the group SO(3) of the rotations of R3. We will only use the abelian subgroup SO(1,1) of all
boosts along the x-axis. This implies that we only consider linear paths and ban curved paths from the considerations
all together. All this is motivated by our concern to keep things as simple as possible and to avoid introducing
accelerations. In the further developments, we will need to use the extension of this group to a Poincaré-type group
that allows also for translations in space and in time.

Let us consider a trip from P to Q at a velocity v = vex, followed by a trip from Q to P at a velocity −v = −vex.
Of course, following standard physical thinking, there must be some short-time accelerations at P and Q. For the
rest of the time, the motion could then be uniform. But we can try to think out of the box. We will consider for this
purpose a Lorentz frame F1 that does never accelerate and always travels at speed v with respect to Théo. Sarah’s
travel is considered to start when the origin of this frame F1 passes in front of Théo who is situated at P . There is
one frame F1 in the whole set of frames that are always travelling with uniform velocity v with respect to Théo (in
the Poincaré-type extension of SO(1,1)), that is of interest to us. The only difference between F1 and the other frames
is the moment at which it passes in P in front of Théo. We can set the clock in F1 equal to zero at the moment it
passes Théo. Now we consider also the whole set of frames that always travel with uniform velocity −v with respect
to Théo. We select the frame F2 that passes in Q at the very moment F1 passes in Q. And at that moment we set
the reading of the clock in F2 equal to the reading of the clock in F1. When F2 will pass in P in front of Théo, we
can register its reading and this will define mathematically the total traveling time for Sarah. In this scheme, which
is purely mathematical and cannot really be carried out by a physical being like Sarah, there are no accelerations.
Our formulation and definition are obviously exempt of any reference to accelerations. Admittedly, in this abstraction
we no longer discuss real physical trips with real physical twins, but we can still discuss the basic issues. It is for the
abstract problem formulated this way that we will solve the paradox.

The time dilatation is a purely mathematical effect of special relativity. What we have done in searching for our
approach is finding out under which conditions we can formulate the problem under its pure mathematical form,
such that it reveals the intrinsic truth within the mathematical theory beyond discussion. The discussion without the
accelerations is so to say an idealized mathematical theory. It takes the form of a Gedanken experiment from which
we have banned any pollution of the purely mathematical argument by what we consider as physical limitations of the
experimental set-up for the measurement of the ideal result. We relegate the accelerations to the status of imperfections
in the design of the experimental set-up. Classical theories are always idealized in the sense that the imperfections
of the measuring device do not enter the theory. This way of presenting things is of course a purely mental view.
But it permits to exclude the accelerations from the idealized theory by considering them as imperfections of our
experimental set-up. The set-up must be designed such as to make the relative influence of the imperfections as small
as possible.

The following argument shows how we can render the relative contribution of the accelerations to the age difference
negligible in a physical experiment with real twins. We can make the accelerations take place over short distances PP1,
Q1Q, QQ1 and P1P . The motions over P1Q1 and Q1P1 are then uniform. Whatever the effect of the accelerations may
be, we can choose the distance P1Q1 and make it so long that the effect of the accelerations becomes negligible with
respect to the age difference that builds up during the uniform motions over P1Q1 and Q1P1. This is is because the age
difference builds up linearly along the distance P1Q1. Due to the homogeneity of space, increasing the distance P1Q1

will not change the effect of the accelerations over PP1, Q1Q, QQ1 and P1P . We can thus make the age difference as
large as we like by increasing the distance P1Q1, a fact that must condemn any quantitative attempt to account for
the assymetry between the two twins on the basis of the accelerations. This shows conclusively that attributing the
asymmetry to the accelerations is logically flawed and raises the question of the true origin of the asymmetry.

We consider frames F1 and F ′
1
that are passing in P and in Q when the time t on Théo’s clock is zero. In the whole

set of frames F j
1
with velocity v the distance PQ is Lorentz contracted, which explains why Sarah ages less. This is

due to the fact that the whole trip is defined by points P and Q in Théo’s frame. As a matter of fact, the end points
P and Q of Sarah’s trip are at rest in his frame. The whole trip is defined in Théo’s frame. It is the definition of
the trip which introduces the asymmetry. To reverse the argument to make it symmetrically valid for Sarah, we must
define the trip differently. We must define the trip by beakons in space-time that are not defined in Théo’s frame but
in Sarah’s frame. They should be at rest in Sarah’s frame. There are no physical objects available to us that could
play the rôle of the beakons required. All the physical objects we have at our disposal and that could play the rôle of
beakons belong to Théo’s frame. We must therefore introduce purely mathematical beakons rather than true physical
objects in order to define the “symmetrical trip” of Théo with respect to Sarah. The beakons must also be traveling
frames. We would have to launch rockets from remote positions in space at well chosen times to obtain objects that
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could serve as physical objects embodying the beakons which Sarah needs to define Théo’s symmetrical trip. As this
is not very practical, we consider the beakons as mathematical objects. With the appropiate mathematically defined
beakons, it will be Théo who turns out to be the younger twin at the end of the trip.

We can even define the end points of the trip in a frame that travels at such a speed that Théo seems to travel
at a speed −w and Sarah at a speed w with respect to it. Following Galilean logic this frame would have velocity
w = v/2, but relativistically the value of w is different, due the addition rule for velocities in the Lorentz group, such
that w is rather defined by the second-degree equation v = 2w/(1 +w2/c2). This equation applies both to the to and

fro parts of the relative trip. The equation has two algebraic solutions w = c2

v
γ±1

γ , where γ = (1− v2/c2)−1/2 as usual.

The solution with the plus sign must be discarded because it would lead to superluminal velocities w ≥ c. One can
easily convince oneself that the other solution always implies w ≤ c. If we defined the trip appropriately with beakons
at rest in a frame with this velocity w, then both Théo and Sarah would have to travel and they would end up with
the same age.

To make an in-depth study of the asymmetry, we can thus choose first a reference frame wherein the two beakons
one will use to define to define the trip are at rest. Towards this frame Sarah can have a speed wS and Theo a speed
wT , while the relative speed of Sarah to Theo is v = (wS + wT )/(1 + wSwT /c

2). We must then adjust the lengths of
the trips of Sarah and Theo in such a way that we prevent that also the relative velocity v = (wS−wT )/(1−wSwT /c

2)
enters the scene. Having two relative velocities within the protocol is actually not forbidden, but we want to keep
things as simple as possible. This way the two twins will travel the same amount of time in the protocol frame. In
the more specific cases wT = 0 and wT = wS treated above these constraints on the lengths are implicit, because one
length is zero, or both lengths are equal. In the traditional twin paradox we are thus identifying the protocol frame
with Théo’s frame. We can also define the problem in the reverse way, by imposing v and a ratio wS/wT . After having
fixed this problem we can then have wS > wT such that Sarah ages less, wS = wT such that both twins age at the
same rate, or wS < wT such Theo ages less. Each of these cases entails a different twin paradox. This will make it
much more obvious that we are bound to pick a biased set of beakons to define a trip, and that this surreptitiously
introduces a priviliged frame that seems to define some absolute rest. The bias we have fallen prey to in the standard
presentation of the twin paradox is due to the contents of the set of physical objects that are available to us. With the
mathematical beakons we can define trips at will. (One could even define a trip by two beakons that are not at rest
in a same frame, but we will not consider this complication). For each paradox one can eliminate the accelerations
by replacing Sarah and Theo by a number of frames whose origins pass the beakons at the right time. We can define
an infinity of trip protocols, leading to an infinity of twin paradoxes. There is thus not just one twin paradox, but an
infinity of them. Allowing for accelerations in the calculations is certainly possible but only adds algebraic complexity.

Some confusion can be created by our classical intuition based on Newtonian mechanics, where the relative motions
conceptually just take the mathematical expressions r(t) (for Sarah’s motion with respect to Théo) and −r(t) (for
Théo’s motion with respect to Sarah). We may embark that intuition unwittingly with us at the back of our mind in
our quest for understanding. This is a red flag! Because in relativity this is plain wrong, as the two twins have different
schemes of simultaneity. For the problem at hand, we must rule out any such inconscious appeal to our classical
intuition right from the start by a conscious act of rejection. The symmetry between the journeys the two twins are
carrying out is not of the Newtonian or Galilean type. The symmetry that prevails in relativity is of a different type.
In relativity, the set S of all possible journeys is symmetrical just like in Galilean logic such that it contains both r(t)
and −r(t). But in relativity the symmetry does not follow the Galilean logic all the way, because for a given trip,
−r(t) is no longer the journey of Théo with respect to Sarah if the journey of Sarah with respect to Théo is r(t).
It is rather of a type r

′(t′), where r
′ and t′ must be carefully detailed, and certainly is not equal to −r(t). In other

words, the expected relativistic symmetry duly exists but it applies to the complete set S of possible trips, while the
detailed Galilean symmetry r(t) ↔ −r(t) between two travelers in a single trip does no longer prevail. Very obviously,
we should never have doubted about all this because SO(1,1) and SO(3,1) are groups and therefore automatically
symmetrical. After introducing a prefered frame, the group will still remain symmetrical with respect to this frame.
We have just been victims of a bias that exists within the set of the physical objects available to us in the physical
world that surrounds us and which could serve as possible beakons for trips. But the correct full set of all possible
beakons must be unbiased and very obviously reflect the full symmetry of the Lorentz group.
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